
International Journal of Advanced Engineering Research and Science (IJAERS)    
https://dx.doi.org/10.22161/ijaers/3.10.5                             

www.ijaers.com                                                

Chiral Wave Modes 
 H. Torres

 

1Escuela de Ingeniería Eléctrica y Electrónica, Universidad de Tarapacá, Arica, Casilla 6
2Departamento Tecnologías de Información. Dirección del Trabajo, Agustinas 1253, Of. 509. 

Abstract—The linear theory of chiral 
cylindrical containers with an elliptical cross
studied in detail. General solutions for phase and the free  
amplitude are given in terms of Mathieu functions. Our 
numerical results show the dependence of the
and natural frequencies on the chiral media with 
eccentricity ε . The well known case of a circular media

0ε =  is retrieved and remarkable crossings of the mode 

frequencies for certain values of ε  
frequency shift is evaluated numerically. 
Keywords—  elliptical region, Chiral wave
oscillation.    
 

I. INTRODUCTION
The problems of membrane oscillation   have been the 
subject of many papers [1-4]. The theoretical and numerical 
investigations presented in these papers concern 
rectangular, circular and arbitrary shaped media. In these 
cases, non-homogeneous problems can be solved by using 
Green’s function method. The problem of oscillation of a 
non-uniform or non-regular shaped system is solved by 
using approximate (numerical) methods [5]. The method of 
fundamental solutions can be used as an example of such 
approximate methods [4]. For chiral media of regular 
shapes (rectangle, circle), an exact solution to 
electromagnetic problems can be derived. 
The application of Green’s function method to the 
oscillation problem of a chiral media, which occupies a 
finite region in the plane, requires the knowledge of Green’s 
function for the Helmholtz equation. The method of 
fundamental solutions applied to electromagnetic 
of arbitrary shaped  also requires knowledge of the 
fundamental solution  of the Helmholtz equation
plane. Green’s functions of the Helmholtz equation in 
regular regions are well known. These functions for 
problems in rectangular and circular regions with various 
boundary conditions are given in [6-8]. In thi
derivation of Mathieu’s function for the 
equation in an elliptical region is presented. In order to 
separate the variables, elliptical coordinates are introduced. 
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The solution is obtained in the form of a series of eigen
functions of the associated boundary problem.
 

II.  CHIRAL ELECTROMAGNETIC 
FORMULATION

The Maxwell equations for the macroscopic free 
electromagnetic fields, (without charge and current) are well 
known.  We often write Maxwell's equations in terms of 
electric and magnetic fields,

t

∂∇ × = −
∂

E B , ∇⋅ =B

    

t

∂∇× =
∂

H D+J , ∇ ⋅ = ρD

    
These equations, however, are not complete. Six more 
equations, the constitutive relations, have to be added 

relating the electric fieldE
displacement fieldD  and the magnetic field 
other. These constitutive relations are completely 
independent of the Maxwell equations. The Maxwell 
equations involve only the fields and their sources. The 
constitutive relations, however, are concerned with the 
equations of motion of the constituents of the medium i
electromagnetic field [9-14
We often write Maxwell's 
magnetic fields,  and ,
defined by with the non locality definitions of Born
Fedorov,  [9-11]:  

c
c T ( ) = µ + ∇× B H H

    
c

c T ( ) =∈ + ∇× D E E

    

where cT is the chiral factor. 
2 c2 c 2 2

c c c c c c(1 T ) 2T (− ω µ ε ∇ × ∇ × µ ε ω ∇× ω µ ε( E)- E- )E=0
   (4)
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obtained in the form of a series of eigen 
functions of the associated boundary problem. 

CHIRAL ELECTROMAGNETIC 
FORMULATION  

The Maxwell equations for the macroscopic free 
electromagnetic fields, (without charge and current) are well 

We often write Maxwell's equations in terms of 
electric and magnetic fields,  and , 

0∇⋅ =    

 (1a) 

∇ ⋅ = ρD    

 (1b) 
These equations, however, are not complete. Six more 
equations, the constitutive relations, have to be added 

E , the magnetic inductionB , the 

and the magnetic field H  to each 
other. These constitutive relations are completely 

xwell equations. The Maxwell 
equations involve only the fields and their sources. The 
constitutive relations, however, are concerned with the 
equations of motion of the constituents of the medium in an 

14]. 
 equations in terms of electric and 
, 

with the non locality definitions of Born-

T ( )  B H H    

 (2) 

T ( )      

 (3) 

factor. The wave propagation is 
2 c2 c 2 2

c c c c c c(1 T ) 2T (− ω µ ε ∇× ∇× µ ε ω ∇ × ω µ ε( E)- E- )E=0
(4) 
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The particular case with 2 c2
c c1 T 0− ω µ ε = corresponds to 

E B� with E=i H  so we have 

c2T 0∇ × E-E=     
    (5) 
which satisfy the chiral  homogeneous Helmholtz equation 

2 2
c

1
( 0

2T
∇ E)+( ) E=     

    (5') 

For each component of E or H , is valid the equation 

2 2
c

1
( 0

2T
∇ Φ Φ)+( ) =     

    (6) 
This result corresponds to self-dual solutions to the 
Maxwell equations. These solution are known as 
“instantons,” have gained recognition among experts in 
gauge field theory and mathematical physics. The condition 
that a field configuration is self-dual is not invariant under 
the parity transformation→r -r   because of the opposite 
parity properties of the electric and magnetic field; the 
mirror-image configuration is anti-self-dual. As will 
become clear, the physically relevant configurations are 
represented by a sum of self-dual and anti-self-dual 
solutions, which is invariant under the parity 
transformation. In this paper we discuss this type of 
configuration in elliptical geometry in two dimensions. 
 

III.  PROBLEM FORMULATION IN 
ELLIPTICAL COORDINATES  

To solve the problem, we introduce elliptical coordinates in. 

the interior of the domain D  ( , )χ θ , which are coupled 

with Cartesian coordinates by the following relationships 
(Fig. 1): 
 

 
Fig.1: Introduce elliptical coordinates ( , )χ θ   from 

Cartesian coordinates. 

x d cosh cos= χ θ  

y d sinh sin= χ θ     

     (7) 

where 0χ ≥ , 0 2≤ θ ≤ π �. The equation of ellipse (7) in 

the elliptical coordinates is: 0χ = χ  

, where 0

b
artgh

a
χ = . The Laplace operator in elliptical 

coordinates has the form 
2 2

2
2 2 2 2 2

1 U U
U ( )

d (cosh cos )

∂ ∂∇ = +
χ − θ ∂χ ∂θ

 

    (8) 
Differential equation (1) and boundary condition (2) in the 
elliptical coordinates 
are as follows 

2 2
2

2 2 2 2 2
c

1 1
( )U ( ) U

d (cosh cos ) 2T

∂ ∂+ = −
χ − θ ∂χ ∂θ

    (9) 

0 cU( , ,T ) 0χ θ = , for 0 2≤ θ ≤ π   

    (10) 
The solution of boundary problem (9), (10) can be found in 
the series form 

mn mn cm 0
n 1

U( , ,T) ( , )T (T )
∞

∞

=
=

χ θ = Φ χ θ∑ ∑  

    (11) 

where functions mn( , )Φ χ θ  satisfy the homogeneous 

Helmholtz equation 
2 2

2 2 2 2
mn mn2 2 c

m,m

1
( ) ( , ) ( ) d (cosh cos ) ( , ) 0

2T

∂ ∂+ Φ χ θ + χ− θ Φ χ θ =
∂χ ∂θ

  (12) 
In our case we are looking for solutions of Eq. (12) in the 
interior of the domain D with boundary condition 

c
mn 0( , ,T ) 0Φ χ θ = , for 0 2≤ θ ≤ π and 00 ≤ χ ≤ χ

    (13) 

In order to derive eigenfunctions mn( , )Φ χ θ  , the method 

of separation of variables will be used. We assume that 

mn m mn mn( , ) NR ( ,q ) ( ,q )Φ χ θ = χ ψ θ   

    (14) 
where N is a normalization constant. After the substitution 
of (11) into equation (9) and separation of the variables, two 
equations are obtained: 
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2
m

mn m2

d R
(a 2q cosh 2 )R 0

d
− − χ =

χ
  

    (15) 
2

m
mn m2

d
(a 2q cos2 ) 0

d

ψ − − θ ψ =
θ

  

    (16) 
where a is the separation constant and 

c 2 2
m,n mn(1/ 2T ) 2q / d=  . From physical considerations 

the function ( )ψ θ  must be periodic, i.e. 

( ) ( 2 )ψ θ = ψ θ + π .Taking into account boundary 

condition (13) and equation (14), we found that mnq  are the 

roots of the equation 

m 0 mnR ( ,q ) 0χ =     

    (17) 

Moreover, we assume that functions m mn( ,q )ψ θ are 

periodic with period ��or 2�. This property holds for 
particular values of separation constant a, which depends on 

the values of mnq  . 

Equations (15) and (16) are well known as the radial 
Mathieu equation and the angular Mathieu equation 
respectively. The pairs of the independent solutions of these 
equations are radial and angular Mathieu functions [2]: 
 

m mn
m mn

m 1 mn

Ce ( ,q )
R ( ,q )

Se ( ,q )+

χ
χ =  χ

   

    (18a) 

where mCe  and m 1Se + Sem are the modified Mathieu 

functions of first kind or radial solutions. 

m mn
m mn

m 1 mn

ce ( ,q )
( ,q )

se ( ,q )+

θ
ψ θ =  θ

   

    (18b) 

m 0,1,2.....=  

Using (11) and introducing functions 

2m mme ( ,q) ce ( ,q)θ = θ , 2m 1 m 1me ( ,q) se ( ,q)+ +θ = θ , 

m 0,1,2..=   (19) 

2m mMe ( ,q) Ce ( ,q)χ = χ , 

2m 1 m 1Me ( ,q) Se ( ,q)+ +χ = χ    

 (20) 

function mn( , )Φ χ θ  can be written in the form 

mn m mn m mn( , ) Me ( ,q )me ( ,q )Φ χ θ = χ θ  

    (21) 
The angular Mathieu functions create the set of the 
orthogonal system in interval [0,2�], i.e. the following 
orthogonality condition holds: 

2

m n mn

0

1
me ( ,q)me ( ,q)d

π

θ θ θ = δ
π ∫

  

    (22) 

where mnδ �is the Kronecker delta. This leads to the 

statement that eigenfunctions mn( , )Φ χ θ  given by (11) 

satisfy the condition 

mn kl mk

D

( , ) ( , )d dΦ χ θ Φ χ θ χ θ = πδ∫∫   

    ���� 
Following the spatial symmetry of Eq. (12), the complete 
set of solutions can be chosen as even or odd 
eigenfunctions. 
 

IV.  EIGENVALUES IN ELLIPTICAL 
COORDINATES 

In elliptic coordinates the condition 

m mnR ( ,q ) / n 0∂ χ ∂ =
r

 at (x, y) in 2- D reduces to 

0
m mndR ( ,q ) / d 0

χ=χ
χ χ =    

    (24) 

with arctan h(b / a)χ = , to work with number wave, let 

c
mm m(1/ 2T )d dk k= = ε , ε  being the eccentricity and

c
m m mk ak a / (2T )= = , then from Eq. (24) we obtain the 

set of even and odd eigenvalues for m,nk , where 
even
m,nk and 

odd
m,nk  are solutions of 

even
m,nm 0Ce ( , k / 2) 0χ ε = ,  

odd
m,nm 0Se ( , k / 2) 0χ ε =

    (25) 
with n = 1, 2, . . . . Recall that the eccentricity e of an ellipse 
is related to its semi-axes by the expression

21 (b / a)ε = − so that one can write

2
0 arc tanh 1χ = − ε , and therefore, 

the characteristic values m,nk   depends solely on the 

eccentricityε . Thus, if the ratio value between semi-axes 

b / a is modified, the pattern of the wave amplitude will be 
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different carrying the information of the surface symmetry 
and thereby of elliptic geometry. 
The eigenvalue problem (25) states that for a given m the 
symmetry (odd  or even) remains valid for any eccentricity 

value. Thus, eigenvalues m,nk  for even and odd solutions 

with the same m but different elliptical oscillation number n 
cannot cross (anticrossing) as a function of the geometry 
factorε  , i.e. the symmetry is preserved. Moreover, 
eigensolutions belonging to different Hilbert subspace can 
cross. These important facts can be clearly 
seen in Figs. 2 and 3. Fig. 2 shows the variation of the first 

10 eigenvalues m,nk  as a function of ε . Notice that in the 

limit 0ε →  the degeneracy of the modes, that corresponds 
to basins with circular cross sections, is clearly displayed, 

i.e., c
m,n m,nk a / (2T )= tends to c

m,n(a / (2T ))with ( 0)ε =  

. 
 An important conclusion arises from Fig. 2 where it can be 

seen that m,nk  increases as the eccentricity increases, i.e. 

narrowed ellipses or chiral surface waves more confined, 

lead to larger values of the eigenvalues m,nk . Moreover and 

according to the general properties of the Mathieu 

functions, 
odd
m,nk   are more sensitive to the confinement than 

the even eigenvalues 
even
m,nk , and the inequality

odd even
m,n m,nk k>  

is valid for any eccentricity value 
 
 

 

Fig.2: Eigenvalues m,nk  as a function of the eccentricity e. 

Dashed (solid) lines represent eigenvalues for the odd 
(even) modes. 

 

 
Fig.3: Mode frequencies as a function of the eccentricity ε . 
 
A comparison of the elliptic case with the classical circular 
basins assuming the same cross-section area shows a 

strongly changing behavior of the natural frequency m,nω  

as a function of the geometric factorε .  

Fig. 3 is devoted to the evaluation of m,nω for the first 10 

modes as a function of the geometrical parameterε . The 

behavior of m,nω versus ε  is very diverse. As a general 

trend, the even modes (m >0, n = 1) show decreasing 
frequencies asε  increases. Also, it is observed modes 

reaching to a minimum frequency value for certain minε , 

increasing  m,nω for minε > ε , while there are modes 

exhibiting monotone increasing behavior of m,nω  as the 

eccentricity increases (in Fig. 3 the odd modes (1, 1), (1, 2), 
(2, 2) and the even mode (0, 1)). Notice that for the odd 

mode (3, 1), m,nω is almost independent ofε  . A more 

interesting feature is the accidental degeneracy obtained at 
certain values of ε . From the figure the crossing points of 
two different mode frequencies for large values of the 
eccentricity are clearly observed. 
 

V. CONCLUSIONS 
The derivation of the Mathieu function of the chiral wave 
equation in an elliptical region with the Dirichlet boundary 
condition has been presented. In order to solve the problem, 
elliptical coordinates were introduced. The function has the 
form of a double series of Mathieu functions, which are 
eigenfunctions of the Helmholtz operator in the considered 
elliptical region. Although, the solution is obtained for the 
Dirichlet condition at the boundary ellipse. 
The solution to the non-homogenous problem of the chiral 
oscillation can be presented in an exact form. The linear 
theory of chiral surface waves in cylindrical containers with 
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an elliptical cross-section was studied. General solutions for 
phase and the free amplitude are given in terms of Mathieu 
functions. Our numerical results show the dependence of 
the natural frequencies on the chiral media and the 
eccentricity ε  of the container cross-section. The well 

known case of a circular media for 0ε =  is retrieved and 
remarkable crossings of the mode frequencies for certain 
values of ε  are found. The frequency shift is evaluated 
numerically. 
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