Statistics

    Map

Twitter

Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region
( Vol-5,Issue-6,June 2018 )
Author(s):

Kleber Franke Portella, Rodrigo Paludo, Gelson Luiz Carneiro, Júlio Werner Yoshioka Bernardo, Marianne Schaefer França Sieciechowicz, Mariana D'Orey Gaivão Portella Bragança, Nicole Machuca Brassac de Arruda, Emerson Luiz Alberti, Augustus Caeser Fr

Keywords:

floating photovoltaic plant, case study in hydroelectric plant reservoir, environment, durability.

Abstract:

Typical environmental problems associated with the implementation of solar photovoltaic systems for the generation of peak electrical energy, on a larger scale, such as on the order of 1 MWp, is in the occupied area, usually more than 3 km2. This can be minimized by the use of water parks or water dam’s reservoir, small and large hydroelectric power plants dams. Both the terrestrial and aquatic systems can impact the site, the first one, for the need to promote earthworks, removal of extensive green areas in the surroundings, installation of new transmission line, among others; and the second, despite the fact that a flat surface is already used and that there is no need for new civil procedures for its installation and can normally take advantage of the existing power transmission line, may cause changes in the biota of the reservoir, depending on the shading areas on the surface of the lake. Due to these facts, this research was proposed to investigate, parameterize and tropicalize an electric power generation system based on floating silicon photovoltaic cell panels installed in the Santa Clara HPP reservoir, in terms of peak power, durability, aspects and environmental impacts, with the study of possible evolutionary improvements of the project such as "tracking" or solar tracking, as well as dynamism of the structure, allowing the shadow area to be shifted over time, minimizing its effects in the local biota.

ijaers doi crossref DOI:

10.22161/ijaers.5.6.4

Paper Statistics:
  • Total View : 406
  • Downloads : 50
  • Page No: 017-027
Cite this Article:
MLA
Kleber Franke Portella et al ."Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 6, 2018, pp.017-027 AI Publications, doi:10.22161/ijaers.5.6.4
APA
Kleber Franke Portella, Rodrigo Paludo, Gelson Luiz Carneiro, Júlio Werner Yoshioka Bernardo, Marianne Schaefer França Sieciechowicz, Mariana D'Orey Gaivão Portella Bragança, Nicole Machuca Brassac de Arruda, Emerson Luiz Alberti, Augustus Caeser Fr(2018).Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(6), 017-027. http://dx.doi.org/10.22161/ijaers.5.6.4
Chicago
Kleber Franke Portella, Rodrigo Paludo, Gelson Luiz Carneiro, Júlio Werner Yoshioka Bernardo, Marianne Schaefer França Sieciechowicz, Mariana D'Orey Gaivão Portella Bragança, Nicole Machuca Brassac de Arruda, Emerson Luiz Alberti, Augustus Caeser Fr. 2018,"Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(6):017-027. Doi: 10.22161/ijaers.5.6.4
Harvard
Kleber Franke Portella, Rodrigo Paludo, Gelson Luiz Carneiro, Júlio Werner Yoshioka Bernardo, Marianne Schaefer França Sieciechowicz, Mariana D'Orey Gaivão Portella Bragança, Nicole Machuca Brassac de Arruda, Emerson Luiz Alberti, Augustus Caeser Fr. 2018,Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(6), pp:017-027
IEEE
Kleber Franke Portella, Rodrigo Paludo, Gelson Luiz Carneiro, Júlio Werner Yoshioka Bernardo, Marianne Schaefer França Sieciechowicz, Mariana D'Orey Gaivão Portella Bragança, Nicole Machuca Brassac de Arruda, Emerson Luiz Alberti, Augustus Caeser Fr."Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 6, pp.017-027,2018.
Bibtex
@article {kleberfrankeportella2018feasibility,
title={Feasibility and Environmental Sustainability of a 103.5 kWp floating Photovoltaic Electrical System with a Case Study in a Hydroelectric Power Plant, Santa Clara Hpp, Located in the South of Brazil Region},
author={Kleber Franke Portella, Rodrigo Paludo, Gelson Luiz Carneiro, Júlio Werner Yoshioka Bernardo, Marianne Schaefer França Sieciechowicz, Mariana D'Orey Gaivão Portella Bragança, Nicole Machuca Brassac de Arruda, Emerson Luiz Alberti, Augustus Caeser Fr},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] STRANGUETO KM (2016). Estimativa do Potencial Brasileiro de Produção de Energia Elétrica através de Sistemas Fotovoltaicos Flutuantes em Reservatórios de Hidroelétricas. Tese de Doutorado. UNICAMP. Brasil.
[2] TRAPANI K, SANTAFÉ MR (2015). A review of floating photovoltaic instalations: 2007-2013. Prog. Photovolt: Res. Appl. 23:524-532.
[3] BAHAIDARAH H, SUBHAN A, GANDHIDASAN P, REHMAN S (2013). Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy. 59:445-453.
[4] SANTAFÉ MR, FERRER GISBERT PS, ROMERO JS, SOLER JBT, GOZÁLVEZ JJF, FERRER GISBERT CM (2015). Implementation of a photovoltaic floating cover for irrigation reservoirs. Journal of Cleaner Production. 66:568-570.
[5] FERRER GISBERT C, FERRÁN-GOZÁLVEZ JJ, SANTAFÉ MR, FERRER GISBERT P, ROMERO FJS, SOLER JBT (2013). A new photovoltaic floating cover system for water reservoirs. Renewable Energy. 60:63-70.
[6] ELETROBRÁS. In: http://webserver.eln.gov.br/pdnet/pd/arquivos/Edital%2003_2015.pdf, acessado em 30 de setembro de 2016.
[7] CESP. In: http://www.investimentosenoticias.com.br/noticias/negocios/sao-paulo-tera-a-primeira-usina-solar-flutuante-do-brasil-a-partir-de-maio, acessado em 30 de setembro de 2016.
[8] AMERICA DO SOL. In: http://americadosol.org/pesquisa-e-desenvolvimento-no-brasil/, acessado em 30 de setembro de 2016.
[9] CESP, 2016. Disponível em, http://www.investimentosenoticias.com.br/noticias/negocios/sao-paulo-tera-a-primeira-usina-solar-flutuante-do-brasil-a-partir-de-maio, acessado em setembro de 2016.
[10] Brasil inaugura primeira usina solar flutuante do mundo em lago de hidrelétrica. In: http://agenciabrasil.ebc.com.br/pesquisa-e-inovacao/noticia/2016-03/brasil-inaugura-primeira-usina-solar-flutuante-do-mundo-em-lago. Acessado em janeiro de 2018.
[11] Presidente da Irrigo implanta projeto pioneiro de energia fotovoltaica em Cristalina e é destaque na imprensa. In: https://www.irrigoias.com.br/single-post/Presidente-da-Irrigo-implanta-projeto-pioneiro-de-energia-fotovoltaica-em-Cristalina-e-%C3%A9-destaque-na-imprensa. Acessado em janeiro de 2018.
[12] PRIMEIRA USINA SOLAR FLUTUANTE É PAULISTA. In: http://www.ambientelegal.com.br/primeira-usina-solar-flutuante-e-paulista/. Acessado em janeiro de 2018.
[13] CEPEL - CRESESB, 2014. Manual de Engenharia para Sistemas Fotovoltaicos. Rio de Janeiro. 2014. 530 p
[14] AMERICA DO SOL, 2016. Disponível em, http://americadosol.org/pesquisa-e-desenvolvimento-no-brasil/. Acessado em janeiro de 2018.
[15] EPE, 2014. Empresa de Pesquisa Energética (Brasil). Balanço Energético Nacional 2014: Ano base 2013 / Empresa de Pesquisa Energética. – Rio de Janeiro: EPE, 2014. 288 p.
[16] ANEEL - AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA, 2015. BIG - Banco de Informações de Geração. Disponível em www.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm, acessado em maio de 2015.
[17] MPX conecta usina solar de Tauá (CE) à rede elétrica nacional, 2016. Disponível em http://www.eneva.com.br/pt/sala-de-imprensa/noticias/Paginas/MPX-conecta-usina-solar-de-Taua-(CE)-a-rede-eletrica-nacional.aspx, acessado em novembro de 2016.
[18] CEMIG, 2016. In: https://www.cemig.com.br/pt-br/A_Cemig_e_o_Futuro/inovacao/Paginas/Dashboard-Mineirao.aspx, acessado em novembro de 2016.
[19] CHESF, 2016. CHAMADA PÚBLICA 003/2015, Exploração de Energia Solar em Lagos de Usinas Hidrelétricas Eletronorte / CHESF. In: https://www.chesf.gov.br/pdi/Pages/Como%20participar/ChamadaPublica003-2015-EletrobrasChesf.aspx, acessado em novembro de 2016.
[20] FERRER FERRER C, FERRER GISBERT C, SANTAFÉ MR, FERRÁN-GOZÁLVEZ JJ, ROMERO FJS, SOLER JBT, PUIG EP (2010). Technical performance of a photovoltaic floating cover system. In: International Conference on Agricultural Engineering-AgEng. France.
[21] ABNT NR-12, Norma Regulamentadora 12 – Segurança no Trabalho em Máquinas e Equipamentos e estabelece nova redação, 2017.
[22] LAING AK (1998). An Introduction to Ocean Waves In: Guide to Wave Analysis and Forecasting. Geneva: Suíça. 1:1-14.
[23] MARQUES M (2013). Modelagem paramétrica bidimensional para simulação de ondas em águas continentais. Tese de doutorado pelo Programa de Pós-Graduação Engenharia de Recursos Hídricos e Ambiental. Curitiba: Universidade Federal do Paraná. Curitiba. Brasil.
[24] BRASIL. Resolução CONAMA n° 357, de 17 de março de 2005. Classifica as águas doces, salobras e salinas.
[25] ROUND FE (1983). Biologia das algas. Editora Guanabara Dois, Rio de Janeiro.do Território Nacional, segundo os usos preponderantes, revogando a Resolução CONAMA nº 20. Diário Oficial da União, Brasília, DF. 18 de março de 2005.
[26] BICUDO CEM, RAMÍREZ JJR, TUCCI A, BICUDO DC (1999). Dinâmica de populações fitoplanctônicas em ambiente eutrofizado: o Lago das Garças, São Paulo. In: R. HENRY (ed.). Ecologia de reservatórios: estrutura, funções e aspectos sociais. Fundibio, Botucatu, pp. 449-508.
[27] HODOKI Y, OHBAYASHI K, KOBAYASHI Y, OKUDA N, NAKANO S (2012). Detection and identification of potentially toxic cyanobacteria: Ubiquitous distribution of Microcystis aeruginosa and Cuspidothrix issatschenkoi in Japanese lakes. Harmful Algae. 16: 49-57.
[28] CARDOSO LS (2013). First record of expansive Ceratium Schrank, 1793 species (Dinophyceae) in Southern Brazil, with notes on their dispersive patterns in Brazilian environments. CheckList. 9(4): 862–866.
[29] MATSUMURA-TUNDISI T, TUNDISI JG, LUZIA AP, DEGANI RM (2010). Occurrence of Ceratium furcoides (Levander) Langhans 1925 bloom at the Billings Reservoir, São Paulo State, Brazil. Brazilian Journal of Biology. 70(3): 825–829.
[30] OLRIK K (1993). Phytoplankton ecology. Denmark: DEPA. 183p.