Statistics

    Map

Twitter

An analysis of rainfall based on entropy theory
( Vol-5,Issue-6,June 2018 )
Author(s):

Vicente de Paulo Rodrigues da Silva, Adelgicio Farias Belo Filho, Enio Pereira de Souza, Célia Campos Braga, Romildo Morant de Holanda, Rafaela Silveira Rodrigues Almeida, Armando César Rodrigue s Braga

Keywords:

Mann-Kendall test, Information transfer, Measure the disorder.

Abstract:

The principle of maximum entropy can provide consistent basis for analyzing rainfall and for geophysical processes in general. The daily rainfall data was assessed using the Shannon entropy for a 10-years period from 189 stations in the northeastern region of Brazil. Mean values of marginal entropy were computed for all observation stations and isoentropy maps were then constructed for delineating annual and seasonal characteristics of rainfall. The Mann-Kendall test was used to evaluate the long-term trend in marginal entropy for two sample stations. The marginal entropy values of rainfall were higher for locations and periods with highest amount of rainfall. The results also showed that the marginal entropy decreased exponentially with increasing coefficient of variation. The Shannon theory produced spatial patterns which led to a better understanding of rainfall characteristics throughout the northeastern region of Brazil. Trend analysis indicated that most time series did not have any significant trends.

ijaers doi crossref DOI:

10.22161/ijaers.5.6.11

Paper Statistics:
  • Total View : 93
  • Downloads : 32
  • Page No: 068-075
Cite this Article:
MLA
Vicente de Paulo Rodrigues da Silva et al ."An analysis of rainfall based on entropy theory". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 6, 2018, pp.068-075 AI Publications, doi:10.22161/ijaers.5.6.11
APA
Vicente de Paulo Rodrigues da Silva, Adelgicio Farias Belo Filho, Enio Pereira de Souza, Célia Campos Braga, Romildo Morant de Holanda, Rafaela Silveira Rodrigues Almeida, Armando César Rodrigue s Braga(2018).An analysis of rainfall based on entropy theory. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(6), 068-075. http://dx.doi.org/10.22161/ijaers.5.6.11
Chicago
Vicente de Paulo Rodrigues da Silva, Adelgicio Farias Belo Filho, Enio Pereira de Souza, Célia Campos Braga, Romildo Morant de Holanda, Rafaela Silveira Rodrigues Almeida, Armando César Rodrigue s Braga. 2018,"An analysis of rainfall based on entropy theory". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(6):068-075. Doi: 10.22161/ijaers.5.6.11
Harvard
Vicente de Paulo Rodrigues da Silva, Adelgicio Farias Belo Filho, Enio Pereira de Souza, Célia Campos Braga, Romildo Morant de Holanda, Rafaela Silveira Rodrigues Almeida, Armando César Rodrigue s Braga. 2018,An analysis of rainfall based on entropy theory, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(6), pp:068-075
IEEE
Vicente de Paulo Rodrigues da Silva, Adelgicio Farias Belo Filho, Enio Pereira de Souza, Célia Campos Braga, Romildo Morant de Holanda, Rafaela Silveira Rodrigues Almeida, Armando César Rodrigue s Braga."An analysis of rainfall based on entropy theory", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 6, pp.068-075,2018.
Bibtex
@article {vicentedepaulorodriguesdasilva2018an,
title={An analysis of rainfall based on entropy theory},
author={Vicente de Paulo Rodrigues da Silva, Adelgicio Farias Belo Filho, Enio Pereira de Souza, Célia Campos Braga, Romildo Morant de Holanda, Rafaela Silveira Rodrigues Almeida, Armando César Rodrigue s Braga},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] Agrawal D, Singh JK, Kumar A. 2005. Maximum entropy-based conditional probability distribution runoff model. Biosystems Engineering 90: 103-113.
[2] Al-Zahrani M, Husain T. 1998. An algorithm for designing a precipitation network in the south-western region of Saudi Arabia. Journal of Hydrology 205: 205-216.
[3] Chen YC, Wei C, Yeh HC. 2007. Rainfall network design using kriging and entropy. Hydrological Process 1: 340-346.
[4] Dragomir SS, Scholz ML A, Sunde J. 2000. Some upper bounds for relative entropy and applications. International Journal of Computational and Applied Mathematics 39: 91-100.
[5] Ebrahimi N, Maasoumi E, Soofi E. 1999. Ordering univariate distributions by entropy and variance. Journal of Econometrics 90: 317–336.
[6] Hirsch RM, Slack JR, Smith RA. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107-121.
[7] Kaberger T, Mansson B. 2001.Entropy and economic processes – physics perspectives. Ecological Economics 36: 165-179.
[8] Kawachi T, Maruyama T, Singh VP. 2001. Rainfall entropy delineation of water resources zones in Japan. Journal of Hydrolpgy 246: 36-44.
[9] Kendall MG. 1975. Rank correlation measures. London: Charles Griffin. 220.
[10] Krstanovic PF, Singh VP. 1993a. Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resources Management 6: 279-293.
[11] Krstanovic PF, Singh VP. 1993b. Evaluation of rainfall networks using entropy: II. Application. Water Resources Management 6: 295-314.
[12] Maasoumi EA. 1993. Compendium to information theory in economics and econometrics. Econometric Reviews 12: 137-181.
[13] Mann HB. 1945. Nonparametric tests against trend. Econometrica 13: 245-259.
[14] Markus M, Knapp HV, Tasker GD. 2003. Entropy and generalized least square methods in assessment of the regional value of streamgages. Journal of Hydrology 283: 107-121.
[15] Martín AA, Rey JM. 2000. On the role of Shannon‘s entropy as a measure of heterogeneity. Geoderma 98: 1-3.
[16] Maruyama T, Kawachi MT, Singh VP. 2005. Entropy-based assessment and clustering of potential water resources availability. Journal of Hydrology 309: 104-113.
[17] Mishra AK, Ozger M, Singh VP. 2009. An entropy-based investigation into the variability of precipitation. Journal of Hydrology 370: 139-154.
[18] Montaño MAJ, Ebeling W, Pohl T, Rapp PE. 2001. Entropy and complexity of finite sequences as fluctuating quantities. BioSystems 64: 23-32.
[19] Ricotta C. 2002. Bridging the gap between ecological diversity indices and measures of biodiversity with Shannon’s entropy: comment to Izák and Papp. Ecological Model 152: 1-3, 2002.
[20] Shannon CE. 1948. The mathematical theory of communications. Bell System Technical Journal 27: 379-423.
[21] Silva VPR, Cavalcanti EP, Nascimento MG, Campos JHBC. 2003. Análises da precipitação pluvial no Estado da Paraíba com base na teoria da entropia. Agriambi 7: 269-274.
[22] Silva VPR. 2004. On climate variability in Northeast Brazil. Journal of Arid Environment 58: 575-596.
[23] Silva VPR, Sousa FSS, Cavalcanti, EP, Souza EP, Silva BB. Teleconnections between sea-surface temperature anomalies and air temperature. Journal of Atmospheric and Solar-Terrestrial Physics 68: 781-792.
[24] Singh VP. 1997. The use of entropy in hydrology and water resources. Hydrological Processes 11: 587-626.
[25] Singh VP, Rajagopal AK. 1987. Some recent advances in application of the principle of maximum entropy (POME) in hydrology. IAHS-AISH Publication 64: 353-364.
[26] Soofi E. 1997. Information theoretic regression methods. In: Fomby, T., Carter Hill, R. (Eds.), Adv Econometrics – Applying Maximum Entropy to Econometric Problems 12.