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Abstract— Charge migration through DNA  is a problem 

to be solved. A numerical wavefront solution for quantum  

transmission lines with charge discreteness  is obtained 

as   model for the charge migration  of a chain DNA 

molecules induced by electromagnetic radiation. The 

nonlinearity of the system becomes deeply related to 

charge discreteness. The wavefront velocity depends on 

the normalized (pseudo) flux variable. Finding  the 

dispersion relation for the normalized flux
0/   we show 

that the condition  
2v 0 on the wave-front velocity 

gives the band-gap conditions for the charge propagation 

on the system.. 
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I. INTRODUCTION 

Currently nanostructures are embedded in countless 

devices and systems [1-5] . Naturally, at this scale and for 

low temperature, quantum mechanics plays a key role. 

Lately, much effort has been dedicated to study 

nanostructures, using as model of quantum circuits with 

charge discreteness [6-12]. On the other hand, the 

discovery of charge migration in deoxyribonucleic acid 

(DNA) stimulated intensive investigations of the 

electronic properties of DNA due to their significance in 

biosynthesis and radiation-induced damage and repair 

processes [1-3]. Furthermore, considerable interest in 

nanodimensional structures of DNA possessing unique 

self-assembling and self-recognition properties has 

increased the last decade in connection with the 

possibility of the development of molecular 

nanoelectronic devices which are expected to provide 

high storage of information and high-speed signal 

processing within a wide temperature range [4-6]. In fact, 

DNA molecules can be well combined with silicon 

technology transcending the potential of the present 

quantum wires and are supposed to be used in modern 

computer technology as a binary data structure by 

applying a programmable linear self assembly of the 

sequence of complementary nucleic base pairs of DNA. It 

is in this context that we are interested in spatially 

transmission lines with charge discreteness [13]. In this 

work we will consider a wavefront solution for a quantum 

circuit (transmission line) simulating the DNA molecule 

in a cell sample. A numerical solution  is founded and 

characterized for this specific system with charge 

discreteness, which can extended for the description of 

more complex extended systems a. In section 2 we will 

introduce a generalization of classical transmission line 

with charge discreteness and we present the quantum  

transmission lines with charge discreteness, the 

Hamiltonian for coupled circuits, and the equations of 

motion for the spatially continuous system. In Sec. 3, the 

wavefront solution is considered. Finally, we give our 

conclusions.  

 

II. GENERALIZATION OF TRANSMISSION 

LINE AND QUANTUM DISCRETENESS 

For a chain of molecules of DNA, we consider a 

homogeneous classical transmission line, assumed 

infinite, where the every cell is constituted of a LC circuit 

with inductance L and capacitance C per unit length. 

Assume that the interaction between neighbor cells is 

trough the capacitors (direct line), the classical evolution 

equations for the electrical current and charge, become in 

this case 

m m m 1 m 1

d 1
L i (2q q q )

dt C
      (1) 

Where the integer m designates the cell at position in the 

chain and, as usual, m m

d
i q

dt
  is the electrical current. 

The above linear equation of evolution becomes directly 

from the classical Lagrangian  agL given by 

2 2

ag m m m 1

m

L 1
L ( i (q q ) )

2 2C
     (2) 

Using the Lagrange equations one obtains (1). 

     

Supporting solutions like a plane wave. Explicitly we 

have, 
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m 0q q exp(i t ikm)      (3) 

Where, as usual in this case, the frequency   and the 

wavenumber k  become related through the dispersion 

relation. The variable 
0q is a constant parameter 

describing the amplitude of the wave. Note that we have 

considered by sake of simplicity the lattice-size a  as one, 

( a 1 ). That is the adimensional number k in the 

equation (6) is really ka . 

After some algebra, one obtains from (3) the dispersion 

relation. The infrared limit ( ka 0 ) related to the 

continous –space structure becomes direct and 

corresponds to the dispersion relation k / LC , 

namely a non dispersive medium. 

From k / LC , we get the phase velocity and group 

velocity 

 

pv 1/ LC
k


  , gv 1/ LC

k


 


  (4) 

From a general point of view, for arbitrary composition of 

a cell in the line, the Hamiltonian of this generalized 

electrical transmission line becomes quadratic, namely, 

m,s m s m,s m s

m,s

1 1 1 1
H ( ( ) ( ) q q )

2 L 2 C
     (5) 

.  

As illustration and following [6-12, 14], and from the 

Hamiltonian (5), the usual quantization procedure for flux 

and charge, and the prescription (2) for charge 

discreteness, we could construct the quantum Hamiltonian 

for the direct transmission line with charge discreteness (

eq ), which may be written as:  

2
2 2e

m m m 12
m e

q2 1
H sin (q q )

Lq 2 2C







 
    

 
 (6)  

where the index m  describes the cell (circuit) at position 

m, containing an inductance L and capacitance C. The 

conjugate operators, charge q and pseudoflux  , satisfy 

the usual commutation rule  

m' m,m'mq , i   
 

and  m sm sq ,q , 0      
   

.

   (7) 

A spatially extended solution of Eq. (6) corresponds to 

the quantization of the classical electric transmission line 

with discrete charge (i.e. elementary charge
eq ). Note that 

in the formal limit 
eq 0 the above Hamiltonian gives 

the well-known dynamics related to the one-band 

quantum transmission line, similar to the phonon case. 

The system described by Eq. (10) is very cumbersome 

since the equations of motion for the operators are highly 

nonlinear due to charge discreteness. However, this 

system is invariant under transformation 
k kq q q  , 

that is, the total pseudo flux operator m  
commutes with the Hamiltonian; simplifying the study of 

this system. 

2
2 2e

m m mm 12

e

2 q 1
H sin (q )

Lq 2 2C
      (8)  

where mH  represents the Hamiltonian density operator 

for the fields. From the above Hamiltonian we find the 

equations of motion (Heisenberg equations) for the field 

operators:  

m m 1 m 1 m

1
(q q 2q )

t C
 


   


  (9)  

e

e

q
q sin( )

t Lq


 


    (10)  

and from eq. (6),  the dispersion relation is given by  

sin k / 2
2

LC
     (11) 

If k 1 , k / LC , from here we can obtain  

pv 1/ LC
k


  , gv 1/ LC

k


 


 (12) 

 

 

III. WAVEFRONT SOLUTION 

In real seismic applications there is always the presence 

of damping. We shall consider the effect of its simplest 

form, small viscous damping. Eq. (3) is extended by 

adding a linear damping term  : 

Now we consider a homogeneous classical  transmission 

line, assumed  infinite, where the every cell is constituted 

of a LC circuit with series inductance L and shunt  

capacitance C per unit length .  The approach is based on 

the mapping of field components (i.e., E and H) in the 

medium to the voltages and currents of the equivalent 

distributed L-C network [15, 17]. It is well known that 

dielectric properties like permittivity and permeability can 

be modeled using distributed L-C networks. To illustrate 

how these material parameters relate the distributed series 

impedances and shunt admittances of the network, 1-D 

distributed L–C network is depicted in Fig. 1. The 

network consists of a series per-unit-length impedance Z ' 

in z direction and a shunt per-unit-length admittance Y' in 

y direction.  
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Fig.1: Transmission line model with L, C per  unit length. 

 

For the conventional homogeneous isotropic RHM with 

positive permittivity ε and permeability μ, Eqs.(1, 2) 

implies a network of a low-pass topology with series 

inductor L ' = μ (H/m) and shunt capacitor C ' = ε (F/m), 

or Z=jωL ' and Y = jωC ' , both of which are positive 

quantities. The negative permittivity and permeability 

[16, 17] in LHM leads to the question whether the 

parameters Z ' and Y ' in the network representation can 

also be made negative. From the impedance perspective, a 

negative L ' and C ' can be realized by exchanging their 

inductive and capacitive roles, which means the series 

inductor becomes a series capacitor, and the shunt 

capacitor becomes a shunt inductor.  In this paper we are 

interested in the normal RHM transmission line which in 

the limit 
eq 0 becomes the usual one band 

transmission wave equation. 

2 2 2v / k 1/ LC  . In general the dispersion 

relation from Eqs. (9) and (10) is 

2
2

e2

LC sin(k / 2)
cos(q / )( )

k k / 2


    (13) 

where v is the phase velocity given by  

2

e2

LC sin(k / 2)
v cos(q / )( )

k k / 2


    (14) 

 

 

Fig.2:. The normalized expression (17) 
2v  is shown as a 

function of 0/  and k 

Fig.3: Profile of
2v  as a function of  0/  with k cte  

 

 

Fig.4: Profile of
2v  as a function of  k with 0 cte/    

Figures 2-4 show the normalized 
2v of the charge 

migration in a transmission line where we can see that the 

velocity of wavefront which has bands and gaps. To see 

this in a clearer way we know that always 
2v  must be 

positive (
2v LC 0 ), so the two equations  (13), (14), 

are satisfied simultaneously when 0/ 2n    ,

n 1, 2...    that means that  
0 e2n nh / q    . 

Let  

2
2 2

2

LC sin(k / 2)
f (k) v LC cos(pk)( )

k k / 2


    (15) 
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Where we define 
e 0pk q / /      ,  so  we have 

the factor p  as a free parameter to analyze the quantum 

circuit. 

In figure 5 we present the case with 
0/ 0    where 

f (k) 0 and there is not a structure of bands and gaps 

because 
eq 0 . In figure 6 we have a structure of 

bands and gaps because 
e 0pk q / / 0       

 
Fig.5: Plot of the velocity of the wavefront, as a function 

of  k with the magnetic flux as the parameter p.  

As specified by Eq. (18), if p=0, there is only a structure 

of bands  because e 0pk q / / 0       , that is 

eq 0 . 

 
Fig. 6. Plot of the velocity of the wavefront, as a function 

of  k with the magnetic flux as the parameter p.  

As specified by Eq. (18) there is a structure of bands and 

gaps because e 0pk q / / 0      with p=3  , so 

that have five  bands where there is wave propagation  

and charge migration as are shown in Figure 7. 

 

 

Fig. 7. 
2v LC 0 where there are wave propagation. 

As we have seen from these graphs, the condition  

2v 0 on the wave-front velocity gives the band-gap 

conditions on the system. In fact, from (16) the restriction 

2 2

e

1 sin(k / 2)
v cos(q / )( ) 0

LC k / 2
    

means that there exists a sequence of bands and gaps. 

The nonlinearity of the system becomes be deeply related 

to charge discreteness or in terms Of discrete values of 

quantum flux 
0 e/ q  . The wavefront velocity is 

found to depend on a step discontinuity on the (pseudo) 

flux variable, p, displaying allowed and forbidden regions 

(gaps), as a function of p. 

Defining,
0/ pk   , any complex function Ψ can be 

written as 
0 exp(ipk)   where 

0  is the amplitude 

and   is the phase. It is obvious that changing the 

phase pk by 2nwill not change   and, 

correspondingly, will not change any physical properties 

in this quantum transmission line. However, in the 

superconductor of non-trivial topology, e.g. 

superconductor with the hole or superconducting 

loop/cylinder, the phase pk may continuously change 

from some value 
0pk  to the value

0pk 2 n    as one 

goes around the hole/loop and comes to the same starting 

point. If this is so, then one has n magnetic flux quanta 

trapped  in the hole/loop, [18, 19],  In the case of  charge 

migration in DNA, charge discreteness is the statement 

that charge comes in packets which are of size 1 electron 

charge. These results enable the investigation of charge 

migration as quantum charge in both longitudinal and 

transverse configurations and stimulate theoretical 

interpretations [20-24]. Some of these studies are 

concerned with the issues of the charge migration induced 

by environmental factors, among which ionizing radiation 

or RF fields are of great interest. 

Charge migration through DNA has been the focus of 

considerable interest in recent years because DNA is the 
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molecule that contains all of the information required to 

build and maintain the cell . A deeper understanding of 

the nature of charge transfer and transport along the 

double helix is important in fields as diverse as physics, 

chemistry and nanotechnology. It has also important 

implications in biology, in particular in DNA damage and 

repair. In this context this paper can be a contribution in 

the study of this topic.  

 

IV. CONCLUSIONS 

A charge migration in a chain of DNA molecules  is 

simulated with the quantum electric transmission line 

with charge discreteness described by the Hamiltonian  

(12), and equations of motion (13-14), Wavefront 

solution was found.. One condition on the velocity 

generates a band-gap structure dependent on the pseudo 

flux parameter, namely, there exist regions for which a 

solitary wavefront propagates with constant speed 

according the value of 
0/  . The main results of this 

work are the existence of the band-gap structures for 

00 / 1   . Charge migration under radiation is 

possible  when 
2v 0 . 
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