Statistics

    Map

Twitter

Synthesis of natural ether lipids and 1-O-hexadecylglycero-arylboronates via an epoxide-ring opening approach: Potential antifouling additives to marine paint coatings
( Vol-5,Issue-5,May 2018 )
Author(s):

Thiana S. Nascimento, Luciana G. Monteiro, Esther F. Braga, William R. Batista, André L. M. Albert, Leticia G. F. Chantre, Sergio de P. Machado, Rosangela S. C. Lopes, Claudio C. Lopes

Keywords:

Antifouling paints, Ethers lipids, Marine biofouling, Synthesis.

Abstract:

In this paper a new and efficient procedure for the synthesis of natural 1-O- alkyl glyceryl ethers such as chimyl (1), batyl (2) and selachyl (3) is described. Alkyl glycidyl ethers (4-6) were synthetized using solvents free reactions. A stereospecific ring-opening reaction of epoxides (4-6) with phenylboronic acid in dry dioxane, giving rise to cyclic arylboronates in high yields (90-98%). Seven new 1-O-hexadecylglycero-arylboronates (7-f) and chimyl alcohol (1) were evaluated in laboratory antifouling assays.

ijaers doi crossref DOI:

10.22161/ijaers.5.5.43

Paper Statistics:
  • Total View : 94
  • Downloads : 14
  • Page No: 326-332
Cite this Article:
MLA
Thiana S. Nascimento et al ."Synthesis of natural ether lipids and 1-O-hexadecylglycero-arylboronates via an epoxide-ring opening approach: Potential antifouling additives to marine paint coatings". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 5, 2018, pp.326-332 AI Publications, doi:10.22161/ijaers.5.5.43
APA
Thiana S. Nascimento, Luciana G. Monteiro, Esther F. Braga, William R. Batista, André L. M. Albert, Leticia G. F. Chantre, Sergio de P. Machado, Rosangela S. C. Lopes, Claudio C. Lopes(2018).Synthesis of natural ether lipids and 1-O-hexadecylglycero-arylboronates via an epoxide-ring opening approach: Potential antifouling additives to marine paint coatings. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(5), 326-332. http://dx.doi.org/10.22161/ijaers.5.5.43
Chicago
Thiana S. Nascimento, Luciana G. Monteiro, Esther F. Braga, William R. Batista, André L. M. Albert, Leticia G. F. Chantre, Sergio de P. Machado, Rosangela S. C. Lopes, Claudio C. Lopes. 2018,"Synthesis of natural ether lipids and 1-O-hexadecylglycero-arylboronates via an epoxide-ring opening approach: Potential antifouling additives to marine paint coatings". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(5):326-332. Doi: 10.22161/ijaers.5.5.43
Harvard
Thiana S. Nascimento, Luciana G. Monteiro, Esther F. Braga, William R. Batista, André L. M. Albert, Leticia G. F. Chantre, Sergio de P. Machado, Rosangela S. C. Lopes, Claudio C. Lopes. 2018,Synthesis of natural ether lipids and 1-O-hexadecylglycero-arylboronates via an epoxide-ring opening approach: Potential antifouling additives to marine paint coatings, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(5), pp:326-332
IEEE
Thiana S. Nascimento, Luciana G. Monteiro, Esther F. Braga, William R. Batista, André L. M. Albert, Leticia G. F. Chantre, Sergio de P. Machado, Rosangela S. C. Lopes, Claudio C. Lopes."Synthesis of natural ether lipids and 1-O-hexadecylglycero-arylboronates via an epoxide-ring opening approach: Potential antifouling additives to marine paint coatings", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 5, pp.326-332,2018.
Bibtex
@article {thianas.nascimento2018synthesis,
title={Synthesis of natural ether lipids and 1-O-hexadecylglycero-arylboronates via an epoxide-ring opening approach: Potential antifouling additives to marine paint coatings},
author={Thiana S. Nascimento, Luciana G. Monteiro, Esther F. Braga, William R. Batista, André L. M. Albert, Leticia G. F. Chantre, Sergio de P. Machado, Rosangela S. C. Lopes, Claudio C. Lopes},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] http://www.emsa.europa.eu/implementation-tasks/environment/anti-fouling-systems.html , accessed in october 2017.
[2] Gipperth, L (2009). The legal design of the international and European Union ban on tributyltin antifouling paint: direct and indirect effects. J. Environ. Manage., 90, S86.
[3] Sonak, S., Pangam, P., Giriyan, A., Hawaldar, K (2009). Implications of the ban on organotins for protection of global coastal and marine ecology. J. Environ. Manage., 90, S96.
[4] Quian, P., Xu, Y., Fusetani, N (2010). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 26, 223.
[5] Du J., Chadalavada S., Chen Z., Naidu R (2014). Environmental remediation techniques of tributyltin contamination in soil and water: A review. Chem. Eng. J., 235, 141.
[6] Batista, W. R., Neves, M. H. C. B., Coutinho, R., Lopes, C. C., Lopes, R. S. C (2015). Glicerofosfolipídios sintéticos para uso como aditivo biocida em tintas anti incrustante. Quim. Nova, 38, 7, 917.
[7] Batista, W. R., Martins, V. A., Neves, M. H. C. B., Coutinho, R., Crespo, R., Lopes, R. S. C.; Lopes, C. C., (2010) Brazilian patent PI, 1004858-8.
[8] Batista, W. R., Martins, V. A., Neves, M. H. C. B., Coutinho, R., Crespo, R., Lopes, R. S. C., Lopes, C (2010). C., Brazilian patent PI, 1004585-6.
[9] Batista, W. R., Martins, V. A., Neves, M. H. C. B., Coutinho, R., Crespo, R., Lopes, R. S. C.; Lopes, C. C. (2014); United States patent,8,657,943 B2.
[10] Batista, W. R., Neves, M. H. C. B., Coutinho, R., Lopes, R. S. C., Lopes, C. C. (2014), Brazilian patent PI, 10 2014 014775-6.
[11] Batista, W. R., Neves, M. H. C. B., Coutinho, R., Lopes, R. S. C., Lopes, C. C. Evaluating antimicrobial activity of bioactive glycerophospholipids presents in Brazilian marine sponges extracts. In: FORMATEX RESEARCH CENTER. (Org.) (2015). The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs. 5th ed., Badajoz: FORMATEX RESEARCH CENTER, 1, 144.
[12] Batista, W. R.; Fernandes, F. C.; Lopes, C. C.; Lopes, R. S. C. L.; Miller, W. and Ruiz, G (2017). Which ballast water management system will you put aboard? Remnant anxieties: A mini-review. Environments, 4, 54.
[13] Magnusson, C. D., Haraldsson, G. G (2011). Ether lipids. Chem. and Phys. of Lipids , 164, 315.
[14] Kang, H-C, Lee, B. M., Yoon, J., Yoon, M (2000). Improvement of the phase-transfer catalysis method for synthesis of glycidyl ether. J. Am. Oil Chem. Soc.,78, 423.
[15] Roy, C. D., Brown, H. C (2007). A comparative study of the relative stability of representative chiral and achiral boronic esters employing transesterification. Monatsh. Chem., 138, 879.
[16] Halldorsson, A., Thordarson, P., Kristinsson, B., Magnusson, C. D., Haraldsson, G. G (2004). Lipase-catalysed kinetic resolution of 1-O-alkylglycerols by sequential transesterification. Tetrahedron: Asym., 15, 2893.
[17] Oswald, E. O., Piantadosi, C., Anderson, C. E., Snyder, F (1966). Metabolism of alkyl glyceryl ethers in the rat. Lipids, 1, 241.
[18] Urata, K., Yano, S., Kawamata, A., Takaishi, N., Inamoto, Y (1988). A convenient synthesis of long- chain 1-O-alkyl glyceryl ethers. J. Am. Oil Chem. Soc, 65, 1299.
[19] Baer, E., Fischer, H.O.L (1941). Studies on acetone-glyceraldehyde, and optically active glycerides: IX. Configuration of the natural batyl, chimyl, and selachyl alcohols. J. Biol. Chem., 140, 397.
[20] Baer, E., Rubin, L.J., Fischer, H.O.L (1944). Naturally occurring glycerol ethers. II. Synthesis of selachyl alcohol. J. Biol. Chem., 155, 447.
[21] Baumann, W.J., Mangold, H.K (1964). Reactions of aliphatic methansulfonates. I. Syntheses of long-chain glyceryl-(1) ethers. J. Org. Chem., 29, 3055.
[22] Davies, G.G., Heilbron, I.M., Owen, W.M (1930). CCCXXXVI.- The unsaponifiable matter from the oils of elasmobranch fish. Part VII. The synthesis of glyceryl ethers and its bearing on the structure of batyl, selachyl, and chimyl alcohols. J. Chem. Soc., 2542.
[23] Prakash, G. K., Panja, C., Shakhmin, A., Shah, E., Mathew T., Olah, G. A (2009). BF3-H2O Catalyzed Hydroxyalkylation of Aromatics with Aromatic Aldehydes and Dicarboxaldehydes: Efficient Synthesis of Triarylmethanes, Diarylmethylbenzaldehydes, and Anthracene Derivatives. J. Org. Chem., 74, 22, 8659.
[24] Yasui, H., Hirai, K., Yamamoto, S.,Takao, K.,Tadano, K (2006). Total Syntheses of (+)-1893B and Its Three Diastereomers and Evaluation of Their Biological Activities J. Antibiot, 59, 8, 456.
[25] Shelton, P., Ligon, T. J., Dell, J. M., Yarbrough, L., Vyvyan, J. R (2017). Synthesis of cananodine by intramolecular epoxide opening Tetrahedron Lett., 58, 3478.
[26] Ramesh, P., Reddy, Y. N (2017). A three-step total synthesis of goniothalesdiol A using a one-pot Sharpless epoxidation/regioselective epoxide ring-opening Tetrahedron Lett., 58, 1037.
[27] Hayakawa, H., Okada, N., Miyashita, M (1999). Stereospecific Ring-Opening Reaction of Epoxy Sulfides with Phenylboronic Acid via Episulfonium Ions. Tetrahedron Lett., 40, 3191.
[28] Gaussian 09, R.A., Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E, Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., J., Bloino, Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y, Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta Jr., J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian Inc, Wallingford CT (2009).
[29] Prado, J. V.; Vidal, A. R., Duran T. C (2012). Application of copper bactericidal properties in medical practice. Rev. Med. Chile [online], 140, 10, 1325.
[30] Ren, G., Hu, D., Cheng, E. W. C., Vargas-Reus, M. A.; Reip, P.; Allaker, R.P (2009). Characterisation of cooper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents, 33, 587.