International Journal of Advanced Engineering Research and Science (IJAERS)

[Vol-2, Issue-9,Sept- 2015]
ISSN: 2349-6495

Distance Based Models of Keystroke Dynamics

User Authentication
Soumen RoY; Utpal Roy, D. D. Sinha

L3Department of Computer Science and Engineeringyélsity of Calcutta, Calcutta, India
2Department of Computer & System Sciences, VisasaBhSantiniketan, India

Abstract—Distance based algorithms are used in pattern
recognition techniques. This is not new, but irs {haper

we have implemented 20 different algorithms in R
statistical programming language and calculatedithe
performance, so we can compare their performance
soundly. We have executed all the algorithms onowwur
keystroke database, which we have collected from 12
individuals during 4 months.
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l. INTRODUCTION
Keystroke dynamics is a method of analysing the way
user types on a keyboard and classify the userdbase
their regular typing rhythm. Here, users are welkkn
by their typing style much like face prints, fingetints,
voice prints, signature etc. It is very economid aannot
be lost or stolen in addition with it can be easily
integrated in any existing knowledge-based user
authentication with small alternation.
Our typing style can be easily calculated by sinmjgy
event program. In our experiment we have implentente
Java Applet program to get the raw data of keystrok
press and release timing pattern where getTimegtion
return the time of key press and release eventsn Te
have calculated the following features of keystroke
dynamics: key hold time (KD), up-up key latency (JJU
up-down key latency (UD), down-up key latency (DU),
down-down key latency (DD), total time (ttime),-gap
time (trigap) and four-gap time (4gap).
Keystroke Dynamics as biometrics characteristiasisa
new one. First time, in the year 1897, Bryan andtéta
investigated keystroke dynamics. In 1975, Spillane
described the concept of keystroke dynamics and
suggested in an IBM technical bulletin that typing
rhythms might be used for identifying the user at a
computer keyboard. Forsen et al. in 1977 conducted
preliminary tests of whether keystroke dynamicsi¢de
used to distinguish typists. Gaines et al. in 1p&iluced
an extensive report of their investigation with esev
typists into keystroke dynamics. After then S. Bleh
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submitted his PhD thesis on Recognition systemdase
keystroke dynamics in 1988 [1]. R. Joyce and G.t&up
proposed an identity authentication based on kelystr
latencies in 1990 [2]. F. Monrose et al. [3] progas
keystroke dynamic as a biometric for authentication
2000. Different online and offline applications esddy
have been done by fixed text and free text keystrok
dynamics. Keystroke dynamics research has beerggoin
on for the more than thirty three years. Many mesho
have been proposed during that time. Methods based
traditional statistics-such as mean times and gtaimdard
deviations are common. Over the years, differettepa
recognition methods have come into vogue and been
applied to keystroke dynamics; neural networks,zlfuz
logic and support vector machines among others.yMan
classification algorithms have been proposed andyma
databases are available in the Internet. In eualuat
process of different classifiers on different datsdy we
have obtained different average Equal Error REEIRS)
because selecting the string for the database and
considering the features for classification afféwt error
rate. It has been established that our typing Stge
similar for the common daily used words (name, adsir
e-mail ID etc.). In this connection we have chosea
daily used words to train the system.

We have collected press and release time of 12096
keystrokes of 1440 samples of patterns from 12 fit
individuals in 4 different sessions with minimum afie
month interval for five different common words
(“kolkatal23”, "facebook”, "gmail.com”, "yahoo.com”
"123456") in our experiment. Then we have considere
all 8 different features and combination of feasuteen
we have executed 8 different classifiers on thdlected
data. In our observation we got 2.4% of EER for the
classifier OutlierCount (z-score) by taking all tleatures

in our consideration. In second position NaiveBaysi
classifier given 5.3% of EER when we have takeoun
consideration all the features and all 4 strings
(“kolkata123","facebook”, "gmail.com”, "yahoo.com”)
So the adaptation of keystroke dynamics techniguaniy
existing system increases the security level ugt@% to
96.6%.
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Il. BACKGROUND DETAILS
In 30+ years of experience, many researchers have
proposed their algorithms, taking various featuvasious
length of pattern string.
Table 1.Background of keystroke dynamics

Authors Classifiers Length Features EER
of the (%)
pattern

Joyce & Manhattan 33 ubD 0.25-

Gupta [2] 16.36

Bleha et Euclidian 11-17 ubD 2.8-

al. [1] 8.1

Haider et  Nural 7 ubD 16.1

al. [7] Network

Yu& Cho SVM 6-7 ub 10.2

[5]

Killourly Manhattan 10+ ub 9.6

S. [4] (Scaled)

Kang et K mean 7-10 KD,UD 3.8

al. [6]

Giotetal. SVM 100 KD,UD 15.28

8]

M. EXPERIMENTAL RESULTS
We have implemented a program in Java Applet for
collecting, which has the capability of capturing ley
pressing and releasing events, which are usectdecthe
database of different sample of passwords and gmin
templates. Here we have calculated average equal er
rate for all eight algorithms considering some kng
feature and combination of features for all fivnérgs
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Fig.1. Histogram of the string “kolkatal23”

www.ijaers.com

FEATURES Eudidean
wwwwwwwwwwwwwwwwwwwwwwwww

20
0 e

SealedManhattan OutierCount mahalanchis

%!%g

AutosssochiNet SM
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Fig. 3. Histogram of the string “gmail.com”
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Fig. 4. Histogram of the string “facebook”
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In the above figure, we see that for all the sBing
ourlierCount (z-score) is achieved best resultreftaled
Manhattan.
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Fig. 7.Bar chart of all 8 classifier
Here we see that no combination of features and
algorithms give bellow 0.08 average equal erroe far
all five type of fixed string.
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Fig. 5. Histograrhmof the string “123456”
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Fig. 6. Line chart of all 8 classifiers

Table 2.ROC curve of all 20 distance based algorith

Name of the ROC Name of the ROC
Algorithms Algorithms
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Table 3.EER of all 20 distance based algorithms

Classifiers Classifiers
EER Sd EER Sd
OC;zt;yshev 0.083 | pizicka 0.871 0.109
OC_algze"a 0-071 1 soergel 0.129 0.100
Czekanowski 0.129 Sorensen 0.129
0.109 0.109

Wavehedges 0.129
Gower 0.515 0.2640'109
Intersection 0.579 Euclidean 0.205
0.255 0.123
Kulczynski 0.129 Manhattan 0.144
0.109 0.127
Kulczynskis 0.129 ScaledManhattan 0.088
0.109 0.097
Lorentzian 0.044 OutlierCount 0.024
0.076 0.072
Minkowski 0.219 Mahalanobis 0.260
0.119 0.181
Motyka 0.129 KMeans 0.184
0.109 0.095

V. CONCLUSION

This is the first time we have executed 8 different
classification algorithms on 5 similar keystrokeadmse
taking in our consideration all 8 features and cimaiion

of features so we can compare the classifiers oeqaal
basis. In our evaluation process, we have idedtiffe
best classifier (z-score). It achieved 91.2% olaacy for
the string “kolkatal23” (considering KD, DU, UD, igap
and 4gap timing features), 90.5% of accuracy far th
string “yahoo.com” (considering KD, UD), 91.7% of
accuracy for the string “gmail.com” (considering KD
UD), 92.0% of accuracy for the string “facebook”
(considering KD, DD, UU, DU, UD and Trigap), 85.5%
of accuracy for the string “123456” (considering KIDU,
Trigap and 4gap timing features). Z-score classiitn
algorithm gives the highest accuracy for all thengt
patterns. We also have tested this algorithm oretitze
strings database and we got 97.6 % of accuracit. |%s
been established that this technique can be usadate

guard of password or PIN in knowledge-based user

authentication. But in practical there are maneetfhg
factors may affect way of this process. Need mucihem
experiment on it like key pressure; finger placetreto.
can be calculated.
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