Statistics

    Map

Twitter

Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection
( Vol-5,Issue-5,May 2018 )
Author(s):

Cristiane Segatto, Raquel Ternus, Marina Junges, Josiane Maria Muneron de Mello, Gean Lopes da Luz, Humberto Gracher Riella, Luciano Luiz Silva, Cristiano Reschke Lajús, Márcio Antônio Fiori

Keywords:

Zinc oxide nanoparticles, treatment of seeds of corn, treatment with nanoparticles, improve of germinations indicators.

Abstract:

The treatments of the seeds are important procedures applied by the agronomical area to improve the culture yield. From these procedures the micronutrients are available for the seeds before and during the germination stages. One high challenge is make efficient these treatment processes and to ensure the adsorption and the incorporation of these micronutrients in the seeds and to improve its performance in the germination phase. In this work studies explored the optimization of the incorporation process and the characteristics of the zinc oxide clusters adsorbed on the surface of the seed. The results were associated with the agronomic responses during the germinations stages of the seeds of corn. The seeds were treated in suspensions containing different concentrations of nanoparticles of zinc oxide and during different treatment times. The adsorptions in the corn surface and the absorption of the nanoparticles for the inner of the seeds were studied together with its antibacterial characteristics and correlated with the germinations indicators. The results showed that is possible to incorporate nanoparticles of zinc oxide in inner of the seeds of corn and improve the germinations indicators. Antibacterial protection was aggregated on the seeds of corn. It´s possible to incorporate 0.280 mg of zinc oxide nanoparticle per seed mass in inner of seeds with the optimal treatment conditions with nanoparticle concentration of 50 mg/L in the suspension and with treatment time of 180 minutes. With the optimal treatment concentration the normal plant percentage increase of 2.70% in relationship to the seeds not treated.

ijaers doi crossref DOI:

10.22161/ijaers.5.5.37

Paper Statistics:
  • Total View : 50
  • Downloads : 11
  • Page No: 277-295
Cite this Article:
MLA
Cristiane Segatto et al ."Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 5, 2018, pp.277-295 AI Publications, doi:10.22161/ijaers.5.5.37
APA
Cristiane Segatto, Raquel Ternus, Marina Junges, Josiane Maria Muneron de Mello, Gean Lopes da Luz, Humberto Gracher Riella, Luciano Luiz Silva, Cristiano Reschke Lajús, Márcio Antônio Fiori(2018).Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(5), 277-295. http://dx.doi.org/10.22161/ijaers.5.5.37
Chicago
Cristiane Segatto, Raquel Ternus, Marina Junges, Josiane Maria Muneron de Mello, Gean Lopes da Luz, Humberto Gracher Riella, Luciano Luiz Silva, Cristiano Reschke Lajús, Márcio Antônio Fiori. 2018,"Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(5):277-295. Doi: 10.22161/ijaers.5.5.37
Harvard
Cristiane Segatto, Raquel Ternus, Marina Junges, Josiane Maria Muneron de Mello, Gean Lopes da Luz, Humberto Gracher Riella, Luciano Luiz Silva, Cristiano Reschke Lajús, Márcio Antônio Fiori. 2018,Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(5), pp:277-295
IEEE
Cristiane Segatto, Raquel Ternus, Marina Junges, Josiane Maria Muneron de Mello, Gean Lopes da Luz, Humberto Gracher Riella, Luciano Luiz Silva, Cristiano Reschke Lajús, Márcio Antônio Fiori."Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 5, pp.277-295,2018.
Bibtex
@article {cristianesegatto2018adsorption,
title={Adsorption and incorporation of the zinc oxide nanoparticles in seeds of corn: germination performance and antimicrobial protection},
author={Cristiane Segatto, Raquel Ternus, Marina Junges, Josiane Maria Muneron de Mello, Gean Lopes da Luz, Humberto Gracher Riella, Luciano Luiz Silva, Cristiano Reschke Lajús, Márcio Antônio Fiori},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] Ramin Jannesar, Fahimeh Zare, Mehrorang haedi, Ali Daneshfar. (2016). Dispersion of hydrophobic magnetic nanoparticles using ultarsonic-assisted in combination with coacervativemicroextraction for the simultaneous preconcentration and determination of tricyclic antidepressant drugs in biological fluids. Ultrasonics Sonochemistry, 32; 380-386.
[2] Yifeng Lei, Yoh Hamada, Jun Li, Liman Cong, Nuoxin Wang, Ying Li, Wenfu Zheng, Xingyu Jiang.(2016). Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. Journal of Controlled Release, 232;131-142.
[3] NatesanSudha, SameenaYousuf, Enoch V.M.V. Israel, MosaeSelvakumarPaulraj, PremnathDhanaraj. (2016). On the accessibility of surface-bound drugs on magnetic nanoparticles. Encapsulation of drugs loaded on modified dextran-coated superparamagnetic iron oxide by β-cyclodextrin. Colloids and Surfaces B: Biointerfaces, 141; 423-428.
[4] Luana Becker Peres, Laize Becker Peres, Pedro Henrique Hermes de Araújo, Claudia Sayer. (2016). Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids and Surfaces B: Biointerfaces, 140;317-323.
[5] Evangelos Skotadis, Konstantinos Voutyras, Marianneza Chatzipetrou, Georgios Tsekenis, Lampros Patsiouras, Leonidas Madianos, Stavros Chatzandroulis, Ioanna Zergioti, Dimitris soukalas.(2016). Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies. Biosensors and Bioelectronics, 81; 388-394.
[6] Chong Sun, Ling Gao, Daoying Wang, Muhan Zhang, Yuan Liu, ZhimingGeng, WeiminXu, Fang Liu, HuanBian. (2016)Biocompatiblepolypyrrole-block copolymer-gold nanoparticles platform for determination of inosine monophosphate with bi-enzyme biosensor. Sensors and Actuators B: Chemical, 230;521-527.
[7] Boryana Borisova, Alfredo Sánchez, Sandra Jiménez-Falcao, Miriam Martín, Pedro Salazar, Concepción Parrado, José M. Pingarrón, Reynaldo Villalonga. (2016)Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors. Sensors and Actuators B: Chemical, 232; 84-90.
[8] Wei Ma, Liguang Xu, Libing Wang, Hua Kuang, ChuanlaiXu. (2016).Orientationalnanoaprticle assembliesandbiosensors. Biosensors andBioelectronics, 79 ;220-236.
[9] [9] Fernando Campanhã Vicentini, Lívia L.C. Garcia, Luiz C.S. Figueiredo-Filho, Bruno C. Janegitz, Orlando Fatibello-Filho.(2016).A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzyme and Microbial Technology, 84 ;17-23.
[10] Giuseppina olino, Robert Abbel, Santhosh Shanmugam, Guy J.P. Bex, Rob Hendriks, Francesca Brunetti, Aldo Di Carlo, Ronn Andriessen, YuliaGalagan. (2016).A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices. Organic Electronics, 34 ;130-138.
[11] Jitendra Pal Singh, Sung Ok Won, WeonCheol Lim, Ik-Jae Lee, K.H. Chae.(2016).Eletronicstructure studies of chemically synthesized MgFe2O4 nanoparticles. Journal of Molecular Structure, 1108; 444-450.
[12] KausarHarun, NorsakinahMansor, ZainalArifin Ahmad, Ahmad AzminMohamad. (2016).Electronic Properties of ZnO Nanoparticles Synthesized by Sol-gel Method: A LDA+U Calculation and Experimental Study. Procedia Chemistry, 125-132.
[13] Jianyong Ouyang. (2015). Electronic transfer from aluminum into the core of gold nanoparticles capped with conjugated 2-naphthalenethiol. Organic Electronics, 21; 138-143.
[14] Agata Zdyb, Stanisław Krawczyk (2016).Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 157;197-203.
[15] Ruiqiang Liu, Rattan Lal. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment, 514;131-139.
[16] Wenchao Du, Wenjuan Tan, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey, RongJi, Ying Yin, HongyanGuo.(2016).Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, In Press, Corrected Proof, Available online 14 April 2016.
[17] Heng Yu, JiweiRen, Lei Liu, ZhaojuanZheng, Junjun Zhu, Qiang Yong, Jia Ouyang.(2016).A new magnesium bisulfite pretreatment (MBSP) development for bio-ethanol production from corn stover. Bioresource Technology, 199; 188-193.
[18] Rafael Sanches Pacheco, Luciana FernandesBrito, RosangelaStraliotto, Daniel Vidal Pérez, Adelson Paulo Araújo. (2012). Seeds enriched with phosphorus and molybdenum as a strategy for improving grain yield of common bean crop. Field Crops Research, 136;97-106.
[19] Meng Li, Shaoxia Wang, XiaohongTian, Shuo Li, Yanlong Chen, Zhou Jia, Ke Liu, Aiqing Zhao. (2016). Zincand iron concentrations in grain milling fractions through combined foliar applications of Zn and macronutrients. Field Crops Research, 187; 135-141.
[20] Barbosa Filho M P.; Dynia JF, Zimmermann FJP.(1990).Resposta do arroz de sequeiro ao zinco e ao cobre com efeito residual para o milho. Revista Brasileira de Ciência do Solo, 14;333-338.
[21] Majumdar S, Peralta-Videa JR, BandyopadhyayS ,Castillo-Michel H., Hernandez-Viezcas JA, Sahi S, Gardea-Torresdey J. (2014). Exposureofcerium oxide nanoparticlestokidneybeanshowsdisturbance in theplantdefensemechanisms. Journal of Hazardous Materials, 278;279-287.
[22] Mustafa G, Sakata K, Hossain Z, Komatsu S. (2015). Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. Journal of proteomics, 122 ;100-118.
[23] Prapatsorn Boonyanitipong, Boonthida Kositsup, Prabhat Kumar, Sunandan Baruah, and Joydeep Dutta.(2011). Toxicity of ZnO and TiO2 Nanoparticles on Germinating Rice Seed Oryza sativa L. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4);282-285.
[24] Lin D, Xing B. (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut, 150(2);243-250.
[25] Huang Y C. Fan R. Grusak M A. Sherrier J D. Huang CP.(2014). Effects of nano-ZnO on the agronomic allyrelevant Rhizobium–legume symbiosis. Science of the Total Environment, 497-498;78–90.
[26] Pokhrel L R, Dubey B.(2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Science of the Total Environment, 452-453;321-332.
[27] Jiang JK, Oberdörster G, Biswas P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res, 11(1); 77-89.
[28] Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles olloidal medium. Nano Lett. 6(4); 866–870.
[29] Brayner R, Dahoumane SA, Yéprémian C, Djediat C, Meyer M, Couté A, et al.(2010).ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir, 26(9);6522–6528.
[30] Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. (2011). Cellular uptake andmutagenic potential of metal oxide nanoparticles in bacterial cells. Chemospere, 83(8); 1124-1132.
[31] Wang C, Liu LL, Zhang AT, Xie P, Lu JJ, Zou XT. (2012). Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. African J Biotechnol, 44;10248-10254.
[32] Paula I.P. Soares, César A.T. Laia, Alexandra Carvalho, Laura C.J. Pereira, Joana T. Coutinho, Isabel M.M. Ferreira, Carlos M.M. Novo, João Paulo Borges. (2016).Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Applied Surface Science, 383; 240-247.
[33] Ana Cecilia Barrios, Cyren M. Rico, Jesica Trujillo-Reyes, Illya A. Medina-Velo, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey. (2016). Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Science ofthe Total Environment, 563–564 ; 956-964.
[34] Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2009) Regras para análise de sementes. Brasília: MAPA.
[35] Claude R Henry.(2003).Reaction dynamics on supported metal clusters. The Chemical Physics of Solid Surfaces, 11;247–290.
[36] Taiz, L., Zeiger, E. (2013). Fisiologia vegetal. 4th ed. Porto Alegre: Artmed.
[37] Márcio Antônio Fiori, Marcos Marques da Silva Paula, Adriano MichaelBernardin, Humberto GracherRiella, ElídioAngioletto. (2009). Bactericide glasses developed by Na+/Ag+ ionic Exchange. Materials Science and Engineering C, 29;1569–1573.
[38] Marcos Marques da Silva Paula, César Vitório Franco, Mario César Baldin, Larissa Rodrigues,Tatiana Barichello, Geovana Dagostim Savi, Luiz Felipe Bellato, Márcio Antônio Fiori, Luciano da Silva. (2009)Synthesis, characterization and antibacterial activity studies ofpoly-{styrene-acrylic acid} with silver nanoparticles. Materials Science and Engineering C, 29;647–650.