Statistics

    Map

Twitter

Developing Multi Linear Regression Models for Estimation of Marshall Stability
( Vol-5,Issue-6,June 2018 )
Author(s):

Omer Faruk Cansiz, Dilay Duran Askar

Keywords:

Marshall Stability Experiment, Multi LinearRegression, MSE, MPE,

Abstract:

Nowadays, asphalt roads are exposed to increasing traffic loads in recent times. It is important to obtain a quality and healthy asphalt road covering when considering the conditions of our country where freight and passenger transportation are carried out by roads. One of the most important issues in asphalt road design is the determination of the optimum percentage of bitumen. The Marshall stability test is utilized for optimum percent bitumen determination. In our work, instead of the long and laborious Marshall experiment process, Multi Linear Regression (MLR) Models are developed as an alternative. Models were developed for Marshall experiment result for Marshall stability prediction. In order to construct stability estimation models, pre-made test parameters are used. These parameters are; the bitumen penetration (P),weight of the sample in the weather (H), the temperature (C), the bitumen weight (G), the sample heights (Y), the bitumen percentage (W), weight of the sample in water (S), the stability (ST). In the performance evaluation of the models, the correlation coefficient (R), the mean percentage errors (MPE) and the meansquare errors (MSE) are used. It is seen that the model with the highest performance value is composed of six variable model in this study formed by the MLR. The R value of the best model is 0.571.The MSE value of the best model is 14841,81. The MPE value of the best model is 9.58.

ijaers doi crossref DOI:

10.22161/ijaers.5.6.10

Paper Statistics:
  • Total View : 55
  • Downloads : 55
  • Page No: 064-067
Cite this Article:
MLA
Omer Faruk Cansiz et al ."Developing Multi Linear Regression Models for Estimation of Marshall Stability". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 6, 2018, pp.064-067 AI Publications, doi:10.22161/ijaers.5.6.10
APA
Omer Faruk Cansiz, Dilay Duran Askar(2018).Developing Multi Linear Regression Models for Estimation of Marshall Stability. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(6), 064-067. http://dx.doi.org/10.22161/ijaers.5.6.10
Chicago
Omer Faruk Cansiz, Dilay Duran Askar. 2018,"Developing Multi Linear Regression Models for Estimation of Marshall Stability". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(6):064-067. Doi: 10.22161/ijaers.5.6.10
Harvard
Omer Faruk Cansiz, Dilay Duran Askar. 2018,Developing Multi Linear Regression Models for Estimation of Marshall Stability, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(6), pp:064-067
IEEE
Omer Faruk Cansiz, Dilay Duran Askar."Developing Multi Linear Regression Models for Estimation of Marshall Stability", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 6, pp.064-067,2018.
Bibtex
@article {omerfarukcansiz2018developing,
title={Developing Multi Linear Regression Models for Estimation of Marshall Stability},
author={Omer Faruk Cansiz, Dilay Duran Askar},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] Mustafa Çalışıcı, Metin Gürü, M. Kürşat Çubuk, Ömer Faruk Cansız. Improving the aging resistance of bitumen by addition of polymer based diethylene glycol. Construction and Building Materials. Volume 169, 30 April 2018, Pages 283-288.https://doi.org/10.1016/j.conbuildmat.2018.03.018
[2] Özgana E., Kapa T., Beycioğlu A., Emiroğlu M., 2009. Uluslararası İleri Teknolojiler Sempozyumu. Karabük.
[3] Tigdemir, M.,Kalyoncuoglu S.F., Kalyoncuoglu U.Y., 2004. Applications of ultrasonic method in asphalt concrete testing for fatigue life estimation. NDT&E Int., 37(8):597-602.
[4] Cooper K.E.,Pell P.S., 1974. The effect of mix variables on the fatigues trength of bituminous materials. TRRL Report 633.
[5] Liang, R.Y.,Zhou, J., 1997.Prediction of fatigue life of asphalt concrete beams, Int. J Fatigue, 19 (2):17 124
[6] Önal A., Karaca S., 1990. Asfalt Betonu Karışım Dizayn Metotları. K.G.M. Yayınları, Ankara
[7] Yıldız K.,Gökdemir R A., 2007. Asfalt Betonu Aşınma Tabakasının Bitüm Yüzdesi Tayini İçin Tahmin Modeli. Gazi Üniversitesi, Teknik Eğitim Fakültesi Yapı Eğitimi Bölümü, Ankara
[8] Namlı R., Kuloğlu N., 2007. Superpave ve Marshall Yöntemlerinin Deneysel Karşılaştırılması. İMO TeknikDergi, 4103 -4118, Yazı 270
[9] Özgan E., Serin S., Kap T., 2011.Sıcak Karışım Parametrelerinin Marshall Stabilitesine Etkisinin Çok Yönlü İncelenmesi. 6th International Advanced Technologies Symposium (IATS’11), Elazığ
[10] Konak S. D. 2012.,Farklı Darbe Sayıları İle Hazırlanan Sıcak Asfalt Karışımlarda Marshall Oranının Belirlenmesi ve Regresyon Analizi Yöntemi İle Belirlenen Sonuçların Değerlendirilmesi
[11] Deniz M.T,.Lav A.H. 2010. Asfaltlarda bitümle birlikte granüler sulfur kullanımının stabiliteye etkisi
[12] Cansız O.F., Calisici M, Mirioglu M.M. 2009 Use of Artificial Neural Network to Estimate Number of Persons Fatally Injured in Motor Vehicle Accidents. Proceedings of the 3rd International Conference on Applied Mathematics, 136-142
[13] Güneri N., Apaydın A., 2004.Öğrenci Başarılarının Sınıflandırılmasında Lojistik Regresyon Analizi ve Sinir Ağları Yaklaşımı. Ticaret ve Turizm Eğitim Fakültesi Dergisi, Yıl: 2004, Sayı: 1, ss. 170 – 188
[14] Cansız OF. Improvements in estimating a fatal accidents model formed by an artificial neural network. Simulation. 2011;87(6):512-522. doi:10.1177/0037549710370842
[15] Cansiz, O.F., and Easa, S.M., Using Artificial Neural Network to Predict Collisions on Horizontal Tangents of 3D Two-Lane Highways, International Journal of Engineering and Applied Sciences, 47-56, 2011
[16] Ali Dogan, Omer Faruk Cansiz, Kevser Unsalan, Nurullah Karaca(2017).Investigation of Multi Linear Regression Methods on Estimation of Free Vibration Analysis of Laminated Composite Shallow Shells. International Journal of Advanced Engineering Research and Science (ISSN : 2349-6495(P) | 2456-1908(O)),4(12), 114-120. http://dx.doi.org/10.22161/ijaers.4.12.19
[17] Murat Ozturk, Omer F. Cansiz, Umur K. Sevim and Muzeyyen Balcikanli Bankir. MLR & ANN approaches for prediction of compressive strength of alkali activated EAFS. Computers and Concrete. Volume 21, Number 5, May 2018, pages 559-567.
doi:http://dx.doi.org/10.12989/cac.2018.21.5.559