Coatings for saltwater pipelines
( Vol-5,Issue-9,September 2018 )

Camila Menezes Senna, Deborah Santos, Thiago Silva Geraldi


Coating, Corrosion, Pipeline, Saltwater, Wear.


This paper is a literature review of coatings that aim to reduce corrosion in metallic pipelines that are in contact with saltwater. Among the existing coatings, the most common and ecologically available ones are: asphaltic enamel (AE), epoxy resin, Fusion Bonded Epoxy (FBE), Neoprene and multilayer coatings (polyethylene-PE, polypropylene-PP and polyurethane-PU). Due to the need by the industries, new technologies in this field are being developed. Carbon nanotubes, DLC (diamond type carbon), and self-recoating coating are some of the new coatings that are in evidence due to their hydrophobic property. There are many industrial applications that require high resistance to saltwater corrosion, such as coastal factories, onshore and offshore platforms, tidal power plants, and water desalination, which justify researches of new technologies in this area.

ijaers doi crossref DOI:


Paper Statistics:
  • Total View : 42
  • Downloads : 17
  • Page No: 266-272
Cite this Article:
Camila Menezes Senna et al ."Coatings for saltwater pipelines". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 9, 2018, pp.266-272 AI Publications, doi:10.22161/ijaers.5.9.30
Camila Menezes Senna, Deborah Santos, Thiago Silva Geraldi(2018).Coatings for saltwater pipelines. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(9), 266-272.
Camila Menezes Senna, Deborah Santos, Thiago Silva Geraldi. 2018,"Coatings for saltwater pipelines". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(9):266-272. Doi: 10.22161/ijaers.5.9.30
Camila Menezes Senna, Deborah Santos, Thiago Silva Geraldi. 2018,Coatings for saltwater pipelines, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(9), pp:266-272
Camila Menezes Senna, Deborah Santos, Thiago Silva Geraldi."Coatings for saltwater pipelines", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 9, pp.266-272,2018.
@article {camilamenezessenna2018coatings,
title={Coatings for saltwater pipelines},
author={Camila Menezes Senna, Deborah Santos, Thiago Silva Geraldi},
journal={International Journal of Advanced Engineering Research and Science},
year= {2018},

[1] Goucher, C., & Walton, L. (2011). História mundial: jornadas do passado ao presente. Porto Alegre: Penso.
[2] Freeman, C., & Soete, L. (1997). The Economics of Industrial Innovation. London: Penguin.
[3] National Association of Corrosion Engineers. (2007). Control of External Corrosion on Underground or Submerged Metallic Piping Systems. NACE, 36.
[4] Lalli, C. M., & Parsons, T. R. (1993). Biological Oceanography – An introduction. Vancouver, Canada: Elsevier Butterworth-Heinemann.
[5] Narayan, G.P., Sharqawy, M.H., Lienhard V, J.H., & Zubair, S.M. (April, 2010). Thermodynamic Analysis of Humidification Dehumidification Desalination Cycles. Desalination and Water Treatment (16), 339–353.
[6] Lerman, M. (1986). Marine Biology: Environment, Diversity and Ecology. Menlo Park: Benjamin/Cummings Publishing Company.
[7] Libes, S. (1992). Introduction to marine biogeochemistry. Academic Press.
[8] Thurman, H. V., & Burton, E. A. (1997). Introductory Oceanography. New Jersey: Prentice Hall
[9] Lalli, C. M., & Parsons, T. R. (1993). Biological Oceanography – An introduction. Vancouver, Canada: Elsevier Butterworth-Heinemann.
[10] Pinet, P. R. (1996). Invitation to Oceanography”. West Publishing Company.
[11] Tavares, S.S.M., Pardal, J.M., Mainier, F.B., Da Igreja, H.R., Barbosa, E.S., Rodrigues, C.R., Barbosa, C., & Pardal, J.P. (2016, March). Investigation of the failure in a pipe of produced water from an oil separator due to internal localized corrosion. Engineering Failure Analysis, 61, 100-107, doi:10.1016/j.engfailanal.2015.10.001
[12] Frauches-Santos, C., Albuquerque, M. A., Oliveira, M. C. & Echevarria, A. (2014). A corrosão e os agentes anticorrosivos. Revista Virtual de Química, 6(2), 293-309.
[13] Fundão, A. S., Silva, F. Z. da, Garcia, D. P., Zancanella, A. C. B., Malheiros, F. C. N., Maziero, R., & da Cunha, V. S. (2017). Falha por Corrosão em Tubulação de Descarte de Água do Mar. Revista Univap, 22(41), 5-12.
[14] Moreno, J. D., Bonilla, M., Adam, J. M., Borrachero, M. V., & Soriano, L. (2015). Determining corrosion levels in the reinforcement rebars of buildings in coastal areas: a case study in the Mediterranean coastline. Construction and Building Materials, 100, 11-21.
[15] Rodriguez, B. (2018, April 27). The Effects of Saltwater on Metals. Acessed in July 28, 2018. Source: Sciencing:
[16] Anna, L. B. S., Castro, P. C. C., Silva, F. J., Franco, S. D., & Macêdo, M. C. S. (2008, August 25). Influência do Ângulo de Incidência e da Velocidade de Impacto na Erosão. Proceedings of Congresso Nacional de Engenharia Mecânica – CONEM, Salvador, BA, Brazil, 5.
[17] Barber, R. B., & Motley, M. R. (2016). Cavitating response of passively controlled tidal turbines. Journal of Fluids and Structures, 66, 462-475, doi:10.1016/j. jfluidstructs.2016.08.006.
[18] Bhushan B. (2013). Principles and applications of tribology. Columbus: John Wiley & Sons.
[19] Greenberg, D. A. (1987). Modeling tidal power. Scientific American, 257(5), 128-133.
[20] Wang, J., Chen, J., Chen, B., Yan, F., & Xue, Q. (2012). Wear behaviors and wear mechanisms of several alloys under simulated deep-sea environment covering seawater hydrostatic pressure. Tribology International, 56, 38-46, doi:10.1016/j.triboint.2012. 06.021.
[21] Traverso, P., & Canepa, E. (2014). A review of studies on corrosion of metals and alloys in deep-sea environment. Ocean Engineering, 87, 10-15, doi: 10.1016/j.oceaneng.2014.05.003
[22] Antaki, G. A. (2003). Piping and pipeline engineering: design, construction, maintenance, integrity, and repair. CRC Press.
[23] Copper Development Association (1986). Materials for Seawater Pipeline Systems. CDA Publication, 14. England.
[24] Alkazraji, D. (2008). A quick guide. Pipeline Engineering. Woodhead Publishing.
[25] Krauspenhar, T. L. (2012). Avaliação da resistência à corrosão-fadiga do aço API 5CT P1 10 em meio aquoso salino contendo H2S. Masters dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
[26] Bahadori, A. (2017). Oil and gas pipelines and piping systems: design, construction, management, and inspection. Gulf Professional Publishing.
[27] Abdel-Gaber, A. M., Abd-El-Nabey, B. A., Khamis, E., & Abd-El-Khalek, D. E. (2011). A natural extract as scale and corrosion inhibitor for steel surface in brine solution. Desalination, 278(1-3), 337-342, doi: 10.1016/j.desal.2011.05.048
[28] Sun, J. B., Zhang, G. A., Liu, W., & Lu, M. X. (2012). The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution. Corrosion Science, 57, 131-138, doi: 10.1016/j.corsci.2011.12. 025
[29] Grainger, S., & Blunt, J. (1998). Engineering coatings: design and application. William Andrew Publishing.
[30] Byrnes, T. (2017). Pipeline coatings. In A. M. El-Sherik (Ed.). Trends in Oil and Gas Corrosion Research and Technologies. Woodhead Publishing.
[31] Yasakau, K. A., Tedim, J., Zheludkevich, M. L., & Ferreira, M. G. S. (2014). 10 Smart self-healing coating for corrosion protection of aluminium alloys. In: A. S. H. Makhlouf (Ed.). Handbook of smart coatings for materials protection. Elsevier.
[32] Wei, Y. H., Zhang, L. X., & Ke, W. (2007). Evaluation of corrosion protection of carbon black filled fusion-bonded epoxy coatings on mild steel during exposure to a quiescent 3% NaCl solution. Corrosion science, 49(2), 287-302, doi: 10.1016/j. corsci.2006.06.018.
[33] Melot, D., Paugam, G., & Roche, M. (2009). Disbondments of pipeline coatings and their effects on corrosion risks. Journal of Protective Coatings & Linings, 18-31.
[34] Nguyen, T., & Martin, J. W. (2004). Modes and mechanisms for the degradation of fusion-bonded epoxy-coated steel in a marine concrete environment. JCT Research, 1(2), 81-92, doi:10.1007/s11998-004-0002-6
[35] Amadi, S. A., & Ukpaka, C. P. (2014). Performance evaluation of anti-corrosion coating in an oil industry. Landmark Research Journals Agriculture and Soil Sciences, 1(5), 70-81.
[36] Khanna, A. S. (2008). High-performance organic coatings. Woodhead Publishing.
[37] Suzuki, K., Ishida, M., Ohtsuki, F., Inuizawa, Y., Hinenoya, S., Tanaka, M., & Shindou, Y. (1986). Polypropylene Coated Steel Pipe. United States Patent N. US4606953A.
[38] Guan, S., Mayes, P., Andrenacci, A., & Wong, D. (2007). Advanced two layer polyethylene coating technology for pipeline protection. Proceedings of International Corrosion Control Conference, Sydney, Australia.
[39] Saliba, P. A., Mansur, A. A., & Mansur, H. S. (2016). Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines. Journal of Nanomaterials, 2016, 1-16, doi:10.1155/2016/7281726.
[40] Long, D. D., Barnett, G. A., & High, G. M. (1979). Neoprene coating composition for reinforcement fabrics for rubber products, process, and products produced thereby. United States Patent N. 4205559A
[41] Runxiu, W., & Jian, Z. (2014). Two-component neoprene coating. Chinese Patent N. CN103525304.
[42] Mirza, M., Rasu, E., & Desilva, A. (2016). Surface Coatings on Steel Pipes Used in Oil and Gas Industries - A Review. American Chemical Science Journal, 13(1), 1-23, doi: 10.9734/ACSJ/2016/ 22790.
[43] Vieira, A. M. (2010, December). Nanotecnologias da UFMG devem reforçar vida útil de dutos da Petrobras. Boletim UFMG, 1723, 5. Belo Horizonte, Brazil.
[44] Wang, Z. M., Zhang, J., Han, X., Li, Q. F., Wang, Z.L., & Wei, R. (2014). Corrosion and salt scale resistance of multilayered diamond-like carbon film in CO2 saturated solutions. Corrosion Science, 86, 261-267, doi:10.1016/j.cprsci.2014.05.015.
[45] Bueno, A. H. S., Solis, J., Zhao, H., Wang, C., Simões, T. A., Bryant, M., & Neville, A. (2018). Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in valves, pistons and pumps in oil and gas industry. Wear, 394, pp.60-70, doi:10.1016/j.wear.2017.09. 026.
[46] Liu, L., Wu, Z., An, X., Xiao, S., Cui, S., Lin, H., Fu, R. K., Tian, X., Wei, R., Chu, P. K., & Pan, F. (2018). Excellent adhered thick diamond-like carbon coatings by optimizing hetero-interfaces with sequential highly energetic Cr and C ion treatment. Journal of Alloys and Compounds, 735, 155-162, doi:10.1016/j.jallcom.2017.11.057.
[47] Ribeiro, L. D. (2013). Aplicação de Nanotubos de Carbono Verticalmente Alinhados em Membranas de Separação Entre Água e Óleo. Dissertação do Programa de Pós-Graduação, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil.
[48] Ebbesen, T. W. & Ajayan, P. M. (1992) Large-scale synthesis of carbon nanotubes. Nature, 358(6383), 220-222.
[49] Larrudé, D. R. G. (2007). Nanotubos de carbono decorados com partículas de cobalto. Masters dissertation, Pontifícia Universidade Católica, Rio de Janeiro, RJ, Brazil.
[50] Ribeiro, H., Silva, W. M. da, Neves, J. C., Calado, H. D. R., Paniago, R., Seara, L. M., Camarano, D. M., & Silva, G. G. (2015). Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polymer Testing, 43, 182-192, doi: 10.1016/j.polymertesting.2015.03.010.
[51] Costa, R. C., Dacoreggio, M. V., Kejelin, N. Z., & Comeli, F. W. (2014). Avaliação da resistência a corrosão de revestimentos metálicos depositados por aspersão térmica a arco: uma aplicação em trocadores de calor. Soldagem & Inspeção, 19(4),292-301, doi: 10.1590/0104-9224/SI1904.02.
[52] Nazeer, A. A., & Madkour, M. (2018). Potential use of smart coatings for corrosion protection of metals and alloys: A review. Journal of Molecular Liquids, 253, 11-22, doi:10.1016/j.molliq.2018.01.027.
[53] Wang, W., Li, W., Fan, W., Zhang, X., Song, L., Xiong, C., Gao, X., & Liu, X. (2018). Accelerated self-healing performance of magnetic gradient coating. Chemical Engineering Journal, 332, 658-670, doi:10.1016/j.cej.2017.09.112.
[54] Falcón, J., Sawczen, T., & Aoki, I. V. (2015). Uso de nanotubos de haloisita carregados com dodecilamina para aditivação de revestimentos anticorrosivos autorreparadores. Proceedings of Encontro e Exposição Brasileira de Tratamentos de Superfície – EBRATS, São Paulo, SP, Brazil, 15.
[55] Passadore, J. D. A. (2013). Estudo e caracterização de filmes hidrofóbicos e sua utilização como tratamento anticorrosivo para metais. Masters dissertation, Universidade de São Paulo, São Paulo, Brazil..
[56] Oliveira, A. R. de. (2016). Corrosão e tratamento de superfície. Instituto Federal De Educação, Ciência e Tecnologia. Belém, Pa, Brazil.
[57] Frauches-Santos, C., Albuquerque, M. A., Oliveira, M. C., & Echevarria, A. (2013). A corrosão e os agentes anticorrosivos. Revista Virtual de Química, 6(2), 293-309.
[58] Silva, M. L., Duarte, M. S. C., & Carvalho, G. L. (2016). Tratamento Anticorrosivo da Superfície Interna em Tanques de Armazenamento de Derivados do Petróleo com Resina Epóxi. Revista Científica Semana Acadêmica, 85(1).
[59] Clear, K. C., & Hay, R. E. (1973). Time-to-Corrosion of Reinforcing Steel in Concrete Slabe, V.1: Effect of Mix Design and Construction Parameters. FHWA-RD-73-32, Federal Highway Administration, Washington, DC.
[60] Zarbin, A. J. G. (2007). Química de (nano)materiais. Química Nova, 30(6), 1469-1479, doi:10.590/S0100-40422007000600016.
[61] Andersson, H. M., & Wilson, G. (2011). Self-healing systems for high-performance coatings. Journal of Protective Coatings & Linings.