Statistics

    Map

Twitter

Design and Implementation of Welding Mobile Robot Using a Proposed Control Scheme Based On Its Developed Dynamic Modeling for Tracking Desired Welding Trajectory
( Vol-4,Issue-10,October 2017 )
Author(s):

Nguyen Hung, Ho Dac Loc

Keywords:

Kinematic Controller (KC), Integral Sliding Mode controller (ISMC), Welding mobile robot (WMR), Lyapunov Stability Therory.

Abstract:

This paper presents a proposed control scheme that makes the combination of a kinematic controller (KC) and an integral sliding mode controller (ISMC) for a welding mobile robot (WMR) to track a desired welding path. First, a posture tracking error vector is defined and a kinematic controller is designed based on kinematic modeling to make the tracking error vector go to zero asymptotically. Second, a sliding surface vector is defined based on the velocity tracking error vector and its integral term. And then, an integral sliding mode dynamic controller is designed based on developed dynamic modeling to make velocity tracking error vector also go to zero asymptotically. The above controllers are obtained by backstepping method. The stability of system is proved based on the Lyapunov stability theory. To implement the designed tracking controller, a control system is developed based on DSP F28355 and ATmega328. A scheme for measuring the posture tracking error vector using torch sensor is presented. The simulation and experiment results are shown to illustrate effectiveness and the applicability to the welding industry field of the proposed controller.

ijaers doi crossref DOI:

10.22161/ijaers.4.10.13

Paper Statistics:
  • Total View : 48
  • Downloads : 1
  • Page No: 073-080
Cite this Article:
Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)
Share:
References:

[1] Y. H. John, W. Gao, C. H. James (1993). Variable Structure Control: A Survey. IEEE Transactions on Industrial Electronics (ISSN: 0278-0046), 40(1), 2-22.
[2] K. D. Young, V. I. Utkin, U. Ozguner (1999). A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology (ISSN: 1063-6536), 7(3), 328-342.
[3] Y. J. Huang, T. C. Kuo, S. H. IEEE Transactions on Control Systems Technology Chang. Adaptive Sliding Mode Control for Nonlinear Systems with Uncertain Parameters (2008). IEEE Transactions on Systems, Man, and Cybernetics (ISSN: 2168-2216), 38(2), 534-539.
[4] Y. Liu, Y. Li (2005). Sliding mode adaptive neural-network control for nonholonomic mobile modular manipulators. Journal of Intelligent and Robotic Systems (ISSN: 0921-0296(P) | 1573-0409(O)), 44(3), 203-224.
[5] S. Islam, X. P. Liu (2011). Robust Sliding Mode Control for Robot Manipulator. IEEE Transactions on Industrial Electronics (ISSN: 0278-0046), 58(6), 2444-2453.
[6] Y. Li, Y. Liu (2006). Real-time tip-over prevention and path following control for redundant nonholonomic mobile modular manipulators via fuzzy and neural-fuzzy approaches. Journal of Dynamic Systems, Measurement, and Control, Transactions of ASME (ISSN: 0022-0434(P) | 1528-90288(O)), 128(4), 753-764.
[7] H. Q. T. Ngo, J. H. Shin, W. H. Kim (2008). Fuzzy Sliding Mode Control for Robot Manipulator. Artificial Life and Robotics (ISSN: 1433-5298(P) | 2456-1908(O)), 13(1), 753-764.
[8] J. H. Lee, C. Lin, H. Lim, J. M. Lee (2009). Sliding Mode Control for Tracking Trajectory of Mobile Robot in The RFID Sensor Space. International Journal of Control, Automation, and System (ISSN : 1598-6446 (P) | 2005-4092 (O)), 13(1), 429-435.
[9] N. Hung, D. H. Kim, H. K. Kim, S. B. Kim. Tracking controller design of omnidirectional mobile manipulator system (2009). Proc. of ICROS-SICE International Joint Conference, Fukuoka International Congress Center (ISBN: 978-4-907764-33-3), 753-764.
[10] J. M. Yang, J. H. Kim (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. on Robotics and Automation (ISSN: 1042-296X), 15(3), 578-587.
[11] N. Hung, Jae. S. I, S. K. Jeong, H. K. Kim, S. B. Kim (2010). Design of a Sliding Mode Controller for an Automatic Guided Vehicle and Its Implementation. International Journal of Control, Automation, and Systems (IJCAS) (ISSN: 1598-6446 (P) | 2005-4092 (O)), 8(1), 81-90.
[12] V. T. Dinh, N. Hung, S. M. Shin, H. K. Kim, S. B. Kim and G. S. Byun (2012). Tracking Control of Omnidirectional Mobile Platform with Disturbance Using Differential Sliding Mode Controller. International Journal of Precision Engineering And Manufacturing (ISSN: 2234-7593(P) | 2005-4602(O)), 13(1), 39-48.
[13] T. L. Chung, S. S. Park, T. H. Bui, S. B. Kim (2004). Sliding mode control of spot bead welding mobile robot. Proc. of KSPSE Conf. at MarineTime Univ., Korea, 229-236.
[14] T. L. Chung, T. H. Bui, T. T. Nguyen, S. B. Kim (2004). Sliding Mode Control of Two-Wheeled Welding Mobile Robot for Tracking Smooth Curved Welding Path. KSME International Journal (ISSN: 1738-494X(P) | 1976-3824(O)), 18(7), 1904-1106.
[15] N. Hung, Tuan. D. V, Jae. S. I, H. K. Kim, S. B. Kim (2010). Motion Control of Omnidirectional Mobile Platform for Trajectory Tracking Using Integral Sliding Mode Controller. International Journal of Control, Automation, and Systems (IJCAS) (ISSN : 1598-6446 (P) | 2005-4092 (O)), 8(6), 1221-1231.
[16] Jean-Jacques E. Slotine, Weiping Li (1991). Applied Nonlinear Control. Prentice-Hall International, Inc.