
Trends in Engineering and Technology (NCTET-2K17)

International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue-3

https://dx.doi.org/10.22161/ijaers/nctet.2017.54 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page |192

Empirical Study of coupling and cohesion in an

Object-Oriented system Metrics

P. Neelima

Assistant Professor,

Dept of CSE,

SPMVV College of Engineering

Tirupati

neelima.pannem@gmail.com

B.Sangamithra

Assistant Professor

Dept of CSE,

Sree Vidyanikethan Engineering College

Tirupati

Mithra197@gmail.com

Dr. M.Sunil Kumar

Professor & HOD

Dept of CSE,

Sree Vidyanikethan Engineering College

Tirupati

Sunilmalchi1@gmail.com

Abstract— In developing a good software product,

including documentation, design, program, test, and

maintenance can be measured statistically. Therefore the

quality of software can be monitored efficiently. Software

metrics is very important in research of software

engineering and it has improved gradually. In this paper,

software metrics definition were given and the history of

and the types of software metrics were overviewed.

Software complexity measuring is the important

constituent of software metrics and it is concerning the

cost of software development and maintenance. In order to

improve the software quality and the project

controllability, it is necessary to control the software

complexity by measuring the related aspects. This paper

respectively expounds MOOD metrics and C&K metric

method for examples of complexity metrics.

Index terms- metrics suite, complexity, Object Oriented

,quality measurement.

1. INTRODUCTION

The term software engineering is combination of two words,

software and engineering. Software is more than just a

program code. A program is an executable code, which serves

some computational purpose. Software is considered to be a

collection of executable programming code, associated

libraries and documentations. Software, when made for a

specific requirement is called software product.

Engineering on the other hand, is all about developing

products, using well-defined, scientific principles and

methods.

So, we can define software engineering as an engineering

branch associated with the development of software product

using well-defined scientific principles, methods and

procedures. The outcome of software engineering is an

efficient and reliable software product.

Define Software engineering:

The application of a systematic, disciplined, quantifiable

approach to the development, operation and maintenance of

software.

NEED OF SOFTWARE ENGINEERING:

The need of software engineering arises because of higher rate

of change in user requirements and environment on which the

software is working.

 Large software - It is easier to build a wall than to a house or

building, likewise, as the size of software become large

engineering has to step to give it a scientific process.

Scalability- If the software process were not based on

scientific and engineering concepts, it would be easier to re-

create new software than to scale an existing one.

Cost- As hardware industry has shown its skills and huge

manufacturing has lower down the price of computer and

electronic hardware. But the cost of software remains high if

proper process is not adapted.

Dynamic Nature- The always growing and adapting nature of

software hugely depends upon the environment in which the

user works. If the nature of software is always changing, new

enhancements need to be done in the existing one. This is

where software engineering plays a good role.

Quality Management- Better process of software development

provides better and quality software product.

REQUIREMENTS ANALYSIS AND SPECIFICATION

Before we start to develop our software, it becomes quite

essential for us to understand and document the exact

requirement of the customer. Experienced members of the

development team carry out this job. They are called as system

analysts. The analyst starts requirements gathering and

analysis activity by collecting all information from the

customer which could be used to develop the requirements of

the system, then analyzes the collected information to obtain a

clear and thorough understanding of the product to be

developed, with a view to remove all ambiguities and

inconsistencies from the initial customer perception of the

problem. The following basic questions pertaining to the

project should be clearly understood by the analyst in order to

obtain a good grasp of the problem:

 What is the problem?

 Why is it important to solve the problem?

 What are the possible solutions to the problem?

https://dx.doi.org/10.22161/ijaers/nctet.2017.54
http://www.ijaers.com/

Trends in Engineering and Technology (NCTET-2K17)

International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue-3

https://dx.doi.org/10.22161/ijaers/nctet.2017.54 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page |193

 What exactly are the data input to the system and

what exactly are the data output by the system?

 What are the likely complexities that might arise

while solving the problem?

 If there are external software or hardware with which

the developed software has to interface, then what

exactly would the data interchange formats with the

external system be?

Metrics

We categorized metrics into two groups: project based metrics

and design based metrics. Project based metrics contain

process, product and resources. Design based metrics contain

traditional metrics and object oriented metrics. In traditional

metrics, will discuss complexity metrics, SLOC (Source lines

of code), and CP (Comment percentage). The following figure

shows metrics hierarchy according to our categorization

Software metrics:

The first definition of software metrics is proposed by Norman

Fenton , software metrics is a collective term used to describe

the very wide range of activities concerned with measurement

in software engineering. These activities range from producing

numbers that characterize properties of software code through

to models that help predict software resource requirement and

software quality.

Metrics are a means for attaining more accurate estimations of

project milestones, and developing a software system that

contains minimal faults . Project based metrics keep track of

project maintenance, budgeting etc. Design based metrics

describe the complexity, size and robustness of object oriented

and keep track of design performance

OBJECT ORIENTED MEASUREMENT:

On building a program code using object oriented paradigm

can be measure by using metrics. The attributes (objects and

classes) Which have been mention can play a major role in

calculating metrics

1.Number of scenario scripts (NSS) : It’s the number of

scenario scripts counted in the use cases. This measure is

correlated with application size and the number of tests. NSS

mainly allow to predict development and testing efforts.

2.Number of key classes : This measure evaluate the high-

design effort.

3.Number of support classes : This measures evaluates the

low-level design. Average number of support classes per key.

4.Number of subsystems : This one provide more information

on the system’s structure.

 5.Number of operations overridden by a class : Allow to

evaluate inheritance effects.

6.Number of operations added by a subclass : Measures also

the inheritance effects.

Efficiency - Are the constructs efficiently designed?

The amount of computing resource and code required by a

program to perform its function.

Complexity - Could the constructs be used more effectively to

decrease the architectural complexity?

Understandability- Does the design increase the psychological

complexity?

Reusability - Does the design quality support possible reuse?

Extent to which a program or part of a program can be reused

in other application, related to the packaging and scope of the

functions that the program performs.

Testability/Maintainability - Does the structure support ease of

testing and changes?

Effort required locating and fixing an error in a program, as

well as effort required to test a program to ensure that it

performs its intended function.

Encapsulation is the packaging (or binding together) of a

collection of items:

 Low-level examples of encapsulation include records

and arrays.

 Subprograms (e.g., procedures, functions,

subroutines, and paragraphs) are mid-level

mechanisms for encapsulation.

 In object-oriented (and object-based) programming

languages, there are still larger encapsulating

mechanisms, e.g., C++'s classes, Ada's packages, and

Modula 3's modules.

Objects encapsulate:

knowledge of state, whether statically maintained, calculated

upon demand, or otherwise, advertised capabilities (sometimes

called operations, method interfaces, method selectors, or

method interfaces), and the corresponding algorithms used to

accomplish these capabilities (often referred to simply as

methods), In many object-oriented programming languages,

encapsulation of objects (e.g., classes and their instances) is

syntactically and semantically supported by the language. In

others, the concept of encapsulation is supported conceptually,

but not physically.

https://dx.doi.org/10.22161/ijaers/nctet.2017.54
http://www.ijaers.com/

Trends in Engineering and Technology (NCTET-2K17)

International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue-3

https://dx.doi.org/10.22161/ijaers/nctet.2017.54 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page |194

Information hiding is the suppression (or hiding) of details.

 The general idea is that we show only that

information which is necessary to accomplish our

immediate goals.

 There are degrees of information hiding, ranging

from partially restricted visibility to total invisibility.

 Encapsulation and information hiding are not the

same thing, e.g., an item can be encapsulated but may

still be totally visible.

Information hiding plays a direct role in such metrics as object

coupling and the degree of information hiding

Inheritance is a mechanism whereby one object acquires

characteristics from one, or more, other objects.

 Some object oriented languages support only single

inheritance, i.e., an object may acquire characteristics

directly from only one other object.

 Some object-oriented languages support multiple

inheritance, i.e. an object may acquire characteristics

directly from two, or more, different objects.

 The types of characteristics which may be inherited,

and the specific semantics of inheritance vary from

language to language.

Many object-oriented software engineering metrics are based

on inheritance, e.g.:

 number of children (number of immediate

specializations),

 number of parents (number of immediate

generalizations), and

 class hierarchy nesting level (depth of a class in an

inheritance hierarchy).

Abstraction is a mechanism for focusing on the important (or

essential) details of a concept or item, while ignoring the

inessential details.

 Abstraction is a relative concept. As we move to

higher levels of abstraction we ignore more and more

details, i.e., we provide a more general view of a

concept or item. As we move to lower levels of

abstraction, we introduce more details, i.e., we

provide a more specific view of a concept or item.

 There are different types of abstraction, e.g.,

functional, data, process, and object abstraction.

 In object abstraction, we treat objects as high-level

entities (i.e., as black boxes).

There are three commonly used (and different) views on the

definition for "class,":

 A class is a pattern, template, or a blueprint for a

category of structurally identical items. The items

created using the class are called instances. This is

often referred to as the "class as a `cookie cutter'"

view.

 A class is a thing that consists of both a pattern and a

mechanism for creating items based on that pattern.

This is the "class as an `instance factory'" view.

Instances are the individual items that are

"manufactured" (created) by using the class's creation

mechanism.

 A class is the set of all items created using a specific

pattern, i.e., the class is the set of all instances of that

pattern.

A metaclass is a class whose instances are themselves classes.

Some object-oriented programming languages directly support

user-defined metaclasses. In effect, metaclasses may be

viewed as classes for classes, i.e., to create an instance, we

supply some specific parameters to the metaclass, and these

are used to create a class. A metaclass is an abstraction of its

instances.

A parameterized class is a class some or all of whose

elements may be parameterized. New (directly usable) classes

may be generated by instantiating a parameterized class with

its required parameters. Templates in C++ and generic classes

in Eiffel are examples of parameterized classes. Some people

differentiate metaclasses and parameterized classes by noting

that metaclasses (usually) have run-time behavior, whereas

parameterized classes (usually) do not have run-time behavior.

Several object-oriented software engineering metrics are

related to the class-instance relationship, e.g.:

 number of instances per class per application,

 number or parameterized classes per application, and

 ratio of parameterized classes to non-parameterized

classes.

C & K Metric suite:

Shyam Chidamer and Chris Kemerer have developed a small

metrics suite for object-oriented designs. The six metrics they

have identified are:

 weighted methods per class: This focuses on the

complexity and number of methods within a class.

 depth of inheritance tree: This is a measure of how

many layers of inheritance make up a given class

hierarchy.

 number of children: This is the number of immediate

specializations for a given class.

 coupling between object classes: This is a count of

the number of other classes to which a given class is

coupled.

https://dx.doi.org/10.22161/ijaers/nctet.2017.54
http://www.ijaers.com/

Trends in Engineering and Technology (NCTET-2K17)

International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue-3

https://dx.doi.org/10.22161/ijaers/nctet.2017.54 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page |195

 response for a class: This is the size of the set of

methods that can potentially be executed in response

to a message received by an object.

 lack of cohesion in methods: This is a measure of the

number of different methods within a class that

reference a given instance variable.

 Chidamber and Kemerer Metrics evaluation:

Identification of classes(and objects): In this step key

abstractions in the problem space are identified and labeled as

potential classes and objects.

2) Identify the semantics of classes(and objects):In this step,

the meaning of the classes and objects identified in the

previous step is established, this includes definition of the life

cycles of each object from creation to destruction.

3) Identify relationships between classes(and objects):In this

step, classes and objects interactions, such as patterns of

inheritance among classes and patterns of visibility among

objects and classes are identified.

4) Implementation of classes(and objects):In this step, detailed

internal views are constructed, including definitions of

methods and their various behaviors.

According to ontology, objects are defined independent of

implementation considerations and encompass the notions of

encapsulation, independence and inheritance. On the basis of

this study the world is viewed as composed of things refer to

as substantial individuals, and concepts.

X={x,p(x)}where x is the substantial individual and

 p(x) is the finite collection of its properties

In object oriented terminology, the instance variables together

with its methods are the properties of the object. Intuitively,

coupling refers to the degree of interdependence between parts

of a design, while cohesion refers to the internal consistency

within parts of the design.

Coupling: Two objects are coupled if and only if atleast one of

them acts upon the other, X is said to act upon Y if the history

of Y is affected by X where its stated thing traverses in time

Lets X={x,p(x)} and Y={y,p(y)} be two objects

p(x)={MX}U{IX}

p(y)={MY}U{IY}

where {Mi} is the set of methods and{Ii} is the set of instance

variables of object i.The objects both X and Y are

interdependent to each other .

Cohesion: Cohesion is defined as similarity σ() of two things

to be the intersection of the sets of properties of the two things

 σ(X,Y)=p(x)∩p(y)

σ(M1,M2)={Ii}∩{I2}

where σ(M1,M2)=degree of similarity of methods M1 and M2

and{Ii}=set of instance variables used by method Mi

Complexity of an object: It is defined as cardinality of set of

properties.

Complexity of {x, p(x)}=|p(x)|,where |p(x)| is the cardinality

of p(x).

Two design decisions which relate to the inheritance hierarchy

can be defined as depth of inheritance of a class of objects and

the number of children of the class

Depth of inheritance= depth of the class in the inheritance tree

The depth of the node of a tree refers to the length of the

maximal path from the node to the root of tree.

Number of children= Number of immediate descendants of the

classes

The Properties on Metric suite

Property 1)Noncoarseness: Let the classes P and Q have a

metric µ such that µ(P) ≠ µ(Q),this means that both have

different metric value.

Property 2) Nonuniqueness (notion of equivalence): Let two

distinct classes P and Q such that µ(P) = µ(Q),this means both

have same metric value with equal complexity.

Property 3)Design Details are Important: The two class

designs, P and Q, which provide the same functionality, does

not imply that µ(P) = µ(Q), its specifies the class must

influence the metric value.

Property 4) Monotonicity: For all classes P and Q, the

following must hold: µ(P)≤ µ(P+Q) and µ(Q)≤ µ(P+Q) where

P+Q implies combination of P and Q.

Property 5) Nonequivalence of Interaction: ƎP, ƎQ, ƎR such

that µ(P) = µ(Q) does not imply that µ(P+R) = µ(Q+R).This

suggests that interaction between P and R can be different than

interaction between Q and R resulting in different complexity

values for P+R and Q+R.

Property 6) Interaction Increases Complexity: ƎP, ƎQ such

that µ(P) +µ(Q) < µ(P+Q)

https://dx.doi.org/10.22161/ijaers/nctet.2017.54
http://www.ijaers.com/

Trends in Engineering and Technology (NCTET-2K17)

International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue-3

https://dx.doi.org/10.22161/ijaers/nctet.2017.54 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page |196

The principle behind this property is that when two classes are

combined, the interaction between classes can increase the

complexity metric value.

The above mentioned properties are mean for to calculate the

metrics for Object Oriented concepts.

CK metrics have generated a significant amount of interest

and are currently the most well

known suite of measurements for OO software [14].

Chidamber and Kemerer proposed

six metrics; the following discussion shows their metrics.

Weighted Method per Class (WMC)

WMC measures the complexity of a class. Complexity of a

class can for example be calculated by the cyclomatic

complexities of its methods. Class with low WMC is better

when compare to high WMC since high WMC will have more

complexity. As WMC is complexity measurement metric, we

can get an idea of required effort to maintain a particular class.

Depth of Inheritance Tree (DIT)

DIT metric is the length of the maximum path from the node

to the root of the tree. So this metric calculates how far down a

class is declared in the inheritance hierarchy. This metric also

measures how many ancestor classes can potentially affect this

class. DIT represents the complexity of the behaviour of a

class, the complexity of design of a class and potential reuse.

If DIT increases, it means that more methods are to be

expected to be inherited, which makes it more difficult to

calculate a class’s behavior. Thus it can be hard to understand

a system with many inheritance layers. On the other hand, a

large DIT value indicates that many methods might be reused.

Number of children (NOC)

This metric measures how many sub-classes are going to

inherit the methods of the parent class.

The size of NOC approximately indicates the level of reuse in

an application. If NOC grows it means reuse increases. On the

other hand, as NOC increases, the amount of testing will also

increase because more children in a class indicate more

responsibility. So, NOC represents the effort required to test

the class and reuse.

Coupling between objects (CBO)

The idea of this metrics is that an object is coupled to another

object if two object act upon each other. A class is coupled

with another if the methods of one class use the methods or

attributes of the other class. An increase of CBO indicates the

reusability of a class will decrease. Thus, the CBO values for

each class should be kept as low as possible. CBO metric

measure the required effort to test the class .

Response for a Class (RFC)

RFC is the number of methods that can be invoked in response

to a message in a class.

If RFC increases, the overall design complexity of the class

increases and becomes hard to understand. On the other hand

lower values indicate greater polymorphism.

Lack of Cohesion in Methods (LCOM)

This metric uses the notion of degree of similarity of methods.

LCOM measures the amount of cohesiveness present in a

class . LCOM is a count of the number of method pairs whose

similarity is zero, minus the count of method pairs whose

similarity is not zero.

MOOD METRICS SUITE:

MOOD Metrics are defined as set of metrics for Object

Oriented Design concepts. MOOD metrics follows the

theoretical validation of encapsulation, inheritance, coupling

and polymorphism.

Abreu et al. defined MOOD (Metrics for Object Oriented

Design) metrics. MOOD refers to a basic structural

mechanism of the object-oriented paradigm as encapsulation

(MHF, AHF), inheritance (MIF, AIF), polymorphism (POF),

and message passing (COF). In MOOD metrics model, two

main features are used in every metrics; they are methods and

attributes. Methods are used to perform operations of several

kinds such as obtaining or modifying the status of objects.

Attributes are used to represent the status of each object in the

system.

Encapsulation:

The Method Hiding Factor (MHF) and Attribute Hiding

Factor (AHF) were proposed together as measure of

encapsulation. MHF and AHF represent the average amount

of hiding between all classes in the system.

Method Hiding Factor (MHF)

The MHF metric states the sum of the invisibilities of all

methods in all classes. The invisibility of a method is the

percentage of the total class from which the method is hidden.

Abreu et al. States, the MHF denominator is the total number

of methods defined in the system under consideration. The

MHF metric is defined as follows

Method hiding factor(MHF):

 ∑ ∑ (1 − 𝑉(𝑀𝑚𝑖))/ ∑ 𝑀𝑑(𝐶𝑗)𝑇𝐶
𝑖=1

𝑀𝑑(𝐶𝑖)
𝑚=1

𝑇𝐶
𝑖=1

For visible methods

𝑉(𝑀𝑚𝑖) = ∑ 𝑖𝑠_𝑣𝑖𝑠𝑖𝑏𝑙𝑒
𝑡𝑐

𝑗=1
 (𝑀𝑚𝑖, 𝐶𝑗)/(𝑇𝐶 − 1)

is_visible (Mmi ,Cj)={1 iff j ≠ i ˄Cj may call Mmi , 0 otherwise

The AHF metric shows the sum of the invisibilities of all

attributes in all classes. The invisibility of an attribute is the

percentage of the total classes from which this attribute is

hidden. MHF and AHF represent the average amount of

hiding among all classes in the system.

https://dx.doi.org/10.22161/ijaers/nctet.2017.54
http://www.ijaers.com/

Trends in Engineering and Technology (NCTET-2K17)

International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue-3

https://dx.doi.org/10.22161/ijaers/nctet.2017.54 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page |197

Inheritance

Method Inheritance Factor (MIF) and Attribute Inheritance

Factor (AIF) are proposed to measure inheritance.

Method Inheritance Factor (MIF)

The MIF metric states the sum of inherited methods in all

classes of the system under consideration. The degree to

which the class architecture of an object oriented system

makes use of inheritance for both methods and attributes. MIF

is defined as the ratio of the sum of the inherited methods in

all classes of the system as follow.

MIF = ∑Mi(Ci)/∑Ma(Ci)

where the summation occurs over i=1 to TC

Ma(Ci)=Md(Ci)+Mi(Ci)

Attribute Inheritance Factor (AIF):

AIF is defined as the ratio of the sum of inherited attributes in

all classes of the system. AIF denominator is the total

numberof available attributes for all classes. It is defined in an

analogous manner and provides an indication of the impact of

inheritance in the object oriented software.

Polymorphism:

Polymorphism is an important characteristic in object oriented

paradigm. Polymorphism measure the degree of overriding in

the class inheritance tree.

Polymorphism Factor (POF):

The POF represents the actual number of possible different

polymorphic situation. It also represents the maximum number

of possible distinct polymorphic situation for class. The POF

is defined as follows.

 PF=∑i Mo (Ci) /∑i [Mn(Ci)×DC(Ci)]

 Where the summation occur over I=1 to TC.

Coupling:

Coupling shows the relationship between module. A class is

coupled to another class if it calls methods of another class.

Coupling Factor (COF):

The COF is defined as the ratio of the maximum possible

number of couplings in the system to the actual number of

coupling is not imputable to inheritance. The COF is defined

as follows.

 ∑ [∑ 𝑖𝑠_𝑐𝑙𝑖𝑒𝑛𝑡(𝐶𝑖, 𝐶𝑗)𝑇𝐶
𝑗=1

𝑇𝐶
𝑖=1]/(𝑇𝐶ˆ2 − 𝑇𝐶)

Where is_client (Cc,Cs)={1 iff Cc =>Cs˄Cc ≠ Cs, 0 otherwise

MOOD Metrics Notations

1. MIF (Method Inheritance Factor)

Mi The number of methods

Ci Number of classes

Ma(Ci) The number of methods that

can be invoked in association

with Ci

Md(Ci) The number of methods

declared in a class

Tc Total number of classes

Mi(Ci) The number of methods

inherited in Ci

2. CF(coupling factor)

Is_client(Cc ,Cs)

The relationship between a

client class Cc and supplier

class Cs

3.PF(Polymorphism factor)

Mn(Ci)

Number of new methods

Mo(Ci) Number of overriding methods

DC(Ci) Number of classes descendants

from Ci where the summation

occur over I=1 to TC

4. EF(encapsulation factor)

V(Mmi)

Visible methods of class

Md(Ci) The number of methods

declared in a class

3.CONCLUSION

Research on software metrics devised to measure the

quality of object-oriented software has come a long way.

Right from the days of traditional metrics to the modern

Object Oriented metrics, numerous metrics have been

evolving. Out of all such metrics, most researchers have

emphasized over the need and applicability of object-oriented

metrics that are obtained from the static analysis of Object

Oriented software. These metrics were called static as they

were evaluated from the source code or design analysis of a

software. Most of the dynamic metrics devised till date

measure dynamic coupling. A few metrics measure dynamic

cohesion and dynamic complexity. There are no metrics

proposed till date for measuring the dynamic inheritance or

their impact on dynamic coupling. This research work is

primarily directed to propose software metric suite in order to

evaluate the complexity of Object Oriented paradigm.

REFERENCES

[1] Chidamber and Kemerer , “ Metrics suite for Object

Oriented “,IEEE Transactions, Vol 60,1993.

[2] Aman kumar Sharma and Arvind kalia, “ Metrics

Identification for Measuring Object Oriented Software

Quality”, International journal of Soft Computing and

Engineering (IJSCE) ISSN:2231-2307,Volume -2,Issue-5,

https://dx.doi.org/10.22161/ijaers/nctet.2017.54
http://www.ijaers.com/

Trends in Engineering and Technology (NCTET-2K17)

International Journal of Advanced Engineering Research and Science (IJAERS) Special Issue-3

https://dx.doi.org/10.22161/ijaers/nctet.2017.54 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page |198

November 2012.

[3] Dr.R.Selvarani and P.Mangayarkarasi “A Dynamic

Optimization Technique for Redesigning OO Software for

Reusability” ACM SIGSOFT Software Engineering,March

2015 Volume 40, Number 2.

[4] Amandeep Kaur, Satwinder Singh, Dr. K. S. Kahlon and

Dr. Parvinder S. Sandhu, “Empirical Analysis of CK &

MOOD Metric Suit”, International Journal of Innovation,

Management and Technology, Vol. 1, No. 5, December 2010

ISSN: 2010-0248

https://dx.doi.org/10.22161/ijaers/nctet.2017.54
http://www.ijaers.com/

