Statistics

    Map

Twitter

Analytical Calculation of the Drives of a Flight Simulator Platform with 2 Degrees of Freedom
( Vol-5,Issue-7,July 2018 )
Author(s):

Weslei Patrick Teodósio Sousa, Túlio Pinheiro Duarte, Bruno Rodrigues Castro, Tarcísio Flávio Umbelino Rego, Pedro Américo Almeida Magalhães Júnior

Keywords:

Analytical Calculation.Flight Simulation. Links2FS Multi. Power. Torque.

Abstract:

With constant technological advances, flight simulation has increasingly resembled a real flight. The use of motion platforms together with a virtual simulation is what is most recent in this field, due to its global approach to a flight. However, these flight simulators generate a great added value, so that for trivial trainings and entertainment their use becomes impracticable. With this in mind, in this work was presented a low cost project of a new model of flight simulator containing both simulations, visual and motion. More specifically, this work aims to demonstrate an analytical method for calculating the drives of the designed simulator, so that it supports the loads of the structure and user, in addition to the dynamic torque required by the simulation platform. Furthermore, it was shown how to obtain the inertia of a complex structure as designed using SolidWorks software and also how to acquire magnitudes such as acceleration and angular velocities using Flight Simulator X and Link2FS Multi software. Finally, with the torque and power values ​​required to perform the pitch and roll movements, a commercial selection of the motors was made for platform so that these drives would supply the demand of both torque and power.

ijaers doi crossref DOI:

10.22161/ijaers.5.7.10

Paper Statistics:
  • Total View : 122
  • Downloads : 19
  • Page No: 070-075
Cite this Article:
MLA
Weslei Patrick Teodósio Sousa et al ."Analytical Calculation of the Drives of a Flight Simulator Platform with 2 Degrees of Freedom". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 7, 2018, pp.070-075 AI Publications, doi:10.22161/ijaers.5.7.10
APA
Weslei Patrick Teodósio Sousa, Túlio Pinheiro Duarte, Bruno Rodrigues Castro, Tarcísio Flávio Umbelino Rego, Pedro Américo Almeida Magalhães Júnior(2018).Analytical Calculation of the Drives of a Flight Simulator Platform with 2 Degrees of Freedom. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(7), 070-075. http://dx.doi.org/10.22161/ijaers.5.7.10
Chicago
Weslei Patrick Teodósio Sousa, Túlio Pinheiro Duarte, Bruno Rodrigues Castro, Tarcísio Flávio Umbelino Rego, Pedro Américo Almeida Magalhães Júnior. 2018,"Analytical Calculation of the Drives of a Flight Simulator Platform with 2 Degrees of Freedom". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(7):070-075. Doi: 10.22161/ijaers.5.7.10
Harvard
Weslei Patrick Teodósio Sousa, Túlio Pinheiro Duarte, Bruno Rodrigues Castro, Tarcísio Flávio Umbelino Rego, Pedro Américo Almeida Magalhães Júnior. 2018,Analytical Calculation of the Drives of a Flight Simulator Platform with 2 Degrees of Freedom, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(7), pp:070-075
IEEE
Weslei Patrick Teodósio Sousa, Túlio Pinheiro Duarte, Bruno Rodrigues Castro, Tarcísio Flávio Umbelino Rego, Pedro Américo Almeida Magalhães Júnior."Analytical Calculation of the Drives of a Flight Simulator Platform with 2 Degrees of Freedom", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 7, pp.070-075,2018.
Bibtex
@article {wesleipatrickteodósiosousa2018analytical,
title={Analytical Calculation of the Drives of a Flight Simulator Platform with 2 Degrees of Freedom},
author={Weslei Patrick Teodósio Sousa, Túlio Pinheiro Duarte, Bruno Rodrigues Castro, Tarcísio Flávio Umbelino Rego, Pedro Américo Almeida Magalhães Júnior},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

  • Dourado, A.O; Martin, C.A. New concept ofdynamicflightsimulator,PartI. Aerospace Science and Technology, v.30, i.1, pp.79-82, 2013.https://doi.org/10.1016/j.ast.2013.07.005
  • Eryilmaz, U; Tokmak, H.S;Cagiltay, K; Isler, V; Eryilmaz, N.O. A novel classification method for driving simulators based on existing flight simulator classification standards. Transportation Research Part C, v.42, pp.132-146, 2014.https://doi.org/10.1016/j.trc.2014.02.011.
  • Reed, M.P., Green, P., 1995. Validation of a Low-cost Driving Simulator using a Telephone Dialling Task. Final Report, No: UMTRI-95-19. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.895.5939&rep=rep1&type=pdf.
  • Shahal, A; Hemmerich, W; Hecht, H. Brightness and contrast do not affect visually induced motion sicknessin a passively-flown fixed-base flight simulator, Displays, v.44, pp.5-14, 2016. https://doi.org/10.1016/j.displa.2016.05.007.
  • Pool, D.M; Zall, P.M.T. A Cybernetic Approach to Assess the Training of Manual Control Skills. IFAC-PapersOnLine, v.49, i.49, pp.343-348, 2016.https://doi.org/10.1016/j.ifacol.2016.10.588.
  • Baarspul, M. A review of flight simulation techniques. Progress in Aerospace Sciences, v.27, i.1, pp. 1-120, 1990. https://doi.org/10.1016/0376-0421(90)90006-6.
  • Benyonga, W;Yanliang, D;Kedingb, Z.Compound Control for Hydraulic Flight Motion Simulator. Chinese Journal of Aeronautics, v.23, i.2, pp.240-245, 2010.https://doi.org/10.1016/S1000-9361(09)60211-9.
  • Jain, A. Robot and Multibody Dynamics. Springer, 2011.
  • Shames, I.H. Engineering Mechanics (Statics and Dynamics). Prentice Hall (ISBN: 0133569241), 1996.
  • Abdulghany, A.R. Generalization of parallel axis theorem for rotational inertia. American Journal of Physics, v.85, i.10, 2017. https://doi.org/10.1119/1.4994835.
  • Herrero, S; Pinto, C; Altuzarra, O; Diez, M. Analysis of the 2PRU-1PRS 3DOF parallel manipulator: kinematics, singularities and dynamics. Robotics and Computer-Integrated Manufacturing, v. 51, pp. 63-72, 2018. https://doi.org/10.1016/j.rcim.2017.11.018.
  • Hibbeler, R.C. Engineering Mechanics: Statics, 12th Prentice Hall (ISBN: 0136077900), 2009.
  • Colins, J.A; Busby, H; Staab, G. Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective, 2nd Wiley (ISBN: 0470413034), 2009.
  • Motores elétricos assíncronos e síncronos de média tensão – Especificação, características e manutenção. Retrieved from http://ecatalog.weg.net/files/wegnet/WEG-curso-dt-6-motores-eletricos-assincrono-de-alta-tensao-artigo-tecnico-portugues-br.pdf.
  • WEG-CESTARI; MAGMA-M. Redutores e Motorredutores de Coroa e Rosca Sem-fim.Retrieved from http://www.transmitechredutores.com.br/admin/docs_upload/Cat.magmam_2013.pdf.