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Abstract—In this paper, design and analysis of turnable 
holder for boring bar is described. Analytical receptance 
coupling method is used to couple the boring bar and 
holder assembly. The flexible holder natural frequency is 
matched to the clamped natural frequency of the tool, a 
new dynamic system is obtained with reduced possibility 
of chatter. The flexible holder supports the boring bar 
and acts as a dynamic absorber for the boring bar. 
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I.  INTRODUCTION 
During metal cutting operations, vibratory motion 
between a cutting tool and work piece can lead to reduce 
cutting performance accuracy. Such vibrations can cause 
the cutting tool, work piece, and/or machine to become 
damaged. Self-excited vibrations, or chatter, between the 
cutting tool and work piece can cause poor surface finish, 
tool breakage, and other unwanted effects. When chatter 
does occur, the machining parameters must be changed 
and, as a result, productivity may be adversely affected. 
One example of tools that may encounter excessive 
vibration is boring bars, which are typically used to 
fabricate deep holes. A primary difficulty in their use is 
that the holes tend to be deep and narrow so boring bars 
must be long and have small diameters. Therefore, during 
machining, the variable cutting force causes the tool to 
deflect and leave a wavy surface behind. When the 
cutting edge encounters this wavy surface in the next 
revolution, additional forces and deflections may be 
caused which can lead to chatter. 
Various methods for reducing boring bar vibration are 
currently used for example, 

• Internal vibration absorbers. 

• Reduction of cutting force 

• Periodic variation of cutting condition 

• Enhancement of structural stiffness 

• Passive vibration absorber 

• Active dampers 
Here, we describe a new method to reduce tool vibrations 
by providing a flexible holder with dynamics tuned to 
match the boring bar dynamics. The flexible holder 
supports the boring bar and acts as a dynamic absorber for 
the boring bar. The flexible holder natural frequency is 

matched to the clamped natural frequency of the tool, 
thereby reducing the amplitude of vibration at the free 
(cutting) end of the bar. In this paper we present both an 
analytical solution, which applies Euler-Bernoulli beam 
theory [1], combined with receptance coupling techniques 
[4].  
The advantage of implementation of new method is that it 
does not require the tool changing characteristics to match 
the holder frequency and clamped bar natural frequencies. 
The “modal mass effect” is realized by adjusting the 
position of a mass attached to the tool that enables the 
tool dynamics to be tuned with the holder dynamics. The 
overall goal of the providing new method, flexible holder 
with dynamics tuned to match the boring bar dynamics 
(modal mass effect) is to use a single holder for a set of 
varying length and diameter of boring bars. The holder 
can then be quickly and efficiently tuned for use (through 
the modal mass effect) for the current boring bar with pre-
determined mass positions. 
In this paper we present an analytical solution, which 
applies Euler-Bernoulli beam theory and receptance 
coupling techniques..A holder-boring bar is designed and 
frequency response measurements of the boring bar alone 
are compared to the measured response of a prototype 
holder-boring bar assembly. 
 

II.  RECEPTANCE COUPLING METHOD 
 
Closed-form, Euler-Bernoulli beam receptances[1] were 
used to describe an ISO A10-SCLPR2 NE4 boring bar 
with a length to diameter (L: D) ratio of 6:1. This high 
L:D ratio was selected since the focus of this work is the 
improvement of the dynamic stiffness for these inherently 
low stiffness situations. A diameter of 15.9 mm was 
chosen because this is the smallest diameter 
forcommercially available “tunable” boring bars (with 
dynamic absorbers located inside the bar). 
Due to external  force applied at the free end for the 
clamped free beam model of steel boring bar.it was 
developed using equation(1). 
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E= Elastic modulus 
I =2nd area moment of inertia 
η = frequency-independent damping    coefficient
do =outer diameter,  
di = inner diameter (set equal to zero if the beam is   
not hollow), 
L = length 
ρ = density 
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ω= frequency (in rad/s) 
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Fig. 1  Schematic representation of  receptance Coupling
Model boring
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K= 56.35 10× N/m          K=Stiffness [1] 

 ƞ= 46.5 10−× ƞ=damping ratio [1] 

( )jkG = Receptance of assembly(sub structure are coupled 

to produce assembly) 

( )
jk

R ω =Substructurereceptances.       

jx = Assembly displacement and rotation at coordinate j  

,k kf m = force and moment applied to assambly at 

coordinate k 
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Take j,k=1,2,3in equation 1 to 8, equation 12  

&find receptance components 11R , 12R , 22R 21R and  

then put values in equation 11 to get receptance of 

assembly ( ( ) ( )ABCG ω ) 

 Equation 11 gives the receptance of the assembly 
(tool holder, sleeve and boring bar) in math lab from that 
we can predict vibration amplitude.  

III.  VIBRATION ANALYSIS 
 

The implementation of MATLAB in chatter suppression 
considers the design parameters like mass stiffness of 
tool, damping of tool and diameter of tool, length of tool, 
direct and cross receptance  and various  boring bar 
conditions like  clamped free and  an values of the 
parameter can be predetermined by simulation and 
analysis of the required model. The above design 
parameters mentioned parameters are very well expressed 
in the form of equations in above section. 
 
In this section the effect of various parameters on the 
vibration amplitude are studied. 
 

3.1 Frequency Response Function for cantilever 
Beam 
Figure 2 shows the analytical frequency response function 
(FRF) for lateral vibration x at the free end due to an 
external force F applied at free end for clamped free 
model of steel boring bar. Its developed using equation 

(1) where j,k=1, E=200GPa, 4

64
I d

π
= is the area of 

moment of inertia, 0.0015η =  is the unit less solid 

damping factor. 
 

 
Fig. 2 Cantilever response of 6:1 boring bar 

 

3.2 Effect of Peak ratio for stiffness and damping 
Factors on vibration amplitude 
 
The role of the holder stiffness and damping 
characteristics on the system are shown in Figure 3. The 
top graph shows the ratio of the maximum holder-bar 
assembly FRF magnitude to the maximum fixed-free 
boring bar magnitude as a function of a stiffness factor, 

holder

bar

k
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while damping is held constant. The 
Bottom is the reverse; damping is varied while stiffness 

remains constant. In this case, holder
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c
=  where 

ciis the modal damping value In both instances, the bar 
and holder natural frequencies were matched for all factor 
values. 
A decrease in amplitude is observed for an increase in the 
stiffness/damping factors. Since the decrease is 
approximately logarithmic, the present change varies 
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inversely with an increase in the factor. The percent 
change is less than one for both stiffness and damping 
factors of 10, which leads to a design goal of a holder 
with a first naturalfrequency of 306 Hz and a minimum 
stiffness value of 10 times the stiffness of the bar. 
 

 

Fig. 3 Peak ratio for stiffness (top) and damping (bottom) 
factors 

 

3.3 Sensitivity study 
The sensitivity of the reduction in amplitude for 
mismatches in the bar and holder natural frequencies were 
determined analytically. In the analytical models the 
natural frequency of the bar and the holder were assumed 
to be equal. Since its difficult to produce a holder whose 
natural frequency matches with the boring bar’s natural 
frequency.  
The sensitivity analysis was done in order to provide an 
initial assessment of the feasibility and accuracy required 
for prototype manufacturing. For this  
analysis, the natural frequency for the holder modeled 
analytically in Fig. 4 (with a stiffness of 100 times the bar 
and the same damping value) was varied between 70% 
and 130% of the boring bar’s fixed-free natural frequency 
(306 Hz). The ranges of natural frequencies are 214.2 Hz 
to 397.8 Hz in steps of 5.75 Hz. The heavy solid lines 
represent the nominal natural frequencies. Each holder 
was analytically coupled with the boring bar. 
 

 
 

 
 

Fig. 4 Sensitivity study 

(A) Boring bar dynamics. 
(B) Various holder dynamics. The heavy solid lines represent 
Thenominal natural frequencies, while the dotted lines    
represent the various non-ideal holder responses. 
 

3.4 Frequency Response Function for Boring bar 
holder assembly &clamped free boring bar. 
Using the peak picking method [2], a stiffness value of 
6.35x105 N/m and a damping ratio of 6.5x10-4 were 
determined for the boring bar. A single degree of freedom 
(SDOF) representation of the cantilever holder was then 
defined with a stiffness value 20 times greater than the 
boring bar, but the same natural frequency and damping 
ratio. Next, the holder model wascoupled to a free-free 
model of the boring bar using the receptance coupling 
approach [3-8].  

 
 

Fig. 5 Boring bar holder assembly (solid line)Clamped free 
boring bar  (dotted line) 
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The FRF of the combined holder and boring bar is shown 
in Fig. 5. A 68% reduction is amplitude is observed for 
the holder assembly as compared to clamped free boring 
bar. 
 

IV.  RESULTS 
 

The above simulation revealed the following. 
Vibration amplitude of boring bar with different  
frequency and for different condition (clamped free and 
holder assembly) can be predicted using MATLAB. 
 
[1] As shown in fig. 3 decrease in vibration amplitude is 

observed with increase in the stiffness/damping 
factors. 

[2] The change in vibration amplitude is less thanone 
for both stiffness and damping factors of10. This 
leads to a design goal of a holder witha first 
naturalfrequency of 306 Hz and a minimumstiffness 
value of 10 times the stiffness of the bar. 

[3] The sensitivity analysis,the natural frequency for the 
holder modeled analytically in Fig. 4 with a stiffness 
of 100 times the boring bar andthe dampingvalue 
same. The natural frequency for the holder modeled 
analytically was varied between 70% and 130% of 
the boring bar’s fixed-freenaturalfrequency (306 
Hz). Theindividual   cases are shown in Fig.4, where 
eachdotted line represents a different holder.The 
ranges of natural frequencies are 214.2 Hz to 397.8 
Hz in steps of 5.75 Hz. 

[4] As shown in fig. 5 the dynamic stiffness of the 
Holder-boring bar assembly is higher than 
thestiffness of the cantilever boring bar alone, the 
stiffness improvements up to 68% are observed for 
the holder-boring bar assembly. 

 
V. CONCLUSION 

This paper described a flexible tool holder which acts as a 
dynamic absorber for a boring bar. By introducing 
flexibility into the holder (using notched flexure 
geometry) and matching its fundamental natural 
frequency to the first cantilever natural frequency of the 
boring bar, the holder effectively served as a dynamic 
absorber for the boring bar. An analytical approach was 
used to select the nominal holder response for an ISO 
A10-SCLPR2 NE4 boring bar with a 6:1 length to 
diameter ratio (15.9 mm diameter). The dynamic stiffness 
of the holder-boring bar assembly was compared to the 
stiffness of the cantilever boring bar alone; Stiffness 
improvements up to 68% were observed for the holder-
boring bar assembly. 
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