
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-3, Aug- 2014]
ISSN: 2349-6495

Page | 8

Real Time application of Database Management System using
monitoring of Input

Anita Shrotriya1, Devendra Kumar Sharma2

1Asst. Prof., Dept. of Computer Science, Global Institute of Technology, Jaipur
2Asst. Prof., Dept. of Computer Science. Anand Institute of Technology, Jaipur

Abstract—This paper introduces input monitoring
applications, which is different from conventional business
data processing. The fact that a system can process and react
to inputs from many sources (e.g., sensors) rather than from
human operators, a need for another fundamental
architecture of a DBMS for this application area is required.
Traditional DBMSs have been oriented toward business data
processing, and consequently are designed to address the
needs of the applications below:

1. They have assumed that the DBMS is a passive

repository storing a large collection of data elements and
that human initiate queries and transactions on this
repository.

2. They have assumed that the current state of the data is
the only thing that is important. Hence, current values of
data elements are easy to obtain, while previous values
can only be found by decoding the DBMS logs.

3. DBMSs assume that data elements are synchronized and
that queries have exact answers. In many stream-
oriented applications, data arrives asynchronously and
answers must be computed with incomplete information.

4. DBMSs assume that applications require no real-time
services.

Keywords— Monitoring, input stream, query Model, logs,
and transaction.

I. INTRODUCTION
Monitoring applications are applications that monitor
continuous streams of data. This class of applications includes
military applications that monitor readings from sensor by
soldiers (e.g., blood pressure, heart rate, and position),
financial analysis applications that monitor streams of stock
data reported from various stock exchanges.
First, monitoring applications get their data from external
sources (e.g., sensors) rather than from humans issuing
transactions. The role of the DBMS
in this context is to alert humans when abnormal activity is
detected.
Secondly, consider a monitoring application that tracks the
location of items of interest, such as overhead transparency
projectors and laptop computers, using electronic property
stickers attached to the objects. Ceiling-mounted sensors
inside a building and the GPS system in the open air generate
large volumes of location data. If a reserved overhead
projector is not in its proper location, then one might want to

know the geographic position of the missing projector. In this
case, the last value of the monitored object is required.
However, an administrator might also want to know the duty
cycle of the projector, thereby requiring access to the entire
historical time series.
 Third, most monitoring applications are trigger-oriented. If
one is monitoring a chemical plant, then one wants to alert an
operator if a sensor value gets too high or if another sensor
value has recorded a value out of range more than twice in the
last 24 hours. Every application could potentially monitor
multiple streams of data, requesting alerts if complicated
conditions are met.
Lastly, many monitoring applications have real-time
requirements. Applications that monitor mobile sensors (e.g.,
military applications monitoring soldier locations) often have
a low tolerance for stale data, making these applications
effectively real time. The added stress on a DBMS that must
serve real-time applications makes it imperative that the
DBMS employ intelligent resource management (e.g.,
scheduling) and graceful degradation strategies (e.g., load
shedding) during periods of high load.

II. PROBLEMS

Monitoring applications are very difficult to implement in
traditional DBMSs. In addition, to store time-series
information one has only two choices. First, he can encode the
time as tuples in normal tables. In this case, assembling the
historical time series is very expensive because the required
data is spread over many tuples, thereby dramatically slowing
performance.
 Alternately, he can encode time series information in binary
large objects to achieve physical locality, at the expense of
making queries to individual values in the time series very
difficult.
Moreover, if a monitoring application had a very large
number of triggers or alerter, then current DBMSs would fail.
The only alternative is to encode triggers in some middleware
application. Using this implementation, the system cannot
reason about the triggers (e.g., optimization), because they are
outside the DBMS.
Lastly, no DBMS that we are aware of has built-in facilities
for approximate query answering. The same comment applies
to real-time capabilities. Again, the user must build custom
code into his application.
In this paper, we try to implement a prototype system model,
which is designed to better support monitoring applications.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-3, Aug- 2014]
ISSN: 2349-6495

Page | 9

The system illustrates design issues that would arise in any
system of this kind. Monitoring applications are applications
for which streams of information, triggers, imprecise data, and
real-time requirements are prevalent. We expect that there will
be a large class of such applications.

We named the model as MEAN System Model.

III. IMPLEMENTATION OF MEAN SYSTEM
PROTOTYPE

Data is assumed to arrive from a variety of data sources such
as computer programs that generate values at regular or
irregular intervals or hardware sensors. We will use the term
data source for either case. In addition, a data stream is the
term we will use for the collection of data values that are
presented by a data source. Each data source is assumed to
have a unique source identifier and our system timestamps
every incoming tuple to monitor the quality of service being
provided.

The basic job of the MEAN system is to process incoming
streams. It is fundamentally a data-flow system in which
process and work flows are represented by arrows and boxes.
Hence, tuples flow
through a loop-free, directed graph of processing operations
(i.e., boxes). Ultimately, output streams are presented to
applications, which must be programmed to deal with the
asynchronous tuples in an output stream. It can also maintain
historical storage (usually columnar databases), primarily in
order to support ad-hoc queries.

Figure 1

MEAN System Model

1. OPERATIONS OF OPERATORS IN THE MEAN

MODEL

There are number of operators that are suggested by us in
support of this model implementation.

a. Streamed Operator: operators that operate on sets
of consecutive tuples from a stream ("windows") at a
time. Every streamed operator applies an input (user-
defined) function to a window.

b. Slide Operator: Slide advances a window by
"sliding" it downstream by some number of tuples.

This tuple is used to continuing monitoring of tuples
that are newly added and therefore used in real time
queries. For eg. Fire a query that calculates the
average value of stock in last three hours in a
company.

c. Disjoint Slide Operator: resembles Slide except
that consecutive windows have no tuples in common.
Rather, It effectively partitions a stream into disjoint
windows. This is useful, for example, when
calculating daily stock indexes, where every stock
quote is used in exactly one index calculation.

d. Latch Operator: resembles disjoint Slide but can
maintain internal state between window calculations.
This is useful for "infinite window" calculations,
such as one that maintains the maximum or average
value of every stock, maintained over its lifetime.

 Streamed operations are operators that act on a single tuple at
a time. The Filter operator screens tuples in a stream for
those that satisfy some input predicate. A special case of Filter
is Drop, which drops random tuples at some rate specified as
an operator input. Map applies an input function to every
tuple in a stream. GroupBy partitions tuples across multiple
streams into new streams whose tuples contain the same
values but grouped with a given condition. Finally, Join pairs
tuples from input streams.

2. MEAN QUERY MODEL WITH SCHEDULING

MEAN Model is designed to handle real time queries,
creation of views and Ad hoc queries. The performance of the
model is compared with existing Aurora model on the account
of three QoS parameters as: Response, Tuples drop and value
produced. The major objective of a real time system is to
execute the transaction before its deadline expires. This is the
reason they are used for complex transactions with time
constraints attached to them.

Figure 2

Figure 2 illustrates the difference between non real-time
scheduling and real-time scheduling. A FCFS (First Come

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-3, Aug- 2014]
ISSN: 2349-6495

Page | 10

First Serve) algorithm, a non real-time scheduler, assigns a
higher priority to a transaction that arrived earlier. A Priority
Scheduling (Earliest Deadline First) algorithm, a typical real-
time scheduler, assigns a higher priority to a transaction that
has an earlier deadline. In this example, three transactions
arrive in the following order: T1 |T2 | T3, and the order of
their deadlines is dl(T3) | dl(T2) | dl(T1).

Figure 3

3. OPTIMIZATION AND FUTURE WORK
As illustrated above in the MEAN system model supports two
parameters: Continuous and Ad-hoc queries. Beside these
two, database views can also be used for querying purpose.
Figure 4 illustrates how and at what layer these querying
occurs.
The most important challenge in any real time database model
is optimization and updating the data without going offline.
Fragmentation is a new proposed technique that can be used
for updating data. The operator can fragment the data into
different pieces which can be reassembled later as per the
query requirements and the type of query fired (as shown in
figure 4). The type of fragmentation can also be Transparent
or non-Transparent, depending upon the type of application.
S1, S2…S5 are the data storage blocks which are utilized by
different applications at different query levels. New storage
blocks can be added or deleted from the model. These storage
blocks can also act as buffer cache to store data streams
passed on it as persistence storage for a specific period.

Figure 4

 Continuous query

 views

 Ad hoc queries

IV. CONCLUSION

This MEAN System database model is factious and can be
implemented in any field of real time database
implementation. However, optimization and correction further
in this model and its approach is likely to be possible.
. The basic drawback in this system is that it cannot interpret,
or we can say that, cannot deal with missing or incomplete
data values generated by real time censors. We are currently
working to link this model with other existing models of this
kind and finally compare the results in our upcoming papers.

REFERENCES

[1] Design and implementation of an emergency

environmental response system to protect migrating
salmon in the lower San Joaquin River, California Nigel
W.T. Quinn a,*, Karl C. Jacobs ba Lawrence Berkeley
National Laboratory, 1 Cyclotron Road, Berkeley, CA
94720, USA Department of Water Resources,
Sacramento, CA 95814, USA Received 11 July 2005;
received in revised form 30 October 2005; accepted 21
December 2005 Available online 17 April 2006

[2] On Optimistic Concurrency Control for Real-Time
Database Systems Amer Abu Ali Faculty of Information
Technology, Philadelphia University, Jordan.

[3] Real-time Database Experiences in Network Management

Application Yoshiaki Kiriha NEC Corporation C&C
Research Laboratories4-1-1 Miyazaki, Miyamae-ku,
Kawasaki, Kanagawa 216, JAPAN Stanford University
Computer Science Department Stanford, CA 94305 E-
mail: kiriha@db.stanford.edu August 30, 1995

[4] Towards Process-Oriented Tool Support for Knowledge
Discovery in Databases Rudiger Wirth1, Colin Shearer2,
Udo Grimmer1, Thomas Reinartz1, J org Schl osser3,
Christoph Breitner3, Robert Engels4, and Guido Lindner.

[5] CS848 Presentation Report (Aurora: a new model and
architecture for data stream management) Qian (Kevin)
Chen Student number: 20191995 E-mail:
q3chen@cs.uwaterloo.ca Feb 06, 2006 Department of
Computer Science University of Waterloo Waterloo,
Ontario, Canada. S1 S2 Ap

S3 Ap

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-1, Issue-3, Aug- 2014]
ISSN: 2349-6495

Page | 11

[6] B. Kao and H. Garcia-Molina, "An Overview of Real-
Time Database Systems," Proceedings of NATO
Advanced Study Institute on Real-Time Computing,
Springer-Verlag , 1993.10.

[7] Y. Kiriha et al., "An Automatic Generation of
Management Information Base (MIB) for OSI based
Network Management System," Proceedings of IEEE
GLOBECOM 91, pp. 649- 53, 1991.12.

