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Abstract— Snow is a widespread atmospheric constituent on Earth, as 

well as one of the cryosphere's most important seasonal and inter-

seasonal fluctuations. Estimating the amount of snow in hilly areas is 

essential for a variety of socioeconomic endeavours and environmental 

research. Traditional methods for monitoring snow depth include 

accessibility, expense, and coverage limits, especially in isolated and 

difficult terrain. Global Navigation Satellite System-Reflectometry 

(GNSS-R) technology has emerged as a promising tool for remote sensing 

applications that include snow depth estimation. This review study 

synthesises and evaluates current literature on the use of GNSS-R 

technology for snow depth retrieval, concentrating on its potential and 

constraints in various mountainous places around the world. The paper 

includes a detailed explanation of GNSS-R working principles and 

receiver’s advancement, snow depth retrieval methods using both 

traditional and remote sensing methods like active microwave, passive 

microwave, GNSS-R integrating with machine learning and deep learning 

models to develop a snow depth assessment in diverse geographical 

contexts.  GNSS-R technology aids in snow depth retrieval through 

Signal-to-Noise Ratio (SNR) and carrier phase pseudorange methods, 

with optimal choice based on application requirements, accuracy, 

environmental conditions, resources, and complexity-precision trade-offs. 

The review study aims to provide a comprehensive understanding of the 

advances in GNSS-R-based snow depth estimation, as well as insights and 

guidance for future advancements in this field, particularly in addressing 

the complexities of snow depth estimation in diverse terrains such as those 

found in India.. 

 

I. INTRODUCTION 

Snow is one of the most extensively dispersed atmospheric 

constituents on Earth, as well as one of the cryosphere's 

most significant seasonal and inter-seasonal fluctuations. It 

is the principal source of water in many parts of the planet. 

It is vital to global climate variability and hydrological 

cycles. The amount of snow that falls varies. Snowfall is 

heavier at higher elevations, and snowpack varies greatly 

over the landscape. Snow, once on the ground, can be 

transported by wind, avalanches, and sloughing. As a 

consequence, high-precision and quick gathering of snow 

depth data benefits not only human safety, snow disaster 

avoidance, and hydrological research progress but also 

monitoring changes in the natural environment. The most 

essential measure for hydrological analysis is snow-water 

equivalence (SWE). SWE represents the volume of water 

potentially available for discharge. Forecasting the rate of 
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snowmelt and evaluating the water content of the snowpack 

is essential for managing water supply and flood control 

systems. These variables are critical for forecasting the 

timing and amount of water released from snowpack, which 

can help avert flooding and provide a consistent water 

supply. 

Snow depth has historically been monitored through manual 

measurement or with certain sophisticated sensors on the 

ground [1]. These approaches give precise assessments of 

snow depth, but they are either costly or have a limited 

temporal and geographical resolution. Snow cover area 

(SCA), snow depth, and SWE are all estimated using 

satellite and aerial remote sensing systems. In general, 

satellite estimates provide better consistency in time and 

distance than ground-based measures. SCA at a medium 

resolution may be obtained using optical data [2], [3]. Cloud 

cover, on the other hand, makes measuring snow depth 

more difficult. Large-scale, very accurate snow depth 

measurements have been transformed by ground-based 

LiDAR technology. These technologies, however, are still 

costly, hardly automated, and frequently need bare-earth 

terrain elevation measurements [4]. Active and passive 

microwave methods are also employed to estimate snow 

depth and SWE. Microwave retrieval is difficult in several 

ways. When compared to snow fluctuations, passive 

approaches have a significantly big geographical footprint. 

Both methods are affected by uncertainties in snow size 

distribution and upper and lower snow characteristics [5]. 

Remote sensing technologies have not consistently 

generated accurate estimations of snow depth or SWE 

across time. This has led to a growing demand for 

technology capable of not only accurately retrieving snow 

depth with higher temporal resolution but also covering 

larger geographical extents. Reflected GNSS signals have 

been claimed to offer useful information on the composition 

of the land surface during the last decade, including snow 

depth, lake ice thickness, soil moisture content, electrical 

characteristics of the ground, and sea ice conditions. 

Jacobson was among the first to propose the use of GPS L1 

frequencies for measuring dry snow density [6]. In addition, 

Larson worked on estimating dry snow density using a GPS 

multipath signal, suggesting that snow depth can also be 

estimated using SNR time series, which includes direct as 

well as reflected signal elements [7]. In the past few years, 

GNSS reflectometry, a novel approach based on GNSS-

reflected signals, has been developed to assess physical and 

geometric characteristics around the antenna [7], [8]. Using 

current GNSS station networks and sampling across a 1000 

m2 region surrounding the antenna, this strategy may give 

continuous snow depth monitoring in a global reference 

frame [9], [10]. The proliferation of GNSS Continuously 

Operating Reference Stations (CORS) worldwide, 

particularly in snow regions, has further facilitated the 

application of GNSS data for snow depth determination 

[11]. Consequently, GNSS-R-based snow depth calculation 

offers an economical option capable of achieving high 

temporal and spatial resolution. 

The paper is further organized as follows: in Section 2, a 

detailed explanation of GNSS-R working principles and 

receiver’s advancement. In section 3, snow depth retrieval 

methods have been discussed both traditional and remote 

sensing methods. In section 4, the study is concluded with 

the potential and challenges of utilizing GNSS-R 

technology for snow depth retrieval in the diverse and 

challenging terrains of India. 

 

II. GNSS-R 

Global Navigation Satellite Systems (GNSS) is a network 

of satellites that provides positioning, navigation, and 

timing information (PNT) to users worldwide. The system 

works by continuously transmitting signals from multiple 

satellites to receivers on Earth. The fundamental principle 

underlying GNSS operation is trilateration. The best-known 

GNSS is the Global Positioning System (GPS) operated by 

the United States, but there are also other systems like 

GLONASS (Russia), Galileo (European Union), BeiDou 

(China), QZSS (Japan) and NavIC (India), each offering its 

unique set of capabilities and coverage. In addition to its 

core PNT function, GNSS radio occultation may detect the 

atmosphere and compute tropospheric relative humility as 

well as ionospheric total electron content. [12]. GNSS 

reflectometry (GNSS-R) is the alternative type, which 

encompasses GNSS interferometric reflectometry (GNSS-

IR) that leverages signals reflected off the Earth's surface to 

gather valuable environmental data. Unlike traditional 

GNSS receivers, which rely solely on direct signals from 

satellites, GNSS-R receivers analyze signals that bounce off 

various surfaces, such as land, water bodies, and ice, 

providing insights into surface characteristics and 

environmental parameters. The reflected signals carry 

signatures indicative of surface characteristics, such as 

roughness, moisture content, and vegetation density, among 

others. By analyzing these signatures, GNSS-R can provide 

insights into a wide range of environmental parameters, 

including soil moisture, sea surface height, snow depth, and 

vegetation health. Land and sea surface information can be 

inferred using GNSS-R [13], [14], [15] . Additionally, snow 

depth data and sea ice parameters have been computed 

using GNSS-R [16], [17], [18]. The Global Navigation 

Satellite System-Reflectometry (GNSS-R) idea was 

introduced by Hall and Cordey [19], and since then, it has 

been effectively used for a variety of remote sensing 

applications. It is also one of the main areas of research for 
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remote sensing. Despite multipath signals often being 

suppressed in high-accuracy applications due to their 

potential for introducing inaccuracies [20]. Nonetheless, 

multipath signals carry an abundance of geophysical data 

that is valuable for GNSS-R systems. The GNSS antenna 

receives data on the signal-to-noise ratio (SNR), which is 

crucial for GNSS-R technology as well as signal intensity 

caused by direct and reflected signal interference. Martin 

Neira discovered the signal interference occurrence among 

the direct and reflected signals  [21]. SNR power spectrum 

maps were proposed by Bilich and Larson for multipath 

evaluation. SNR is therefore mapped with a multipath 

scenario  [22]. 

2.1 Working and Principles 

GNSS-R operates as a bistatic radar technique utilizing 

signals from GNSS satellites like GPS, GLONASS, 

Galileo, BeiDou, QZSS, or NavIC to reflect off various 

surfaces. This technique is grounded in radar and remote 

sensing principles. GNSS-R relies on the reflection of 

GNSS signals from diverse surfaces, including the Earth's 

surface, oceans, ice, buildings, and vegetation. When a 

GNSS signal comes into contact with a reflecting surface, a 

portion of the signal is scattered back into space. These 

reflected signals change phase, amplitude, and polarization 

as they interact with different surface types and conditions. 

When a reflected signal returns to a GNSS-R receiver, it 

contains information about the signal propagation delay (the 

amount of time it takes for the signal to travel to the 

reflecting surface and back) and the Doppler shift (the 

frequency change resulting from the motion of the reflecting 

surface), forming a Delay-Doppler map. The power 

gathered by a GNSS receiver following the GNSS signal's 

scattering throughout the surface of the Earth is referred to 

as a Delay-Doppler map [23], [24]. The sensing footprint 

for a specific SNR trace is defined as the First Fresnel zones 

at various elevation angles. As the satellite elevation angle 

(e) changes, the First Fresnel zone fluctuates accordingly. 

Precisely, as the satellite ascends, the Fresnel zone moves 

nearer to the antenna and diminishes in size. [25]. 

 

Fig.1. Working of GNSS-R. 

 

After a reflection polarisation change, GNSS signals 

undergo a polarization change: direct signals become Right 

Hand Circularly Polarized (RHCP), while reflected signals 

become Left Hand Circularly Polarized (LHCP), as 

illustrated in Figure 1 [26]. Interference between direct and 

reflected signals on SNR data indicates signal quality. 

GNSS user antennas have dual polarisation, RHCP for 

direct signals, and LHCP for reflected signals. Each 

polarization is associated with its unique radiation pattern, 

designed to optimize the reception of RHCP signals (high 

gain) for omnidirectional acquisition while minimizing 

antenna sensitivity to LHCP signals (low gain). 
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In general, the gain for RHCP signals tends to be greater 

than that for LHCP signals for elevation angles greater than 

about 10-15 degrees.  These disparities, however, reduce at 

lower angles, where radiation patterns have been optimized 

to suppress signals at extremely small or negative angles. 

SNR values are affected by satellite elevation angle in 

addition to interference. The SNR signal comprises a high 

amplitude, low-frequency component in SNR direct 

(SNRD) and a low amplitude, high-frequency component in 

SNR reflected (SNRR). The design of radiation patterns 

results in a lower amplitude and clearer appearance of 

higher frequency signals at low elevation angles. The 

amplitude of the SNRR is  

lower than the noise of the observations at high elevation 

angles, whereas the multipath effect is visible at low 

satellite elevations. 

2.2 Receivers and their advancement 

2.2.1 Ground-based receivers 

 The GNSS-IR technology was distinctly developed in the 

early 2010s. Initially, geodetic GNSS receivers were 

employed for applications such as assessing vegetation 

characteristics and estimating soil moisture [27], [28]. 

GNSS-IR, however, uses commercial geodetic receivers, 

hence the majority of the advancements have come from 

fresh techniques rather than new receivers or technology 

[29]. Nevertheless, it is important to note that the GNSS-IR 

paradigm has led to the development of new applications. 

The GNSS-IR concept was used to monitor sea level [30], 

multi-frequency observations alongside a four-layer 

scattering model were also used to retrieve sea ice and snow 

thicknesses [31], and lake ice thickness was first retrieved 

[32]. An innovative method of technology that creates an 

image resembling synthetic aperture radar (SAR) by 

utilizing the dispersed GNSS-R signals [33]. This system 

relies on ground-based GNSS-R receivers, which accurately 

calculate and compensate for the Doppler shift and delay of 

a satellite's reflected signal as it passes across the sky. An 

image of a large area can be created by performing a 

processing procedure similar to SAR [34]. 

2.2.2 Airborne receivers 

Airborne GNSS-R receivers have been essential in 

showcasing new techniques and technologies, with 

Katzberg and Garrison acquiring the first signal from an 

airborne platform [35]. Before the CYGNSS constellation 

was put into operation, there were a lot more GNSS-R 

sensors in airborne operations. The instruments in this 

section include those that have seen major technological 

advancements recently. The GOLD-R instrument, 

developed by ICE-CSIC/IEEC, UPC, and ESA, was a 

ground-breaking device that could operate in the GPS L1 

band at different polarizations. It has a single-LHCP patch 

antenna that can sample up to 20 MHz bandwidth and can 

function in various modes by taking samples of both direct 

and reflected signals [36], [37]. Another noteworthy 

instrument is the Global Navigation Satellite System 

Reflectometry Instrument (GLORI), designed in 2015, 

which conducts polarimetric measurements using a dual-

polarization RHCP/LHCP antenna system [38], [39]. The 

GLORI has demonstrated the ability to differentiate 

between  RHCP and LHCP signals, making it useful for 

future spaceborne missions like HydroGNSS [39]. The 

Microwave Interferometric Reflectometer (MIR), 

developed between 2015 and 2018, is the initial GNSS-R 

sensor designed to provide integrated GNSS L1 and L5 

readings [40]. According to Ruf et al. [41], the forthcoming 

generation of GNSS-R equipment can operate in the L1/L5 

bands in the GPS and Galileo constellations and was created 

for airborne platforms. It was implemented by Air New 

Zealand in the middle of 2021 for continuous operation in 

domestic aircraft, combining features from the GLORI and 

MIR instruments [42]. Research centres are developing 

UAV-based GNSS-R receivers for Earth observation with 

lower cost and higher resolution, demonstrating the 

potential of incorporating these receivers into commercial 

aircraft [43]. 

2.2.3 Spaceborne receivers 

The initial capture of a spaceborne GNSS-R signal occurred 

in 2002 during a Space Shuttle radar imager calibration 

routine. Subsequently, the UK Disaster Monitoring 

Constellation-1 mission launched the first GNSS-R receiver 

into space to validate its potential for ocean study [44]. 

NASA's Cyclone GNSS (CYGNSS) mission utilized a 

Delay-Doppler map imager (DDMI) receiver, covering 

mid-latitudes to showcase the potential of microsatellite 

constellations with moderate costs for Earth observation 

[45]. The UK-TDS-1 mission, equipped with an enhanced 

SSTL GNSS-R receiver (SGR-ReSi) using a zoom 

transform correlator correlation approach, collected data 

across ocean, land, and ice regions [46]. In 2019, the China 

Aerospace Science and Technology Corporation (CASC) 

launched the BuFeng-1 A/B constellation, mirroring the 

design of the SSTL SGR-ReSi and the CYGNSS DDMI 

instruments [47]. Additionally, the China Meteorological 

Administration (CMA) deployed the FY-3E mission in 

2021, offering near-real-time data in a polar orbit with a 3-

hour latency [48]. The NanoSat-Lab of the Universitat 

Politècnica de Catalunya (UPC) made contributions to the 

creation of spaceborne GNSS-R instruments. Launched in 

2016, 3Cat-2 was the first CubeSats mission to introduce 

the dual-band polarimetric GNSS-R instrument. However, 

data recovery problems were discovered due to a failure in 

the satellite bus [49]. With the help of software-defined 

radio technology, UPC NanoSat-Lab oversaw the 2020 
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FSSCat mission of ESA, combining an L-band radiometer 

with a GNSS-R receiver [50], [51]. Spire Global Inc., 

renowned for CubeSat GNSS radio occultation (GNSS-

RO), deployed multiple CubeSats for global GNSS-R 

measurements  [52]. The upcoming HydroGNSS mission 

will feature SSTL's latest SGR-ReSi variant, enabling 

multi-constellation, multi-polarization, and multiband 

GNSS-R measurements [53]. Other space mission 

proposals, including iGNSS-R receivers, have been 

developed but have never been implemented or launched 

[54], [55]. 

 

III. SNOW DEPTH RETRIEVAL  

3.1 Traditional Snow Depth Retrieval Methods 

Traditional snow depth estimation methods rely heavily on 

field-based techniques. A key strategy is field surveys, 

which involve human examinations using probing 

equipment or snow stakes put at several sites throughout 

snow-covered landscapes. These surveys provide direct and 

exact depth readings, capturing regional snow accumulation 

fluctuations. Snow pits, which require physical excavation 

to examine snowpack qualities such as layering, density, 

and depth, complement this technique by offering an in-

depth awareness of the snowpack's properties at specific 

spots [56]. Furthermore, snow depth probing technologies, 

such as inserting snow probes or tubes into the snow until 

they reach the ground, allow for quick and direct depth 

assessments [57]. Snow courses, which are predefined 

routes with specific measurement stations, serve as 

standardized places for periodic measurements, assisting in 

monitoring changes in snow depth over time, especially for 

water resource management purposes. Furthermore, in 

avalanche-prone areas, the construction of avalanche poles 

or snow stakes allows for constant monitoring and tracking 

of snow accumulation and stability changes [58]. While 

these classic field-based procedures require labour-

intensive manual efforts and have limited coverage, they 

remain critical for providing precise and thorough point-

specific snow depth readings across a wide range of terrains.  

3.2 Snow Depth Retrieval Using Remote Sensing 

Applications 

3.2.1 Active microwave remote sensing 

Active microwave sensing, a method for obtaining Snow 

Water Equivalent, combines interferometric techniques 

with Synthetic Aperture Radar (SAR). However, limitations 

exist with the pass frequency of these satellites, occurring 

just twice per month, rendering them impractical for certain 

scenarios [59]. Consideration of terrain geometry is crucial 

since the accuracy of active microwave measurements relies 

on correcting the phase of reflected and refracted signals to 

appear orthogonally incident on the snowpack.  Despite 

satellites' excellent resolution, precision is compromised in 

mountainous regions due to additional length components 

[60]. Moreover, vegetation and snow metamorphism can 

cause an uneven snowpack, which can introduce 

inaccuracies into active microwave observations. Active 

SAR has advanced to the point where Ku-band and X-band 

radiation are used simultaneously. By combining surface 

and volume scattering effects, this method may reduce 

inaccuracies brought on by reflections in an uneven 

snowpack  [61]. 

3.2.2 Passive microwave remote sensing 

Snow Water Equivalent (SWE) has been determined since 

1978 through the use of passive microwave techniques. 

These measurements evaluate soil microwave radiation and 

estimate SWE by comparing measurements with and 

without snow [61]. These measurements have a swath width 

of 25 kilometres, limiting their applicability to regional or 

hemispheric scales. Moreover, in mountainous terrain, the 

resolution decreases when translating measurements to 

distances along slopes [62]. Passive microwave detection is 

challenged by snow transformation and the presence of 

water concentration, particularly in alpine and sub-alpine 

areas where snow is frequently near the melting threshold, 

leading to significant temperature variations inside the 

snowpack [63]. These variables fluctuate on an hourly 

temporal and spatial scale inside the snowpack across tens 

of meters. To solve these problems, Walker & Goodison 

[64] suggested a method for measuring liquid water content, 

and hyperspectral remote sensing can be used to calculate 

grain size. SWE measures of less than 150 millimetres are 

usually well suited for passive microwave measurements. 

When accounting for partially covered cells, the presence of 

vegetation may affect SWE measurement accuracy by up to 

50%. Currently, available techniques combine MODIS 

readings to determine the amount of vegetation cover [65]. 

3.2.3 Global Navigation Satellite System (GNSS) 

Larson et al. were the first to showcase the retrieval of snow 

depth utilizing signal-to-noise ratio (SNR) data from a high-

precision GNSS receiver in a standard setup. They 

established strong correlations between these retrievals and 

on-site measurements [7]. The majority of the data used in 

this study were at low elevation angles ranging from 5 to 25 

degrees. A 2nd order polynomial was used to remove the 

direct signal component. To convert GPS multipath data 

changes into snow depth: 1) by estimating the multipath 

peak frequency f using a Lomb Scargle Periodogram 

[66][67][68]; and 2) utilizing a model that correlates f with 

snow depth across a wide range of snow densities. 

According to Larson and Nievinski's method [10]: 
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𝑆𝑁𝑅 ∝ 𝑃𝑑 +  𝑃𝑟 + √𝑃𝑑𝑃𝑟 cos 𝜑  (1) 

where Pd is the direct power, Pr is the reflected power and 

𝜑 is the interference phase. Low elevation angles result in 

smooth SNR measurements without multipath effects. 

Nevertheless, at these low satellite elevation angles, 

multiple oscillations appear in SNR measurements due to 

the presence of multipath effects or interferences. The initial 

direct trends Pd and Pr need to be eliminated in GNSS-R. 

Once these direct trends are removed from equation 1, we 

can isolate the multipath pattern, which is best expressed in 

simplified terms as follows 

𝑆𝑁𝑅 = 𝐴 cos(2𝜋𝑓 sin 𝐸 +  𝜑)   (2) 

where E is the satellite elevation angle; A is the amplitude; 

and 𝜑 is the phase. f is the oscillation frequency expressed 

in hertz, it is not a regular temporal frequency. The GNSS 

antenna receives signals from numerous locations, although 

the realistic reflection of GNSS signals is dispersed due to 

surface roughness and snow layers affecting the GNSS 

signal. The majority of signal energy comes from signals 

near the fresnel point, as it has the minimum transmission 

path of all reflected signals that it has received. A quasi-

sinusoidal signal about the sine of the elevation angle 

oscillates repeatedly in the sequence of multipath SNR 

measurements [69]. The primary frequency of a series (f) is 

related to the antenna height (H) concerning the snow-

covered ground surface using the sine of the elevation angle 

as an independent variable. 

𝐻 =
𝜆𝑓

2
        (3) 

To compute snow depth h, using the method below, where 

H˳ is the antenna height in the snow-free scenario, which is 

known ahead of time: 

ℎ = 𝐻˳ −  𝐻    (4) 

The SNR approaches involve the elimination of the low-

frequency components of the time series, which are 

produced by low-pass filtering or low-order polynomial 

fitting. The resulting SNR time series has quasi-sinusoidal 

signals with damping amplitudes at high frequencies. This 

is known as the detrended SNR series. The major frequency 

of the detrended SNR series fluctuates with antenna height, 

allowing us to estimate snow depth based on this variation. 

However, the effective omission of low-frequency 

components from the SNR data is a major factor 

determining the snow depth estimation accuracy of the SNR 

approach [11].   

Subsequently, many researchers used Signal to signal-to-

noise ratio (SNR) to study GNSS-IR. To validate GNSS-IR 

snow depth estimates based on SNR L2 frequency, 

Gutmann used observation data spanning eight months. 

These estimates were contrasted with airborne LIDAR 

scans and manual and laser-ranging snow depth 

observations. When compared to laser data, the GNSS-IR 

retrievals during the winter season showed a 10 cm bias and 

13 cm RMSE [4]. The L4 approach uses a linear 

combination of carrier phases to estimate snow depth. 

Despite the geometry independence of the L4 technique, 

residual ionospheric delays have the potential to taint the 

combined time series, increasing the inaccuracies 

associated with snow depth estimate [70].  

Furthermore, when comparing snow depth retrievals to 

manual measurements, Hefty and Gerhátová's analysis of 

the Signal-to-Noise Ratio (SNR) data of L1 and L2 signals 

as well as L4 showed that the consistency was better than 5 

cm. Nonetheless, biases as large as 10 cm were noted at 

specific times [71]. Nievinski developed inverse snow 

depth estimation models based on GPS SNR observations. 

GPS estimates were validated with GPS constraints and in 

situ sampling errors by simulations, which also illustrated 

trends, fringes, susceptibility to parameter changes, and the 

possible inaccuracy in reflector height inversion. The study 

suggested an approach for quality controlling (QC) GPS 

snow sensing estimations that rely on track clusters and 

underlined the need to assess presently ignored effects. The 

usefulness of GPS SNR measurements for snow monitoring 

is heavily influenced by site conditions, making quality 

control mandatory for GPS-MR operational use. In 

unfavourable built-up environments, precipitation and 

melting accumulation are accurately captured in daily snow 

depth estimates derived from GNSS data, according to the 

study [72], [73]. There is a strong correlation between the 

snow depth data from ultrasonic sensors and the GNSS-

derived estimates obtained during four winter seasons. 

Snow depth variability and diverse observation methods 

cause minor variations of up to 10 cm. GNSS and ultrasonic 

snow depths have high agreement, making them suitable for 

urban building snow sensors. Although they are not as 

accurate as those relying on L2C signals, the L1 and L2P 

signals from geodetic antennas can nonetheless yield 

trustworthy estimations of the depth of snow [74]. Larson 

and Small assessed the usefulness of SNR L1 data in snow 

depth studies by analyzing L1 SNR data collected over 5 

years from 23 sites and comparing the findings of SNR L2C 

data and in situ measurements. A correlation of 0.95 and 1 

cm mean bias was observed when comparing the SNR L1 

and SNR L2C values [9]. An alternate method, unaffected 

by geometry or ionospheric delays, was put forth by Yu et 

al. utilizing SNR data from L1, L2, and L5 signals for 

enhanced snow depth estimation. In comparison to previous 

investigations, they demonstrated improved findings by 

establishing a relationship between the change in reflector 

height and spectral maximum frequency [69]. Later, Zhou 

et al. presented a method that reduces random errors by 
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combining modelling techniques with SNR data from GPS 

triple-frequency signals. They showed the accuracy in terms 

of Root Mean Square Error improvement is over 30%, and 

the suggested method has a good correlation of 0.95 [75]. 

Yu et al. introduced a method using dual-frequency GNSS 

signals' pseudorange and carrier phase to calculate snow 

depth, which is independent of ionospheric delays and 

geometric characteristics. This makes GNSS viable, as 

practically all of them can capture carrier phase and 

pseudorange data, as well as analyze single-frequency 

signals. However, the SNR approach may be avoided due to 

the restricted availability of SNR observables, especially in 

early GNSS devices and RINEX files. Furthermore, some 

receivers might fail to receive dual frequency signals or 

triple frequency signals, making combination methods that 

were used at that time not relevant [76]. To improve 

applicability, Li et al. processed just single-frequency 

signals and came up with a method based on carrier phase 

and pseudorange measurements from single-frequency 

GNSS signals [11]. Zhou et al. used dual-frequency and 

triple-frequency signals with pseudorange measurements to 

offer two innovative approaches for measuring snow depth, 

respectively. Their methodology avoids the SNR method's 

mistake in low-frequency component removal and is less 

affected by snowstorms, which is probably why their results 

showed somewhat better performance than the SNR method 

[77]. All of these techniques rely on carrier phase 

measurements, even though they all show excellent 

accuracy in measuring snow depth and reduce mistakes 

caused by the SNR method's insufficient low-frequency 

signal reduction. To handle carrier phase observations, 

cycle slips, and integer ambiguity must be addressed. If 

cycle slips are not identified or fixed, this could complicate 

snow depth estimate methods and introduce multipath 

signature contamination. This can result in inaccurate snow 

depth estimation, affecting the algorithm's overall 

performance. 

The accuracy of estimating snow depth using SNR relies 

significantly on the accuracy of the primary frequency 

calculation derived from the SNR series. This estimation is 

achieved through spectral analysis methods suitable for 

irregularly sampled data, for instance, the Lomb Scargle 

Periodogram method. Bilich's work highlighted that 

changes in antenna environments lead to considerable 

variability in SNR data due to multipath effects. The SNR 

observation series can be distorted by unaccounted 

multipath signals and receiver noise, which can lead to 

series peak frequency bias and jeopardize the precision of 

any measurement [22]. The estimation of antenna height 

derived from an equation is influenced by assuming that the 

GNSS signal is reflected by a single snow layer. However, 

numerous layers of snow can reflect signals, resulting in an 

overestimation of antenna height and an incorrect estimate 

of snow depth [69]. Z. Zhang et al. proposed various 

parameter Multi-Layer Retrieval (MLR) models to analyze 

snow depth variations and SNR measurements, using the 

Baseline Estimation and Denoising using Sparsity 

(BEADS) approach to normalize power into baseline and 

short-term changes. Their results showed that whereas 

normalized power showed a negative link with snow depth 

variations, short-term changes from normalized power 

consistently coincided with snow depth differences. 

However, because of environmental conditions, the 

connection between SNR measures and changes in snow 

depth was smaller at the start of the snow season [78]. 

Several researchers have engaged in recent studies 

involving machine learning (ML) and deep learning (DL) 

techniques for snow depth retrievals. ML, being data-

driven, has the potential to yield more precise outcomes by 

constructing reliable models based on the relationship 

between data providing for input and output [79]. In contrast 

to prior machine learning (ML) studies, which mostly 

employed reconstructed GNSS signals to analyze or 

combine airborne and spaceborne data, Wang et al. 

employed deep learning to retrieve snow depth by 

augmenting the station density of their data sample. 

Between 2008 and 2017, 25 GNSS-R stations across Alaska 

were utilized to investigate snow depth retrieval using deep 

learning approaches, with on-site data and reference values 

provided from the PBO H2O ground-based GNSS-R 

network [80]. Zhan et al. presented a back propagation 

neural network (BPNN) based approach for retrieving snow 

depth from available satellite data. While showing notable 

variations in snow depth retrieval outcomes, their model 

outperformed earlier techniques in terms of accuracy and 

dependability, with an RMSE of less than 3 cm and a 

correlation of 0.94 [81]. Altuntas et al. compared three 

machine learning classifiers with conventional GNSS-IR 

techniques using GNSS SNR data over 2 years. They found 

that training ML algorithms within a range of 0–20 cm of 

GC values produced superior results. This study 

demonstrated how ML can be used to estimate a variety of 

parameters using GNSS-IR, including sea level, vegetation 

water content, soil moisture, and snow depth accumulation 

[82]. Hu et al. proposed a universal algorithm applicable to 

diverse snow scenarios, using SNR arcs for snow depth 

estimation methods and analyzing ground snow detection 

feasibility through the SVM method. The results revealed 

high accuracy in ground state detection and improved initial 

snow retrieval results, reducing RMSE from 20 to 15 cm, 

especially in snow-free conditions. This algorithm doesn't 

rely on prior ground measurements and can learn the 

topographical environment from historical SNR data, 

widening its applicability to different snow scenarios [83].  
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Table 1 provides a thorough overview of the existing body 

of research on snow depth retrievals using GNSS, 

consolidating essential studies and their specific findings, 

and providing a comprehensive insight into the advances 

made in this area of study.  

Table 1 Notable literature of snow depth retrieval using GNSS. 

Sl 

no.  
Authors Objectives Results Remarks 

1 
Larson et al., 

(2009) 

GPS SNR data snow 

depth measurement was 

introduced. 

The geodetic receiver, 

conventional snow sensors, and 

field observations have shown 

excellent agreement in 

measuring plate boundary 

deformation. 

The use of GPS networks for 

cryosphere research by global 

geophysical and geodetic agencies is 

being explored. 

2 
Gutmann et al., 

(2012) 

Snow depth estimates 

with airborne LIDAR 

scans, manual and laser-

ranging snow depth 

observations based on 

SNR L2 frequency. 

Showed a bias of 10 cm and a 

RMSE of 13 cm 

More research is needed to understand 

the GPS's spatial footprint and its 

impact on terrain, including significant 

alterations in reflector height, slope, and 

surface roughness. 

3 
Ozeki & Heki, 

(2012) 

Snow depth estimation 

by L4 introduced and 

compared with SNR L2P 

and L2C 

A pattern of systematic 

underestimation of about 10 cm 

was noted, which is typical for 

both L4 and SNR methods. 

Snow depth estimation uses L4 data, but 

SNR data yields more accurate results, 

and even less precise L2P SNR data 

performs adequately in determining 

snow depths. Further research into the 

potential uses of L4 for GPS multipath 

applications would be insightful. 

4 
Nievinski & 

Larson, (2014a) 

Inverse modelling of 

snow depth estimation 

has been formulated. 

 

For measured snow depths up to 

2.5 meters, the evaluation 

findings show a significant 

correlation of 0.98 and an RMSE 

(Root Mean Square Error) range 

between 6 and 8 cm. 

Nonetheless, the height of snow 

in-situ is typically 

underestimated by the GPS 

measurements by 5% to 15%. 

Quality control measures are necessary 

because of the significant impact that 

the site's characteristics have on the 

usage of GPS signal-to-noise ratio 

(SNR) measurements for snow 

monitoring. Several tests are necessary 

for an ideal quality control plan, which 

takes the fit quality, statistical degrees 

of freedom, peak elevation angle, and 

reflector height uncertainty into 

account. To precisely determine 

reflector height over bare soil, more 

investigation is required. 

5 
Nievinski & 

Larson, (2014b) 

Inverse modelling of 

snow depth estimation 

has been validated 

6 

Hefty & 

Gerhátová, 

(2014) 

The snow depth 

estimation method 

utilizes three 

independent 

observations focusing on 

SNR L1 frequencies,  

SNR L2 frequencies, and 

carrier phase linear 

combination L4. 

Manual snow depth sensing and 

GPS multipath analyses show 

consistency over 5 cm, with 

some biases at 10 cm. 

GPS antennas in terrain topography 

near buildings and structures are 

suitable for analyzing ground signals. 

The study suggests that analyzing 

multipath behaviour at fixed GNSS 

stations and its application in assessing 

the surroundings around antenna 

installations can enhance the 

interpretation of observed geodynamic 

changes. 

7 Yu et al., (2015) 
Snow depth retrieval 

using a linear 

combination of L1, L2, 

The methodology outperforms 

the L4 model and is comparable 

to the SNR method, 

demonstrating the 

The goals of future research will be to 

achieve constellation diversity gain, use 

multiple satellite constellations for 
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and L5 GPS frequency 

signals. 

undervaluation of snow depth by 

the SNR and L4 approaches. 

triple-frequency schemes, and improve 

precision and accuracy. 

8 Vey et al., (2016) 

Snow depth calculation 

by GNSS SNR data and 

Ultrasonic sensor in a 

built-up environment. 

RMSE of 4.3 cm has been shown 

among GNSS and ultrasonic 

snow depths 

Snow depth estimates obtained from 

geodetic antenna signals in L1 and L2P 

bands are consistent but demonstrate 

lesser accuracy when compared to 

estimates derived from L2C signals. In 

the future, hydrological models may 

incorporate near-real-time GNSS-based 

predictions of snow depth. 

9 
Larson & Small, 

(2016) 

Development of an 

algorithm for L1 SNR 

data snow depth 

calculation and 

comparison with L2C 

data and in situ 

observations. 

The findings revealed a 1 cm 

mean bias and 0.95 correlation, 

with a bias of -4cm, comparable 

to a previous study of the L2C 

retrieval algorithm. 

The algorithm is useful for geodetic 

networks that lack L2C signal tracking 

or archive data. However, stricter 

quality control is needed for the L1 

SNR data method. 

10 
W. Zhou et al., 

(2019) 

A snow depth 

measurement method 

based on the SNR 

combination of GPS L1, 

L2, and L5 frequencies. 

The suggested approach has a 

substantial correlation of 0.95 

and improvement of more than 

30% in terms of RMSE 

The study suggests that the new method 

could aid in tracking snow depths and 

aid in the creation of multi-system and 

multi-frequency GNSS reflectometry 

models. 

11 Yu et al., (2019) 

Snow depth 

measurement methods 

using dual GNSS 

receiver systems: dual-

frequency combination 

and single-frequency 

combination are 

introduced. 

The superposition of peaks 

affects the accuracy of these 

methods, with the dual-

frequency combination method 

having a larger effect. While the 

SNR approach is more accurate 

in the L2 band, the single-

frequency combination method 

is more accurate in the L1 band. 

These methods eliminate geometric 

distance and ionospheric delay, 

simplifying data processing. 

Subsequent research will concentrate 

on noise mitigation, antenna selection, 

and snowfall measurement using SWE. 

12 Li et al., (2019) 

Snow depth 

measurement using 

GNSS single-frequency 

signals using 

pseudorange and carrier 

phase observations 

The method is validated using 

geodetic-grade receivers and 

shows a 2-6 cm RMSE based on 

GPS, BDS, and Galileo. 

The method is independent of satellite 

selection and measurement location. 

Future research should focus on 

weighting different GNSS 

constellations and methods. 

13 
Wang et al.,  

(2020) 

Snow depth estimation 

based on deep learning 

approach and GNSS. 

The newly introduced deep 

belief network model 

demonstrates superior 

performance by incorporating 

GNSS estimation, showcasing 

0.85 R with 15.40 cm RMSE. 

The current spatial resolution of 

Satellite data is coarse, and further 

research is needed to enhance spatial 

resolution and explore other deep-

learning models. 

14 Hu et al., (2022) 

This study uses machine 

learning to detect ground 

truth information before 

snow depth retrieval, 

classifying snow-free 

and snow-covered states 

and using SNR arcs for 

snow depth retrieval. 

The study shows a 96% accuracy 

with support vector machines, 

reducing RMSE from 20 cm to 

15 cm. 

The algorithm doesn't rely on prior 

ground measurements and can learn the 

topographical environment from 

historical SNR data, widening its 

applicability to different snow scenarios 
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15 
Z. Zhou et al., 

(2022) 

Snow depth retrieval 

utilizing pseudorange 

measurements obtained 

from GNSS signals of 

both dual and triple 

frequencies. 

RMSE of the proposed methods 

is less than 3.2 cm 

The proposed method, the Triple 

psuedorange combination, maintains its 

effectiveness despite geometric 

distance data and cycle slip issues and 

avoids ionospheric delays. It 

outperforms the SNR method and 

shows slight improvements in 

snowstorm conditions. 

16 
Altuntas et al., 

(2022) 

Snow depth 

measurement using 

GNSS SNR data and 

machine learning 

classifiers. 

Enhance the correlations by as 

much as 19%, while reducing the 

RMSE from 15.4 to 4.5 cm. 

The research illustrates how machine 

learning algorithms effectively retrieve 

snow depth using GNSS, indicating 

ML's capability to estimate different 

environmental aspects. Subsequent 

research will concentrate on employing 

deep learning methods with concealed 

layers to achieve similar estimation 

outcomes. 

17 
Zhan et al., 

(2022) 

GNSS-IR SNR 

retrieving snow depth 

method using the 

backpropagation neural 

network algorithm 

The results show an RMSE of 

0.0297 m and a mean absolute 

error of 0.0219 m, with a 

correlation coefficient of 0.9407 

utilizing in-field data obtained 

through the snow telemetry 

(SNOTEL) 

The method employs the 

backpropagation algorithm, which 

takes advantage of the self-learning and 

self-adaptive capabilities of the 

backpropagation neural network to 

maximize the contribution of various 

satellites. Future investigations should 

emphasize harnessing data from various 

systems to achieve greater precision and 

dependability in retrieving snow depth 

measurements. 

18 
Z. Zhang et al., 

(2023) 

Multi-Layer Retrieval 

(MLR) models have 

been introduced, 

offering distinct 

parameters designed 

specifically for 

estimating variations in 

snow depth. 

The accuracy of the RMSEs 

dropped from 22.05 to 3.89 and 

3.40 cm, respectively, after the 

MLR models were used. The 

corrected estimates have strong 

agreement with meteorological 

data, displaying deviations in 

regression slope of under 2% 

and correlation coefficients 

surpassing 0.97. 

The MLR models showed good 

accuracy and and appears to be no 

systemic inaccuracy between the 

estimates and references. Future 

research should aim to propose a model 

with more universal applicability. 

 

The estimation of snow depth using GNSS Reflectometry 

(GNSS-R) is a rapidly advancing field that leverages the 

unique properties of signal reflections to measure and 

monitor snow cover. The Signal-to-Noise Ratio (SNR) 

approach, particularly through the analysis of detrended 

SNR series, has shown significant promise. By filtering out 

low-frequency components, researchers can extract quasi-

sinusoidal signals that vary with antenna height, providing 

a basis for accurate snow depth estimation. Despite its 

potential, the SNR method faces challenges related to low-

frequency component removal and signal multipath effects, 

which can impact measurement precision. Quality control 

remains a critical aspect of GNSS-R snow depth estimation. 

The accuracy of snow depth estimates is heavily influenced 

by site conditions, multipath effects, and receiver noise. 

Research by Nievinski and Larson has highlighted the 

importance of quality control measures such as track 

clustering and peak elevation angle analysis to ensure 

reliable measurements. The development of inverse 

modelling techniques and the use of advanced spectral 

analysis methods, like the Lomb-Scargle Periodogram, 

have contributed to mitigating these issues and enhancing 

the robustness of snow depth estimates [72], [73]. 

Recent advances, such as the utilization of dual-frequency 

and triple-frequency GNSS signals, have demonstrated 

significant advantages over single-frequency systems. Zhou 

et al.'s approach, which combines modelling techniques 
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with SNR data from multiple GNSS frequencies, has 

demonstrated substantial reductions in RMSE and high 

correlation with in situ measurements [77]. This multi-

frequency approach mitigates the effects of ionospheric 

delays and geometric dependencies, providing more reliable 

snow depth estimates even in adverse weather conditions. 

The integration of machine learning (ML) and deep learning 

(DL) techniques with GNSS-R data has further enhanced 

snow depth retrieval accuracy. Studies by Wang et al., Zhan 

et al., and Altuntas et al. have demonstrated the efficacy of 

these approaches, showing improvements in Root Mean 

Square Error (RMSE) and correlation coefficients. These 

methods leverage large datasets and sophisticated 

algorithms to model the relationship between GNSS signals 

and snow depth, outperforming traditional SNR-based 

methods [80], [81], [82]. Overall, the continuous 

advancements in GNSS-R techniques, coupled with the 

integration of ML and DL models, are paving the way for 

more accurate and reliable snow depth estimation. These 

developments are crucial for enhancing our understanding 

of snow dynamics, improving hydrological models, and 

supporting climate studies. As research progresses, the 

implementation of these methods in operational snow 

monitoring systems will significantly contribute to 

environmental monitoring and disaster management. 

 

IV. CONCLUSION 

The review comprehensively examines the potential and 

challenges of utilizing GNSS-R technology for snow depth 

retrieval in the diverse and challenging terrains of India. 

Throughout this research, it has become obvious that 

GNSS-R shows significant promise as a remote sensing 

instrument for estimating snow depth, providing a non-

intrusive and potentially cost-effective way to check this 

essential parameter. However, the complexity inherent in 

India's varied geography, where mountainous regions bring 

distinct challenges such as signal interference, changing 

snowfall characteristics, and a lack of comprehensive 

ground truth data, tempers this promise. To address these 

issues, specialized algorithmic breakthroughs and thorough 

validation efforts targeted at India's different landscapes are 

required. Notably, the examined literature emphasizes the 

importance of performing lengthy field campaigns to collect 

precise ground truth data that can be used to evaluate and 

refine GNSS-R-derived calculations. Snow depth retrieval 

using GNSS-R technology can be achieved using signal-to-

noise ratio (SNR) and carrier phase pseudorange methods.  

The SNR method is simpler and more accessible, based on 

the strength of the received signal relative to background 

noise. It is cost-effective and accessible, offering 

estimations based on variations in SNR data. The carrier 

phase pseudorange method, on the other hand, offers 

increased precision and accuracy by analyzing carrier phase 

changes caused by signal reflection off the snow surface. It 

can mitigate error sources and enhance the reliability of 

snow depth estimations. However, it often requires more 

sophisticated equipment and algorithms, making it more 

complex and expensive. The optimal choice depends on 

specific application requirements, desired accuracy, 

environmental conditions, available resources, and the 

trade-off between complexity and precision. Machine 

learning and deep learning models can revolutionize snow 

depth estimation in challenging environments. ML and DL 

models can process vast amounts of data, extract complex 

patterns, and create predictive models that adapt to diverse 

terrains and snow characteristics in India's mountainous 

regions. The successful implementation of GNSS-R 

technology for snow depth monitoring in India will 

revolutionize various sectors, including water resource 

management, disaster mitigation, and climate change 

studies. Future research aims to refine algorithms, explore 

synergies with other remote sensing technologies, and 

assess socioeconomic implications. This review emphasizes 

the need for sustained research and innovation to unlock the 

full potential of GNSS-R technology. 
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