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Abstract—The linear theory of chiral surface waves in
cylindrical containers with an elliptical cross-section is
studied in detail. General solutions for phase and the free
amplitude are given in terms of Mathieu functions. Our
numerical results show the dependence of the numberwaves
and natural frequencies on the chiral media with
eccentricity €. The well known case of a circular media for

€ =0 isretrieved and remarkable crossings of the mode
frequencies for certain values of € are found. The
frequency shift is evaluated numerically.

Keywords— elliptical regionChiral wave, membrane
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l. INTRODUCTION

The problems of membranescillation  have been ti
subject of many papers H- The theoretical and numeric
investigations presented in these papers cor
rectangular, circular and arbitrary shaped mediathlese
cases, nomomogeneous problems can be solved by L
Green’s function method. The problem of oscillation @
non-uniform or norregular shaped system is solved
using approximate (numerical) methods [5]. The roéthf
fundamental solutions can be used as an examp$eiaht
approximate methods [4]. For chirahedia of regula
shapes (rectangle, circle), an exact solution
electromagnetic problems can be derived.

The application of Green’'s function method to
oscillation problem of a chiral media, which ocapia
finite region in the plane, requires thedwledge of Green’
function for the Helmholtz equation. The method
fundametal solutions applied to electromagne problems
of arbitrary shaped also requires knowledge of
fundamental solution of the Helmholtz equatic in the
plane. Green's furions of the Helmholtz equation
regular regions are well known. These functions
problems in rectangular and circular regions witrious
boundary conditions are given in [$-8n this paper, the
derivation of Mathieu’s function for thehiral Helmholtz
equation in an elliptical region is presented. hiles to
separate the variables, elliptical coordinatesimreduced.
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The solution isobtained in the form of a series of ei
functions of the associated boundary prob

I. CHIRAL ELECTROMAGNETIC
FORMULATION
The Maxwell equations for the macroscopic 1
electromagnetic fields, (without charge and cujrang well
known. We often write Maxwell's equations in terms
electric and magnetic fielc E' andB

DxE:—iB, Om=0
ot

(1a)

DXH:%D+J,D[ID:F)

(1b)

These equations, however, are not complete. Sixe
equations, the constitutive relations, have to logled
relating the electric fiellE , the magnetic inductidd , the
displacement fieldD and the magnetic fiellH to each
other. These constitutive relations are comple
independent of the Mavell equations. The Maxwe
equations involve only the fields and their sourcéke
constitutive relations, however, are concerned wiitke
equations of motion of the constituents of the medin an
electromagnetic field [9-4].

We often write Maxwell'®quations in terms of electric and
magnetic fieldsf and?,

defined by with the non locality definitions of Bo-
Fedorov, [9-11]:

B=p [H+T(0OxH)]|

)
D=0, [E+T*(OxE) |

3)

where T is the chiraffactor. The wave propagation is

(1- e TH)Ox(OXE)-2TU £ W XE-w* £ JE=0

4
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The particular case witlh— oozpcs T°% = Ocorresponds to
E OB withE=i H so we have
2T°0OxE-E=0

(5)

which satisfy the chiral homogeneous Helmholtzatigum

(=g

(5)

For each component & or H , is valid the equation
1
0%P)+(— )*d=0
(0°®) (2Tc )
(6)

This result corresponds to self-dual solutions tee t
Maxwell equations. These solution are known as
“instantons,” have gained recognition among expénts
gauge field theory and mathematical physics. Thelition
that a field configuration is self-dual is not imi&ant under
the parity transformatioh — -I because of the opposite
parity properties of the electric and magnetic dfiethe
mirror-image configuration is anti-self-dual. As Iiwi
become clear, the physically relevant configuraticare
represented by a sum of self-dual and anti-self-dua
solutions, which is invariant under the parity
transformation. In this paper we discufiis type of
configuration in elliptical geometry in two dimeoss.

M. PROBLEM FORMULATION IN
ELLIPTICAL COORDINATES
To solve the problem, we introduce elliptical caoedes in.

the interior of the domain D(X, 0), which are coupled

with Cartesian coordinates by the following relathips
(Fig. 1):

)F

=N

Fig.1: Introduce eliptical coordinates(X,0) from
Cartesian coordinates.

x =dcoshx co$
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y =dsinhy sin®
()
whereX =20, 0< 0 < 2111, The equation of ellipse (7) in

the elliptical coordinates is{ = X,

b
, Where X, = artgh—. The Laplace operator in elliptical
a

coordinates has the form

1 0°U  0°U
0°U = +
d*(cosif x — coé6 Sax2 662)
(8)

Differential equation (1) and boundary condition {2 the
elliptical coordinates
are as follows

1 0’ +62)u:—(—2u
d*(cosH x — co%6 Sa)(2 00° 2C'I)
9)
U(X,,0,T.)=0,for 0<B< 21
(10)

The solution of boundary problem (9), (10) can dend in
the series form

UGBTI =27 > P (X0,

(11)
satisfy the homogeneous

(To)

where functionsP (X, 6)
Helmholtz equation
62 62
—5)P(X.0)+ (
ax %2 mn m’m
(12)
In our case we are looking for solutions of EtR) in the
interior of the domain D with boundary condition
®, (X6, T)=0, for 0sB6< 2mand 0<X <X,
13)
In order to derive eigenfunction® . (X,0) ,

) *df (costix— cof0 P, X8 F

the method
of separation of variables will be used. We asstirae
®,,(X.8) = NR (X, G W @ Gy

(14)
where N is a normalization constant. After the $itltson

of (11) into equation (9) and separation of theakdes, two
equations are obtained:
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d’R
—0-(a- 2q,, cosh =
o (8™ 2 cos )R
(15)
d’y
—nt—-(a-2q,, cosB Y = |
dez ( qnn qu
(16)
where a is the  separation constant  and
@/2T; .Y = 2q,, /o . From physical considerations
the function Y(B) must be periodic, i.e.
Y(6) = Y(B+2m).Taking into account boundary

condition (13) and equation (14), we found tlg}, are the
roots of the equation
R (Xo)Gmn)=0
17)
Moreover, we assume that functiong (6,q,,,)are

periodic with periodll Jor 201. This property holds for
particular values of separation constanivhich depends on

the values of],,,, -

Equations (15) and (16) are well known as the tadia
Mathieu equation and the angular Mathieu equation
respectively. The pairs of the independent solstioihthese
equations are radial and angular Mathieu functf@hs

Ce, X+ 0 )

S€hir K+ O )
(18a)
where Ce,, and Se,,,;Sem are the modified Mathieu

Rm(X!qmn):{

functions of first kind or radial solutions.

wm(e,qmn):{cem (e1qnn )
SQn+1 @ ’qnn )

(18b)

m=0,12....
Using (11) and introducing functions
me?m (e,C]): C% e 1q’ I’n%m+1 (e,CI): S%l Q 'q,
m=0,1,2. (19)
Me,,(x.d)= Cg, & .4,
MeZm+1(X! q): Sen'rl X ’ q

(20)
function ®@ (X, 0) can be written in the form
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P (X:0) = Me, (X, Ay )ME, 0.y,

(21)
The angular Mathieu functions create the set of the
orthogonal system in interval [0,2, i.e. the following
orthogonality condition holds:

121‘[
=[me, ®.9)mg 6 ,q)8=3,
T[O
(22)
where 9, Llis the Kronecker delta. This leads to the

statement that eigenfunction® . (X,0) given by (11)
satisfy the condition

_” q’mn(X,e)qul(x,e)dch = T[6mk

oood
Following the spatial symmetry of EL2), the complete

set of solutions can be chosen as even or odd
eigenfunctions.
V. EIGENVALUES IN ELLIPTICAL
COORDINATES
In elliptic coordinates the condition

OR_ (X, G, )/dN= Cat (x, y) in 2- D reduces to

dR,, ()(,qmn)/q(L(:XD =C
(24)
with X =arctanh(b/a, to work with number wave, let

(/2T )d= dk, =€ kn, £ being the eccentricity and
Km = ak, =a/ (2T, ) then from Eq. (24)ve obtain the

- —even
set of even and odd eigenvalues of.n, where Km.n and

—odd .
Km.n are solutions of

—even —od

d

Ce, Xo.€knn /2)=C, Se, Ko £ knn /2)= C
(25)

withn=1, 2,.... Recall that the eccentrigtpf an ellipse

is related to its semi-axes by the expression

e=,1-(b/af so
X, =arctanhy €? , and therefore,

the characteristic valueXmn depends solely on the
eccentricity€ . Thus, if the ratio value between semi-axes

that one can write

b/ a is modified, the pattern of the wave amplitudel i
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different carrying the information of the surfacgrsnetry
and thereby of elliptic geometry.

The eigenvalue problem (25) states that for a givethe
symmetry (odd or even) remains valid for any etdety

value. Thus, eigenvaluekmn for even and odd solutions
with the same m but different elliptical oscillatioumber n
cannot cross (anticrossing) as a function of thergsry
factore , i.e. the symmetry is preserved. Moreover,
eigensolutions belonging to different Hilbert sudbsp can
cross. These important facts can be clearly

seen in Figs. and 3. Fig. Zhows the variation of the first

10 eigenvalueslzm,n as a function of€ . Notice that in the

limit € — O the degeneracy of the modes, that corresponds
to basins with circular cross sections, is cleaisplayed,

ie. kmn=al/ (2T, , tends td@ / (2T, ))with (€ = 0)

An important conclusion arises from FigwBere it can be

seen thatkm,n increases as the eccentricity increases, i.e.
narrowed ellipses or chiral surface waves more inedf

lead to larger values of the eigenvalldesn. Moreover and

according to the general properties of the Mathieu

—odd
functions, Km,n are more sensitive to the confinement than

—even

. —even . . Todd
the even eigenvaludémn , and the inequalitim,n > Kmn
is valid for any eccentricity value

P S T O S SR B S BRI N
01 02 03 04 05 06 0.7 08 09
g

Fig.2: Eigenvalues Em,n as a function of the eccentricity e.
Dashed (solid) lines represent eigenval ues for the odd
(even) modes.
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Fig.3: Mode frequencies as a function of the eccentricity €.

A comparison of the elliptic case with the claskiecular
basins assuming the same cross-section area shows a

strongly changing behavior of the natural frequeway .

as a function of the geometric facgr
Fig. 3is devoted to the evaluation @, ,for the first 10

modes as a function of the geometrical parangeterhe
behavior of o, ,versus € is very diverse. As a general

trend, the even modes (m >0, n = 1) show decreasing
frequencies a8 increases. Also, it is observed modes

reaching to a minimum frequency value for certain ,

increasing W, ,for €>¢€ while there are modes

min

exhibiting monotone increasing behavior Of as the

m,n
eccentricity increases (in Fig. 3 the odd moded.),1(1, 2),
(2, 2) and the even mode (0, 1)). Notice that fer odd

mode (3, 1),0,, ,is almost independent &f . A more

interesting feature is the accidental degeneradgimoéd at
certain values o€ . From the figure the crossing points of
two different mode frequencies for large values tioé
eccentricity are clearly observed.

V. CONCLUSIONS

The derivation of the Mathieu function of the chiveave
equation in an elliptical region with the Dirichlebundary
condition has been presented. In order to solvethelem,
elliptical coordinates were introduced. The funetitas the
form of a double series of Mathieu functions, whiate
eigenfunctions of the Helmholtz operator in the sidared
elliptical region. Although, the solution is obtath for the
Dirichlet condition at the boundary ellipse.

The solution to the non-homogenous problem of thieat
oscillation can be presented in an exact form. Tiear
theory of chiral surface waves in cylindrical can&as with
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an elliptical cross-section was studied. Generhitiems for
phase and the free amplitude are given in termdathieu
functions. Our numerical results show the depenelerfc
the natural frequencies on the chiral media and the
eccentricity € of the container cross-section. The well

known case of a circular media f&=0 is retrieved and
remarkable crossings of the mode frequencies fdaice
values of € are found. The frequency shift is evaluated
numerically.
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