Statistics

    Map

Twitter

Phosphoric Acid Increases the Porosity and Extends the Contact Area of Dental Osseo integrated Implants
( Vol-5,Issue-3,March 2018 )
Author(s):

Fernando Luzia França, Aline do Carmo França Botelho, Fernando Gabriel Souza Araújo

Keywords:

Dental implants, phosphoric acid, porosity.

Abstract:

The surface treatments are performed in dental implants in order to increase the chemical and mechanical connection between the implant and bone, favoring the stability of implant-supported prostheses. The aim of this study was to characterize dental implant surfaces treated with 37% phosphoric acid. Implant surfaces were evaluated divided into groups of fifty samples being distributed in: porcelain samples without treatment; metal samples without treatment; porcelain samples with treatment with 37% phosphoric acid for 30 seconds; metal samples treatment with phosphoric acid at 37% for 30 seconds; porcelain samples with treatment with 37% phosphoric acid for 60 seconds; metal samples with treatment with 37% phosphoric acid for 60 seconds. The samples were characterized by Scanning Electron Microscopy. After the phosphoric acid treatment porosity changes were observed and expanding the contact area. The results show benefits of using phosphoric acid, as a surface with increased roughness; this is desired to occur matrix deposition and growth of bone tissue and facilitates the fixation of implant-supported prostheses.

ijaers doi crossref DOI:

10.22161/ijaers.5.3.30

Paper Statistics:
  • Total View : 155
  • Downloads : 16
  • Page No: 230-236
Cite this Article:
MLA
Fernando Luzia França et al ."Phosphoric Acid Increases the Porosity and Extends the Contact Area of Dental Osseo integrated Implants". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 3, 2018, pp.230-236 AI Publications, doi:10.22161/ijaers.5.3.30
APA
Fernando Luzia França, Aline do Carmo França Botelho, Fernando Gabriel Souza Araújo(2018).Phosphoric Acid Increases the Porosity and Extends the Contact Area of Dental Osseo integrated Implants. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(3), 230-236. http://dx.doi.org/10.22161/ijaers.5.3.30
Chicago
Fernando Luzia França, Aline do Carmo França Botelho, Fernando Gabriel Souza Araújo. 2018,"Phosphoric Acid Increases the Porosity and Extends the Contact Area of Dental Osseo integrated Implants". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(3):230-236. Doi: 10.22161/ijaers.5.3.30
Harvard
Fernando Luzia França, Aline do Carmo França Botelho, Fernando Gabriel Souza Araújo. 2018,Phosphoric Acid Increases the Porosity and Extends the Contact Area of Dental Osseo integrated Implants, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(3), pp:230-236
IEEE
Fernando Luzia França, Aline do Carmo França Botelho, Fernando Gabriel Souza Araújo."Phosphoric Acid Increases the Porosity and Extends the Contact Area of Dental Osseo integrated Implants", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 3, pp.230-236,2018.
Bibtex
@article {fernandoluziafrança2018phosphoric,
title={Phosphoric Acid Increases the Porosity and Extends the Contact Area of Dental Osseo integrated Implants},
author={Fernando Luzia França, Aline do Carmo França Botelho, Fernando Gabriel Souza Araújo},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] Amaral R. Rippe M. P. Oliveira B. G. Cesar P. F. Bottino M. A. Valandro L. F. (2014). Evaluation of tensile retention of YTZP crowns after long-term aging: Effect of the abutment substrate and Y-TZP surface conditioning. Operative Dentistry. 39(6): 619-626.
[2] Anselme K. Bigerelle M. Noel B. Dufresne E. Judas D. Iost A. Hardouin P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research. 49(2): 155-166.
[3] Bottino M. A. Bergoli C. Lima E. G. Marocho S. M. Souza R. O. Valandro L. F. (2014). Bonding of Y-TZP to dentin: Effects of Y-TZP surface conditioning, resin cement type, and aging. Operative Dentistry. 39(3): 291-300.
[4] Brandão M. L. Esposti T. B. D. Bisognin E. D. Haran N. D. Vidigal G. M. Conz M. B. (2010) Superfície dos implasntes osseointegrados x resposta biológica. Implantnews. 7(1): 95-101
[5] Campos T. N. Adachi L. K. Miashiro K. Yoshida H. Shinkai R. S. Neto P. T. et al. (2010). Effect of surface topography of implant abutments on retention of cemented single-tooth crowns. International Journal of Periodontics & Restorative Dentistry. 30: 409-413.
[6] Fugazzotto P. A. Vlassis J. (2007). Report of 1,633 implants in 814 augmented sinus areas in function for up to 180 months. Implant Dentistry. 16: 369-378.
[7] Garófolo J. C. (2005). Desvendando a Cimentação Adesiva (parte 1). Alianews, Informativo interno do Laboratório Aliança N. 03- Set.
[8] Groisman M. E. Vidigal Junior G.M. (2005). Tipos de superfícies de implantes. Periodontia e Implantodontia - Atuação clínica baseada em evidências científicas. Sobrape. 14: 1-14.
[9] Gupta R. Weber K. K. (2017). Dental Implants. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
[10] Hsu S. H. Liu B. S. Lin W. H. Chiang H. C. Huang S. C. Cheng S. S. (2007). Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface. Biomedical Material Engeering. 17: 53-68.
[11] Kang B. S. Sul Y. T. Oh S. J. Lee H. J. Albrektsson T. (2009). XPS, AES and SEM analysis of recent dental implants. Acta Biomaterialia. 5: 2222-2229.
[12] Kitayama S. Nikaido T. Maruoka R. Zhu L. Ikeda M. Watanabe A. Foxton R. M. Miura H. Tagami J. (2009). Effect of an internal coating technique on tensile bond strengths of resin cements to zircônia ceramics. Dental Materials Journal. 28: 446-453.
[13] Lohbauer U. Zipperle M. Rischka K. Petschelt A. Müller F. A. (2008). Hydroxylation of dental zirconia surfaces: characterization and bonding potential. Journal of Biomedical Materials Research Part B Applied Biomaterials. 87(2): 461-467.
[14] Nagem Filho H. Francisconi P. A. S. Campi Júnior L. Fares N. H. (2007). Influência da textura superficial dos implantes. Odonto Ciência. 22(5): 82-86.
[15] Pauletto N. Lahiffe B. J. Walton J. N. (1999). Complications associated with excess cement around crowns on osseointegrated implants: a clinical report. International Journal of Oral and Maxillofacial Implants. 14(6): 865-868.
[16] Rippe M. P. Amaral R. Oliveira F. S. Cesar P. F. Scotti R. Valandro L. F. Bottino M. A. (2015). Evaluation of tensile retention of Y-TZP crowns cemented on resin composite cores: Effect of the cement and Y-TZP surface conditioning. Operative Dentistry. 40(1): E1-E10.
[17] Sherif S. Susarla S. M. Hwang J. W. Weber H. P. Wright R. F. (2011). Clinician- and patient-reported long-term evaluation of screw- and cement-retained implant restorations: a 5-year prospective study. Clinical Oral Investigations. 15: 993-999.