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Abstract—In this paper the well-known Schwarzschild 

Solution is discussed. In the first section, by resorting, as 

usual, to the Einstein Field Equations, a short summary of 

the conventional derivation is provided. In the second 

section, we carry out an alternative derivation of the 

Schwarzschild Metric. The above-mentioned procedure is 

based upon several noteworthy hypotheses, among which 

the existence of a further spatial dimension stands out. 

Initially, we postulate a Universe identifiable with a 4-ball, 

homogeneously filled with matter, whose radius equates 

the Schwarzschild Radius. Then, in order to obtain the 

vacuum field, all the available mass is ideally concentrated 

in a single point. By imposing a specific condition 

concerning the measured radius, we deduce a metric that, 

if subjected to an appropriate parametrization, allows us 

to finally obtain the Schwarzschild solution.     

Keywords—Vacuum Field, Weak Field Approximation, 

Schwarzschild Metric, Alternative Derivation. 

 

 

I. CONVENTIONAL DERIVATION 

If we impose a spherical symmetry, the general static 

solution is represented by the underlying metric: 

𝑑𝑠2 = 𝐴(𝑟)𝑐2𝑑𝑡2 − 𝐵(𝑟)𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃 𝑑𝜑2 (1) 

Obviously, we have already set equal to one, without any 

loss of generality, the parametric coefficient related to the 

angular part of the metric. A and B exclusively depend on 

the “flat coordinate”, denoted by r. In particular, coherently 

with the hypothesized static scenario, whatever time 

derivatives must necessarily vanish.  

As for the metric tensor, from (1) we immediately obtain:  

𝑔𝑖𝑗 = [

𝐴(𝑟) 0 0 0

0 −𝐵(𝑟) 0 0

0 0 −𝑟2 0
0 0 0 −𝑟2 sin2 𝜃

] (2) 

𝑔𝑖𝑗 =

[
 
 
 
 
 
 
 
 

1

𝐴(𝑟)
0 0 0

0 −
1

𝐵(𝑟)
0 0

0 0 −
1

𝑟2 0

0 0 0 −
1

𝑟2 sin2 𝜃]
 
 
 
 
 
 
 
 

 (3) 

Let’s deduce the Christoffel Symbols. Generally, we have:  

𝛤𝑖𝑗
𝑘 =

1

2
𝑔𝑘ℎ (

𝜕𝑔ℎ𝑖

𝜕𝑥𝑗
+

𝜕𝑔ℎ𝑗

𝜕𝑥𝑖
−

𝜕𝑔𝑖𝑗

𝜕𝑥ℎ) (4) 

The indexes run from 0 to 3. Clearly, 0 stands for t, 1 for r, 

2 for θ, and 3 for φ.  

Setting k=0, from (2), (3) and (4), we obtain:  

𝛤01
0 = 𝛤10

0 =
1

2𝐴

𝑑𝐴

𝑑𝑟
 (5) 

All the other symbols (if k=0) vanish.  

Setting k=1, from (2), (3) and (4), we obtain:  

𝛤00
1 =

1

2𝐵

𝑑𝐴

𝑑𝑟
,  𝛤11

1 =
1

2𝐵

𝑑𝐵

𝑑𝑟
,  𝛤12

1 = −
𝑟

𝐵
,  𝛤13

1 = −
𝑟

𝐵
sin2 𝜃 (6) 

All the other symbols (if k=1) vanish.  

Setting k=2, from (2), (3) and (4), we obtain:  

𝛤12
2 = 𝛤21

2 =
1

𝑟
,  𝛤33

2 = −sin 𝜃 cos 𝜃 (7) 

All the other symbols (if k=2) vanish. 

Setting k=3, from (2), (3) and (4), we obtain:  

𝛤13
3 = 𝛤31

3 =
1

𝑟
,  𝛤23

3 = 𝛤23
3 =

1

tan 𝜃
 (8) 

All the other symbols (if k=3) vanish.  

Let’s now deduce the components of the Ricci Tensor. 

Generally, with obvious meaning of the notation, we have:  

𝑅𝑖𝑗 =
𝜕𝛤𝑖𝑘

𝑘

𝜕𝑥𝑗
−

𝜕𝛤𝑖𝑗
𝑘

𝜕𝑥𝑘 + 𝛤𝑖𝑘
𝑙 𝛤𝑗𝑙

𝑘 − 𝛤𝑖𝑗
𝑙𝛤𝑘𝑙

𝑘 (9) 

By means of some simple mathematical passages, omitted 

for brevity, we obtain all the non-vanishing components: 

𝑅00 = −
1

2𝐵

𝑑2𝐴

𝑑𝑟2 +
1

4𝐵

𝑑𝐴

𝑑𝑟
(
1

𝐴

𝑑𝐴

𝑑𝑟
+

1

𝐵

𝑑𝐵

𝑑𝑟
) −

1

𝑟𝐵

𝑑𝐴

𝑑𝑟
 (10) 

𝑅11 =
1

2𝐴

𝑑2𝐴

𝑑𝑟2 −
1

4𝐴

𝑑𝐴

𝑑𝑟
(
1

𝐴

𝑑𝐴

𝑑𝑟
+

1

𝐵

𝑑𝐵

𝑑𝑟
) −

1

𝑟𝐵

𝑑𝐵

𝑑𝑟
 (11) 

𝑅22 =
1

𝐵
+

𝑟

2𝐵
(
1

𝐴

𝑑𝐴

𝑑𝑟
−

1

𝐵

𝑑𝐵

𝑑𝑟
) − 1 (12) 

𝑅33 = sin2 𝜃 [
1

𝐵
+

𝑟

2𝐵
(
1

𝐴

𝑑𝐴

𝑑𝑟
−

1

𝐵

𝑑𝐵

𝑑𝑟
) − 1] = sin2 𝜃 𝑅22 (13) 
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If we denote with R the Ricci Scalar and with Tij the generic 

component of the Stress-Energy Tensor, the Einstein Field 

Equations [1] can be written as follows:  

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 =

8𝜋𝐺

𝑐4 𝑇𝑖𝑗 (14) 

If we impose that, outside the mass that produces the field, 

there is the “absolute nothing” (neither matter nor energy), 

the first member of (14), that represents the so-called 

Einstein Tensor, must vanish. Consequently, we have:  

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = 0 (15) 

From (15), exploiting the fact that the Einstein Tensor and 

the Ricci Tensor are trace-reverse of each other, we have:  

𝑅𝑖𝑗 = 0 (16) 

From (10), (11) and (16), we immediately obtain:  

−
1

2𝐴𝐵

𝑑2𝐴

𝑑𝑟2
+

1

4𝐴𝐵

𝑑𝐴

𝑑𝑟
(
1

𝐴

𝑑𝐴

𝑑𝑟
+

1

𝐵

𝑑𝐵

𝑑𝑟
) −

1

𝑟𝐴𝐵

𝑑𝐴

𝑑𝑟
= 0 (17) 

1

2𝐴𝐵

𝑑2𝐴

𝑑𝑟2
−

1

4𝐴𝐵

𝑑𝐴

𝑑𝑟
(
1

𝐴

𝑑𝐴

𝑑𝑟
+

1

𝐵

𝑑𝐵

𝑑𝑟
) −

1

𝑟𝐵2

𝑑𝐵

𝑑𝑟
= 0 (18) 

From (17) and (18), we have:  

𝑑𝐵

𝐵
= −

𝑑𝐴

𝐴
 (19) 

𝐵 =
𝐾1

𝐴
 (20) 

The value of the constant K1 can be deduced by imposing 

that, at infinity, the ordinary flat metric must be recovered. 

In other terms, we must impose the following condition:  

lim
𝑟→∞

𝐴(𝑟) = lim
𝑟→∞

𝐵(𝑟) = 1 (21) 

From (20), taking into account (21), we obtain:  

𝐵 =
1

𝐴
 (22) 

𝑔00𝑔11 = −1 (23) 

From (16) and (12) we have:  

𝐴 +
𝑟𝐴

2
[
1

𝐴

𝑑𝐴

𝑑𝑟
− 𝐴

𝑑

𝑑𝑟
(
1

𝐴
)] − 1 = 0 (24) 

𝐴 + 𝑟
𝑑𝐴

𝑑𝑟
− 1 =

𝑑

𝑑𝑟
(𝑟𝐴) − 1 = 0 (25) 

𝐴 = 1 +
𝐾2

𝑟
 (26) 

It is worth highlighting that, at this point, we could already 

deduce the “original” Schwarzschild Solution [2], without 

assigning any particular value to the constant K2.  

The value of K2 can be directly deduced by resorting to the 

so-called Weak Field Approximation. If we denote with ϕ 

the Gravitational Potential, we can write:  

𝐴 = 𝑔00 = (1 −
𝜙

𝑐2)
2

≅ 1 − 2
𝜙

𝑐2 = 1 −
2𝑀𝐺

𝑟𝑐2  (27) 

From (26) and (27), we immediately deduce:  

𝐾2 = −
2𝑀𝐺

𝑐2  (28) 

From (22) and (27), we have:  

𝐵 =
1

1 −
2𝑀𝐺
𝑟𝑐2

 (29) 

At this point, the metric can be immediately written. 

However, in order to directly obtain a more compact form, 

we can denote with Rs the value of r that makes the metric 

singular (the so-called Schwarzschild radius):  

2𝑀𝐺

𝑐2
= 𝑅𝑠 (30) 

From (27), (29) and (30) we finally obtain:  

𝑑𝑠2 = (1 −
𝑅𝑠

𝑟
) 𝑐2𝑑𝑡2 −

𝑑𝑟2

1 −
𝑅𝑠

𝑟

− 𝑟2(𝑑𝜃2 − sin2 𝜃 𝑑𝜑2) (31) 

 

II. ALTERNATIVE DERIVATION 

Although the space we are allowed to perceive is curved, 

since it is identifiable with a hyper-sphere whose radius 

depends on our state of motion [3] [4], the Universe in its 

entirety, assimilated to a 4-ball, is considered as being flat 

[5]. All the points are replaced by straight line segments: 

in other terms, what we perceive as being a point is actually 

a straight-line segment crossing the centre of the 4-ball. [4]   

At the beginning (no singularity), we hypothesize that the 

Universe, whose radius equates the Schwarzschild Radius, 

is homogeneously filled with matter [6]. 

The scenario is qualitatively depicted in Figure 4. 

 
Figure 1. Initial Scenario 
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If we denote with X the predicted radius (the straight-line 

segment bordered by O’ and P in Figure 1), and with χ the 

angular distance between P and O (as perceived by an ideal 

observer placed in C), we can write:  

𝑋 = 𝑅𝑠 sin 𝜒 (32) 

The measure of the corresponding great circumference, 

denoted by CX, is provided by the following banal relation:  

𝐶𝑋 = 2𝜋𝑋 = 2𝜋𝑅𝑠 sin 𝜒 (33) 

From (32) we immediately deduce:  

𝜒 = arcsin (
𝑋

𝑅𝑠
) (34) 

If we denote with l the measured radius (the arc bordered 

by O and P in Figure 1), from (34) we have:  

𝑑𝑙 = 𝑅𝑠𝑑𝜒 =
𝑑𝑋

√1 − (
𝑋
𝑅𝑠

)
2

 
(35) 

At this point, the Friedmann–Robertson–Walker metric 

can be finally written:  

𝑑𝑠2 = 𝑐2𝑑𝑡2 −
𝑑𝑋2

1 − (
𝑋
𝑅𝑠

)
2 − 𝑋2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) (36) 

Let’s now suppose that all the available mass may be 

concentrated in the origin. According to our model [6], the 

spatial lattice undergoes a deformation that drags O to C.  

The scenario is qualitatively depicted in Figure 2.  

 
Figure 2. Singularity 

We hypothesize that the singularity does not influence the 

measured distance (the proper radius): in other terms, if the 

angular distance between whatever couple of points does 

not undergo any variation, the corresponding measured 

distance remains the same [6]. In order to satisfy this 

condition, the radial coordinate (the segment bordered by 

C and Pg in Figure 2) must abide by the following relation: 

𝑟 = 𝑅𝑠 sin 𝜒 (37) 

In fact, it can be instantly verified that:  

√(
𝑑𝑟

𝑑𝜒
)
2

+ 𝑟2 = 𝑅𝑠 (38) 

The predicted radius (the segment bordered by O’g and Pg 

in Figure 2), denoted by x, undergoes a reduction. Taking 

into account (37), we can immediately write: 

𝑥 = 𝑟 sin 𝜒 = 𝑅𝑠 sin2 𝜒 = 𝑋 sin 𝜒 =
𝑋2

𝑅𝑠
 (39) 

The measure of the corresponding great circumference, 

denoted by Cx, is provided by the following banal relation:  

𝐶𝑥 = 2𝜋𝑥 = 2𝜋𝑋 sin 𝜒 (40) 

We can now write the following metric:  

𝑑𝑠2 = 𝑐2𝑑𝑡2 −
𝑑𝑋2

1 − (
𝑋
𝑅𝑠

)
2 −

𝑋4

𝑅𝑠
2
(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) (41) 

Exploiting (39), the angular distance can be evidently 

expressed as follows:  

𝜒 = arcsin(√
𝑥

𝑅𝑠
) (42) 

Consequently, we have:  

𝑑𝑙 = 𝑅𝑠𝑑𝜒 = 𝑅𝑠𝑑 [arcsin(√
𝑥

𝑅𝑠
)] = 𝑅𝑠

𝑑 (√
𝑥
𝑅𝑠

)

√1 − (√
𝑥
𝑅𝑠

)
2
 (43) 

𝑑𝑙 =
1

2

√𝑅𝑠
𝑥

𝑑𝑥

√1 −
𝑥
𝑅𝑠

 (44) 

Taking into account (44), we can write the metric in (41) 

as a function of x:  

𝑑𝑠2 = 𝑐2𝑑𝑡2 −
1

4

𝑅𝑠

𝑥
𝑑𝑥2

1 −
𝑥
𝑅𝑠

− 𝑥2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) (45) 

According to our model [6], once again, the proper radius 

remains the same, notwithstanding the singularity: on the 

contrary, the predicted radius, as well as the corresponding 

great circumference, undergoes a contraction [6] [7].  

Let’s now suppose that we want to “warp” (not 

parameterize) the previous metric. If we impose that the 

measure of the predicted radius must remain the same (if 
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we assign a greater value to the “quantum of space”), we 

have to consequently increase the value of the proper 

radius. Obviously, in order to keep the speed of light 

constant, we are forced to assign a smaller value to the 

“quantum of time” (in particular, the more we approach the 

singularity, the more time must flow slowly) [7] [8]. 

Taking into account the fact that the relation between the 

initial predicted radius and the reduced one is expressed by 

(39), we obtain the following metric, in which time, very 

evidently, is no longer considered as being absolute:  

𝑑𝑠2 = (
𝑋

𝑅𝑠
)
2

𝑐2𝑑𝑡2 − (
𝑅𝑠

𝑋
)
2 𝑑𝑋2

1 − (
𝑋
𝑅𝑠

)
2

− 𝑋2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) 

(46) 

Obviously, the metric we have just obtained is far different 

from the Schwarzschild solution. Suffice it to notice that, 

very evidently, both X and x cannot tend to infinity.  

In order to recover the Schwarzschild solution, we have to 

carry out a parameterization [6]. On this purpose, we need 

to find two new coordinates, denoted by R*(χ) and r*(χ), 

that may satisfy the following relations:  

𝑟∗ = 𝑅∗ sin (47) 

𝑑𝑙𝑟∗ = √𝑟∗2 + (
𝑑𝑟∗

𝑑
)
2

𝑑 = √𝑅∗2 + (
𝑑𝑅∗

𝑑
)
2

𝑑 = 𝑑𝑙𝑅∗  (48) 

From (47) we have:  

𝑑𝑟∗

𝑑
=

𝑑𝑅∗

𝑑
sin + 𝑅∗ cos (49) 

𝑟∗2 + (
𝑑𝑟∗

𝑑
)
2

= 𝑅∗2 + (
𝑑𝑅∗

𝑑
)
2

sin2 

+ 2𝑅∗
𝑑𝑅∗

𝑑
sin  cos  

(50) 

Very evidently, if the derivative of R* is null, imposing 

R*(0)=Rs, we instantly recover (37). On the contrary, if the 

derivative of R* is not null, from (50) we easily deduce:   

2 tan𝑑 =
𝑑𝑅∗

𝑅∗
 (51) 

Imposing R*(0)=Rs, from (51) we immediately obtain:   

𝑅∗ =
𝑅𝑠

cos2 
 (52) 

From (52), we have:  

sin  = √1 −
𝑅𝑠

𝑅∗ (53) 

𝑑𝑅∗ = 2𝑅𝑠

sin 

cos3 
𝑑 (54) 

From (48), (52) and (54), denoting with l* the 

parameterized proper radius (we must bear in mind that, 

according to the model herein proposed, the singularity 

does not influence the measured distance), we obtain:  

𝑑𝑙𝑅∗ = 𝑑𝑙𝑟∗ = 2𝑅𝑠

sin

cos3 
√1 +

1

4 tan2 
𝑑

= √1 +
1

4 tan2 
𝑑𝑅∗ = 𝑑𝑙∗ 

(55) 

From (54) and (55) we have:  

lim
→𝜋/2

𝑑𝑙∗

𝑑𝑅∗ = 1 (56) 

Taking into account (47) and (52), the parameterized 

predicted radius is provided by the following relation:  

𝑋∗ = 𝑅∗ sin = 𝑅𝑠

sin 

cos2 
= 𝑟∗ (57) 

As for the corresponding great circumference, we have:  

𝐶𝑋∗ = 2𝜋𝑋∗ = 2𝜋𝑟∗ (58) 

From (54) and (57) we have:   

lim
→𝜋/2

𝑋∗

𝑅∗
= 1 (59) 

Taking into account (47) and (52), the parameterized 

reduced predicted radius can be written as follows: 

𝑥∗ = 𝑟∗ sin = 𝑅𝑠 tan2  = 𝑅∗ − 𝑅𝑠 (60) 

As for the corresponding great circumference, we have:  

𝐶𝑥∗ = 2𝜋𝑥∗ = 2𝜋(𝑅∗ − 𝑅𝑠) (61) 

In Figure 3 a useful comparison between old and new 

(parameterized) coordinates is qualitatively displayed.  

 
Figure 3. Singularity: Comparison Between Coordinates 
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In Figure 4, the very interesting scenario we obtain if 

χ=π/4 is qualitatively depicted.  

 
Figure 4. Singularity: particular case (χ=π/4) 

By virtue of (55) and (57), when mass is evenly spread on 

the hypersphere with which we identify the Universe we 

are allowed to perceive (actually, when matter 

homogeneously fills the 4-ball with which we identify the 

Universe in its entirety), the parameterized distance in (36) 

acquires the underlying compact form:  

𝑑𝑠∗2 = 𝑐2𝑑𝑡∗2 − 𝑑𝑙∗2 − 𝑋∗2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2) (62) 

Obviously, we have replaced t with t*. Time, in fact, shows 

necessarily trace of the parameterization we have carried 

out. On this subject, if we consider a null geodesic (a light-

like interval) in the equatorial plane, from (62) we have:  

𝑐𝑑𝑡∗ = 𝑑𝑙∗ (63) 

The previous banal relation clearly shows that, if space is 

subjected to a parameterization, being c a constant, time 

must be parameterized too.  

Far from the origin (when χ tends to π/2), taking into 

account (56) and (59), the metric in (62) (no singularity) 

acquires the following “flat” form: 

𝑑𝑠∗2 = 𝑐2𝑑𝑡∗2 − 𝑑𝑅∗2 − 𝑅∗2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2) (64) 

Let’s now concentrate in the origin all the available mass. 

According to our model, once again, the proper radius 

remains the same, notwithstanding the singularity: on the 

contrary, the predicted radius, as well as the corresponding 

great circumference, undergoes a contraction. However, 

following the same line of reasoning we have exploited in 

order to deduce (46), imposing that the measure of the 

predicted radius must remain the same (if we assign a 

greater value to the “quantum of space”), we have to 

consequently increase the value of the proper radius. 

Consequently, in order to keep the speed of light constant, 

we are forced to assign a smaller value to the “quantum of 

time” (in particular, the more we approach the singularity, 

the more time must flow slowly). Since the relation 

between the initial predicted radius and the reduced one, 

both parameterized, is expressed by (47), taking into 

account (53), by “warping” (65) we obtain the following 

metric, that represents a Schwarzschild-like Solution:  

𝑑𝑠∗2 = (1 −
𝑅𝑠

𝑅∗) 𝑐2𝑑𝑡∗2 −
𝑑𝑅∗2

1 −
𝑅𝑠

𝑅∗

− 𝑅∗2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2) 

(65) 
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