Statistics

    Map

Twitter

Optimal H Infinity Controller Applied to a Stewart Platform
( Vol-5,Issue-7,July 2018 )
Author(s):

Ricardo Breganon, Marcio A. F. Montezuma, Mateus M. de Souza, Rodrigo C. Lemes, Eduardo M. Belo

Keywords:

Stewart Platform, Flight Simulator, H infinity Controller, Position Controller, Orientation Controller.

Abstract:

In recent years there has been great interest in studying parallel manipulators, mainly applied in flight simulators, with six degrees of freedom. The interest in parallel kinematic structures is motivated by its high stiffness and excellent positioning capability in relation to serial kinematic structures. This work presents the kinematic and dynamic modeling, design, development and identification of the parameters of motion platform with six degrees of freedom, electrically powered, for studies of flight simulators, is known as a Stewart Platform. It also presents the design of an H infinity controller with output feedback. The actuator model was obtained by a step voltage input to the engines and measuring its displacement by the encoders coupled, in each of the respective axes of the motors. Knowing the relation of motion transmission mechanism between the motor shaft and each actuator is obtained by the displacement rod from the rotation of motor which are measured by the corresponding encoder. The kinematics and dynamics platform’s data compose the whole systems models simulations that are applied in the Stewart platform to validate the model and show the effectiveness of control techniques in which was applied to control the position and orientation of the platform were performed. An inertial sensor Xsens MTi-G measurement of the Euler angles of the platform was performed. The result obtained by the controller was satisfactory and illustrate the performance and robustness of the proposed methodology.

ijaers doi crossref DOI:

10.22161/ijaers.5.7.7

Paper Statistics:
  • Total View : 100
  • Downloads : 21
  • Page No: 051-059
Cite this Article:
MLA
Ricardo Breganon et al ."Optimal H Infinity Controller Applied to a Stewart Platform". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 7, 2018, pp.051-059 AI Publications, doi:10.22161/ijaers.5.7.7
APA
Ricardo Breganon, Marcio A. F. Montezuma, Mateus M. de Souza, Rodrigo C. Lemes, Eduardo M. Belo(2018).Optimal H Infinity Controller Applied to a Stewart Platform. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(7), 051-059. http://dx.doi.org/10.22161/ijaers.5.7.7
Chicago
Ricardo Breganon, Marcio A. F. Montezuma, Mateus M. de Souza, Rodrigo C. Lemes, Eduardo M. Belo. 2018,"Optimal H Infinity Controller Applied to a Stewart Platform". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(7):051-059. Doi: 10.22161/ijaers.5.7.7
Harvard
Ricardo Breganon, Marcio A. F. Montezuma, Mateus M. de Souza, Rodrigo C. Lemes, Eduardo M. Belo. 2018,Optimal H Infinity Controller Applied to a Stewart Platform, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(7), pp:051-059
IEEE
Ricardo Breganon, Marcio A. F. Montezuma, Mateus M. de Souza, Rodrigo C. Lemes, Eduardo M. Belo."Optimal H Infinity Controller Applied to a Stewart Platform", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 7, pp.051-059,2018.
Bibtex
@article {ricardobreganon2018optimal,
title={Optimal H Infinity Controller Applied to a Stewart Platform},
author={Ricardo Breganon, Marcio A. F. Montezuma, Mateus M. de Souza, Rodrigo C. Lemes, Eduardo M. Belo},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] STEWART, D. (1965). A platform with six degrees of freedom. Proceedings of Institution of Mechanical Engineers, Part 1, v.180, n.15, p.371-86.
[2] DASGUPTA, B.; MRUTHYUNJAYA, T.S. (2000) The Stewart Platform Manipulator: a review. Mechanism and Machine Theory 35. 15-40 p. Pergamon.
[3] QIANG, W., JUAN, C. AND ZHIYOUNG, T., (2008). “Study of sliding mode control for Stewart Platform based on simplified dynamic model”. In The IEEE International Conference on Industrial Informatics – INDIN 2008. Daejeon, Korea.
[4] RÉMILLARD, V., BOUKAS, EL-K., “Gough-Stewart Platform Control: A fuzzy control approach”. In Annual Conference of the North American Fuzzy Information Processing Society. Montreal, Canada.
[5] GONZALEZ ACUÑA, Hernán (2009). Projeto mecatrônico de uma plataforma Stewart para simulação dos movimentos nos navios. 112 p. Dissertação (Mestrado em Engenharia Mecânica), Universidade Federal do Rio de Janeiro, COPPE, Rio de Janeiro.
[6] TRAVI, Alexandre Back e (2009). Plataforma de Stewart Acionada por Cabos. 114 p. Dissertação (Mestrado em Engenharia Mecânica), Instituto Militar de Engenharia, - Rio de Janeiro.
[7] ZIPFEL, P. H., (2000). “Modeling and simulation of aerospace vehicle dynamics”. Reston, VA: American Institute of Aeronautics and Astronautics. 551p.
[8] NGUYEN, C. C. et al. (1993). Adaptive control of a Stewart Platform-Based manipulator. Journal of Robotic Systems, v.10, n.5, p.657-87.
[9] D’AZZO, J. J.; HOUPIS, H. C. (1995). Linear control system analysis and desing: conventional and modern. 3rd ed., New York, McGraw Hill Publishing Company.
[10] OGATA, K. (2003) Engenharia de Controle Moderno. 4ª Ed. São Paulo, Pearson: Prentice-Hall.
[11] OLIVEIRA, V.A.; AGUIAR, M.L.; VARGAS, J.B. (2005) Sistemas de Controle – Aulas de Laboratório. Departamento de Engenharia Elétrica. EESC/USP, São Carlos, SP.
[12] DOYLE, J. C. et al (1989). State-space solutions to standard H2 and H∞ control problems, IEEE Transactions on Automatic Control 34(8):831–847 p.
[13] ZHOU, K.,;DOYLE, J. C. and GLOVER, K. (1995). Robust and Optimal Control, Upper Saddle River: Prentice Hall.
[14] HUANG, X., HANG, Z., HE, G. and TAN, X., (2010). “An efficient algebraic method for direct kinematics of the 5-6 Stewart Platform”. In 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics. Wuhan, China.
[15] FICHTER, E. F. (1986). A Stewart Platform-Based manipulator: general theory and practical construction. International Journal of Robotics and Research, v.5, n.2, p.157-82.
[16] MERLET, J.P. (2000). Paralell robots. Dordrecht: Kluwer Academic Publishers.
[17] ROSARIO, J.M. et al (2007) Control of a 6-DOF Parallel Manipulator through a Mechatronic Approach Journal of Vibration and Control, 1431–1446 p. Publications Los Angeles, London, New Delhi, Singapore.
[18] MONTEZUMA, M. A. F. (2010). Metodologia para identificação e controle de um protótipo de uma plataforma de movimento com 2 G.D.L. 169 p. Tese (Doutorado em Engenharia Mecânica), Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.
[19] BREGANON, Ricardo, et al (2013). Attitude and Position Tracking System for a 6-6 Stewart Platform. In: 22nd International Congress of Mechanical Engineering, Ribeirão Preto. COBEM.