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Abstract — The problem of transporting pollutants in natural rivers can be 

modeled using saline tracer injection techniques, which are very useful for 

obtaining important information related to water quality in river stretches, 

such as the physical parameter longitudinal dispersion coefficient. The 

objectives of this work are to formulate an inverse problem for the tracer 

flow process in natural rivers using a Bayesian approach to update the 

longitudinal dispersion coefficient, and use the Markov Chain Monte Carlo 

(MCMC) to solve the inverse problem formulated. 

 

I. INTRODUCTION 

    The possibility of applying techniques favorable to a be-

havioral prognosis in several areas of knowledge motivates 

the use of statistics as a tool to support decision-making, 

which is justified by its ability to help in the analysis and 

interpretation of data. Thus, statistics are present in several 

studies and applications in the areas of engineering, exact 

sciences, biological sciences, and health sciences [1, 8, 10, 

13, 14, 15, 16, 17, 20, 21, 22, 26, 27, 31], given that the 

Probabilistic analysis can be understood as the study of pre-

dicting the behavior of a single variable, or a set of variables 

in a specific scenario. Therefore, its conception consists of 

quantifying the uncertainty associated with the occurrence 

phenomenon.  

    Currently, the preservation of natural systems is consid-

ered one of the challenges of Brazilian society, with water 

being one of the environmental factors that have caused 

considerable concern among professionals working in this 

area [29]. It is known that the quality of water depends on 

the actions of man and various natural conditions, and 

knowledge of its information becomes essential for the 

management of water resources. Lack of knowledge of wa-

ter quality increases uncertainties in future decision-mak-

ing, which in turn has negative consequences in the man-

agement of water resources [29]. 

    The use of tracer injection techniques in a given location 

of the watercourse has been widely used in studies of prob-

lems related to the transport of pollutants in natural rivers, 

to seek important information on water quality, such as, for 

example, the physical parameter longitudinal dispersion co-

efficient. The mathematical model that describes this phys-

ical flow process is composed of a partial differential equa-

tion subject to the certain boundary and initial conditions. 

    Several methods in the literature can be used to determine 

the longitudinal dispersion coefficient [25, 26] present in the 

mathematical model that describes the physical process of 

tracer flow in natural rivers. However, this work proposes a 

Bayesian methodology together with the Markov Chains 

Monte Carlo method as an alternative to traditional methods 

for estimating the parameter of unknown interest. 

    The Bayesian methodology is based on one of the most 

important mathematical formulations of probability theory, 
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known as Bayes' theorem, which updates the information of 

the parameter of unknown interest, taking into account the 

a priori information about the parameter of interest and the 

known information about the observed sample [2, 5, 9, 15, 

23]. 

    To solve the inverse Bayesian problem of transporting 

pollutants in natural rivers, the Markov Chain Monte Carlo 

(MCMC) stochastic method can be used, which is based on 

specific algorithms to simulate ergodic Markov Chains 

whose stationary distribution (or equilibrium distribution) is 

the posterior probability distribution of interest [5, 9, 15, 

23]. Among the various specific algorithms used by the 

MCMC method to generate the Marvok Chains, the special 

case of the Metropolis-Hastings algorithm [13, 21] based on 

random walk [4, 5, 9, 15, 23] is used in this work, which 

proposes the new point candidate (longitudinal dispersion 

coefficient) considering the current previously simulated 

longitudinal dispersion coefficient value plus a random in-

crement. 

    The motivation of this proposal is that the Bayesian meth-

odology together with the Markov Chain Monte Carlo 

method is an attractive and efficient statistical tool, which 

has significantly contributed to the scientific and technolog-

ical development of several areas of knowledge, for exam-

ple, in the estimation of the physical parameter (permeabil-

ity) in fluid flow problems in porous media [3, 4, 5, 6, 7, 11, 

12, 15, 20]. 

    In this sense, it is expected that the study presented in this 

research paper can significantly contribute to problems re-

lated to the monitoring and preservation of natural rivers 

that receive some type of liquid waste with harmful proper-

ties to the environment, which can cause changes in the eco-

system and negatively impact the entire its dependent chain. 

More details on the environmental problems described 

above can be found in the literature [24, 29, 30]. 

 

II. MATHEMATICAL MODELING 

    Considering a rectangular domain 𝛺 ∈ 𝑅 limited in 

region [0, 𝐿𝑥] x [0, 𝐿𝑦] in the contour 𝜕𝛺, with 𝐿𝑥[𝑚] and 

𝐿𝑦[𝑚] the physical dimensions of the river in the and 

directions 𝑥 e 𝑦, respectively. Here 𝑐 = 𝑐(𝒙, 𝑡)[𝑚𝑔 𝑙⁄ ] is 

the concentration of the tracer at the point 𝒙 = (𝑥, 𝑦) in the 

instant of time 𝑡[𝑠]. 

    The mathematical model that describes the physical 

process of transporting contaminants in river with domain  

𝛺, over a span of time 𝐼 = [0, 𝑇], with 𝑡 ∈ 𝐼, is described by 

the following partial differential equation [28]: 

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
= 𝐸𝑙

𝜕

𝜕𝑥
(
𝜕𝑐

𝜕𝑥
) + 𝐸𝑡

𝜕

𝜕𝑦
(
𝜕𝑐

𝜕𝑦
), (1) 

where in this equation 𝑢 is velocity river water, expressed 

in 𝑚 𝑠⁄ ;  𝐸𝑙is longitudinal dispersion coefficient, expressed 

in 𝑚2 𝑠⁄ ; e 𝐸𝑡 é o longitudinal dispersion cross, expressed 

in 𝑚2 𝑠⁄ . The Eq. (1) is subject to the following boundary 

conditions [28]: 

𝑐(𝑥, 𝑦, 𝑡) = 𝑐0; 𝑥 = 0,0 ≤ 𝑦 ≤ 𝐿𝑦 , 𝑡 > 0, 

𝜕𝑐(𝑥, 𝑦, 𝑡)

𝜕𝑥
= 0; 𝑥 = 𝐿𝑥 , 0 ≤ 𝑦 ≤ 𝐿𝑦 , 𝑡 > 0, 

𝜕𝑐(𝑥, 𝑦, 𝑡)

𝜕𝑦
= 0; 𝑦 = 0,0 ≤ 𝑥 ≤ 𝐿𝑥 , 𝑡 > 0, 

𝜕𝑐(𝑥, 𝑦, 𝑡)

𝜕𝑦
= 0; 𝑦 = 𝐿𝑦 , 0 ≤ 𝑥 ≤ 𝐿𝑥 , 𝑡 > 0, 

(2) 

and initial 

𝑐(𝑥, 𝑦, 0) = 𝑐1(𝑥, 𝑦); 0 ≤ 𝑥 ≤ 𝐿𝑥 , 0 ≤ 𝑦 ≤ 𝐿𝑦 . (3) 

    In Fig. 1 we find the schematically represents the flow 

problem in geometry 𝛺, subject to boundary conditions (2). 

 

Fig. 1: Discretization and boundary conditions in the 

domain.  

 

    To solve the partial differential equation (1) subject to 

conditions (2) - (3), which governs the transport of 

pollutants in river stretches, the Finite Volume method is 

used, with implicit formulation, which performs the spatial 

and temporal integration in each volume of control 𝑣𝑐. It, is 

the variables to be calculated are located at the center and 

borders of each 𝑣𝑐, resulting in a linear system [18,19]. In 

the advective term, an interpolation of the type is used 

Upwind (UDS), to calculate the values of the variables of 

each border in relation to the variable located in the center 

of the volume of control [18, 19]. To solve the linear system 

resulting from the discretization of the Finite Volumes 

method, whose coefficient matrix presents a characteristic 

of a sparse matrix, the Thomas Algorithm (Tridiagonal 

Matrix Algorithm) is used, which originates from the 

Gaussian elimination method [18, 19]. 

 

III. METHODOLOGY 

    This section presents the formulation of the inverse prob-

lem for the flow process of tracers in river stretches using a 
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Bayesian approach to update the parameter of interest (lon-

gitudinal dispersion coefficient - 𝐸𝑙). The MCMC method 

used to solve the inverse problem proposed in this research 

work is presented, which in turn estimates the parameter 𝐸𝑙 . 

It is worth noting that the methodology used in this research 

paper was based on the work of [15]. 

3.1  Bayesian approach 

     This section presents the Bayesian methodology that will 

be used to update the longitudinal dispersion coefficients 𝐸𝑙 , 

taking into account the a priori information on the parameter 

of interest 𝐸𝑙  and the known information about the observed 

sample. 

    Based on the work of [15], it is proposed to define the set 

of observed values of the tracer concentration in fluvial 

stretches (or reference values) as: 

𝑂(𝑐𝑜) = {𝑐𝑜(𝒙1, 𝑡𝑗); 𝑗 = 1,···, 𝑁𝑡}, (4) 

where 𝒙1denotes the location of the collection point in the 

region 𝛺; and 𝑁𝑡 denotes the number of times the tracer con-

centration 𝑐𝑜 is evaluated over time𝑡𝑗, with 𝑗 = 1,···, 𝑁𝑡 (see 

Fig. 2). 

 

Fig. 2: Simplified model of the study region with launch 

and collection points.  

 

    An update of the information of the parameter of interest 

𝐸𝑙  is performed through the Bayes' theorem expressed by 

[15]: 

𝑃(𝐸𝑙|𝑂(𝑐𝑜)) ∝ 𝑃(𝑂(𝑐𝑜)|𝐸𝑙)𝑃(𝐸𝑙), (5) 

where 𝑃(𝐸𝑙|𝑂(𝑐𝑜)) is posterior distribution of the 

parameter of interest El; and the o factor 𝑃(𝑂(𝑐𝑜)|𝐸𝑙) is the 

likelihood function, which represents the contribution of 

O(co) on the parameter El and, in the case of this work, it is 

considered as a normal distribution expressed by [15] 

𝑃(𝑂(𝑐𝑜)|𝐸𝑙) ∝ 𝑒𝑥𝑝 {
−ℇ

2𝜎2
}, 

(6) 

where ℇ is the error defined by [15]: 

ℇ =∑[𝑐𝑠(𝒙1, 𝑡𝑗) − 𝑐𝑜(𝒙1, 𝑡𝑗)]
2

𝑁𝑡

𝑗=1

, (7) 

where, 𝑐𝑠(𝒙1, 𝑡𝑗) is the simulated concentration of the tracer 

at the collection point 𝒙1 for the instant of time 𝑡𝑗; and 𝜎2 is 

the accuracy associated with concentration measurements 

𝑐𝑠(𝒙1, 𝑡𝑗) and 𝑐𝑜(𝒙1, 𝑡𝑗). 

    As 𝐸𝑙  will be proposed from a normal distribution with 

mean 𝜇𝑝 = 0 and variance 𝜎𝑝
2 = 1, then it is assumed that 

the prior distribution of the parameter of interest 𝐸𝑙  is [15]: 

𝑃(𝐸𝑙) = 𝑒𝑥𝑝 {
−[𝐸𝑙 − 𝜇𝑝]

2

2𝜎𝑝
2

}. (8) 

3.2 Markov Chain Monte Carlo method 

    In the formulation of the inverse problem presented in 

Subsection 3.1, the Markov Chain Monte Carlo (MCMC) 

method is based on stochastic simulations, which has been 

shown to be an efficient technique for solving several 

complex problems [3, 4, 5, 6, 7, 10, 11, 12, 15, 20]. The 

MCMC method uses specific algorithms to generate ergodic 

Markov Chains whose stationary distribution is the 

posterior distribution 𝑃(𝐸𝑙|𝑂(𝑐𝑜)). 

    In this work we consider the Metropolis-Hastings 

algorithm based on random walk to build the Markov 

Chains [15]: 

{𝐸𝑙
(𝑘): 𝑘 ∈ 𝐾}, (9) 

which proposes a new candidate 𝐸𝑙  given by: 

𝐸𝑙 = 𝐸𝑙
(𝑘) + (ℎ𝑟𝑤) ∗ 𝑧, (10) 

where 𝐾 is the set of non-negative integers; 𝐸𝑙
(𝑘)

 is the 

current state of the Markov Chain (or state of the Markov 

Chain in the instant 𝑘); ℎ𝑟𝑤 is the parameter that determines 

the step size of the Markov Chain; and 𝑧 has a Gaussian 

distribution 𝑁(𝜇𝑝, 𝜎𝑝
2), with 𝜇𝑝 = 0 and 𝜎𝑝

2 = 1. The 

probability of acceptance of the new candidate 𝐸𝑙  is given 

by [15]: 

𝛼(𝐸𝑙|𝐸𝑙
(𝑘))

=

{
 

 
𝑚𝑖𝑛 (

𝑃(𝐸𝑙|𝑂(𝑐𝑜))𝑞(𝐸𝑙
(𝑘)|𝐸𝑙)

𝑃 (𝐸𝑙
(𝑘)|𝑂(𝑐𝑜)) 𝑞(𝐸𝑙|𝐸𝑙

(𝑘))
, 1) , 𝐴

1, 𝐵

 
(11) 

where 

𝐴 = 𝑃 (𝐸𝑙
(𝑘)|𝑂(𝑐𝑜)) 𝑞(𝐸𝑙|𝐸𝑙

(𝑘)) > 0  

and 

𝐵 = 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  
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such that 𝐸𝑙
(𝑘+1) = 𝐸𝑙  with probability 𝛼(𝐸𝑙|𝐸𝑙

(𝑘)) and 

𝐸𝑙
(𝑘+1) = 𝐸𝑙

(𝑘) with probability 1 − 𝛼(𝐸𝑙|𝐸𝑙
(𝑘)). It is worth 

noting that the factor 𝑞(∗) is the instrumental probability 

distribution. For a better understanding of the MCMC 

method, Algorithm 1 is presented.  

Algorithm 1: The MCMC method. 

Step 1: Set 𝒌 = 𝟎 and specify an initial value for the lon-

gitudinal dispersion coefficient 𝑬𝒍
(𝟎)

, such that  

𝑷(𝑬𝒍
(𝟎)|𝑶(𝒄𝟎)) > 𝟎. 

Step 2: Generate a new candidate 𝑬𝒍 ∼  𝒒(𝑬𝒍|𝑬𝒍
(𝒌)), ac-

cording (10). 

Step 3: Solve the tracer flow problem modeled by Eq. (1) 

subject to conditions (2) - (3). 

Step 4: Calculate the probability of acceptance of the 

new candidate 𝑬𝒍, according (11). 

Step 5: Generate 𝒘 from the uniform distribution in the 

interval [𝟎, 𝟏], this is 𝒘 ∼ 𝑼(𝟎, 𝟏). 

Step 6: If 𝒘 ≤ 𝜶(𝑬𝒍|𝑬𝒍
(𝒌)), then 

𝑬𝒍
(𝒌+𝟏) = 𝑬𝒍 ,  

          otherwise 

𝑬𝒍
(𝒌+𝟏) = 𝑬𝒍

(𝒌)
. 

Step 7: Increment 𝒌 = 𝒌 + 𝟏, return to Step 2 and 

continue the procedure until convergence is achieved. 

 

IV. NUMERICAL RESULTS 

4.1 Simulation parameters for observed values 

    For the construction of the set of observed values of the 

tracer concentration in fluvial stretches (or reference val-

ues), according to Eq. (4), the parameters considered the 

most adequate to the real problem are used [28]. Thus, a sa-

line tracer (NaCl) was used, where the mean concentration 

of salinity (NaCl) in the natural river is determined at 37 

𝑚𝑔 𝑙⁄ . The launch point of the plotter is 0.7 𝑚 from the 

bank. At this point, the saline concentration became 2,551 

𝑚𝑔 𝑙⁄  at the time of release. The collection point was kept 

at the same distance from the river bank, however, carried 

out 50 meters downstream. 

    The domain 𝛺 that represents the surface of the river, has 

dimensions 𝐿𝑥 and 𝐿𝑦 corresponding to 182 𝑚 and 42 𝑚, 

respectively. This region is discretized with a mesh of 260 

x 60 elements, resulting in a total of 15,600 volumes with a 

0.7 𝑚 edge each. The simulation was parameterized with a 

maximum time of 352 seconds, and the time step used to 

solve Eq. (1) was equal to 2 seconds. 

    Finally, it is considered the speed of the river water 𝑢 

equal to 0.359 𝑚 𝑠⁄ ; the transversal dispersion coefficient 

𝐸𝑡  equal to 0.008 𝑚2 𝑠⁄ ; and the longitudinal dispersion co-

efficient 𝐸𝑙  equal to 0.33 𝑚2 𝑠⁄  (reference value of the co-

efficient). 

4.2 Results and discussions 

    This subsection is reserved to present the numerical re-

sults obtained with the Markov Chain Monte Carlo method 

for solving the Bayesian inverse problem. The values of the 

simulated concentration of the tracer 𝑐𝑠(𝒙1, 𝑡𝑗) were ob-

tained using the same parameters presented in Subsection 

4.1, with the exception of the value adopted for the longitu-

dinal dispersion coefficient.  

    Was specify 10.0 𝑚2 𝑠⁄  for initial value for the longitu-

dinal dispersion coefficient 𝐸𝑙
(0)

. For the parameter that de-

termines the step size of the Markov Chain in Eq. (10) was 

used ℎ𝑟𝑤 = 0.01. The value of the 𝜎2 in Eq. (6) was fixed 

at 0.25 for all simulations, and the tracer concentration 

𝑐𝑠(𝒙1, 𝑡𝑗) was evaluated at each two seconds of simulation. 

    The numerical results were obtained from a maximum of 

10,000 proposals, with the objective of selecting 1,500 ac-

cepted samples of the longitudinal dispersion coefficient. 

The tracer concentration 𝑐𝑠(𝒙1, 𝑡𝑗) was evaluated at each 2 

seconds of simulation, with a maximum time of 352 sec-

onds. It is observed that to reach the quantity of 1,500 ac-

cepted samples, 8,897 proposed samples needed only, thus 

resulting in an acceptance rate of 16.85%.  

   In Fig. 3 are presented the variations of the tracer concen-

tration errors values for the 1,500 samples accepted, accord-

ing to Eq. (7). Making a visual analysis of Fig. 3, it can be 

seen that the Markov Chain generated by the MCMC 

method converges to the stationary distribution of interest, 

which in this case it is the posterior distribution [15]. It is 

noticed that shortly after the 1,000 accepted samples, more 

precisely in the 1,184 sample, the curve reaches an stability 

zone. Thus, there is a set of 316 accepted samples of the 

longitudinal dispersion coefficient, after burn-in (1,184 ac-

cepted samples).  

    It can be observed a significant reduction in tracer con-

centration errors, reaching values below 5 measurement 

units. This can be seen in more detail in Fig. 4, which is 

presented the zoom of stability region of Fig. 3, this is, 

quantitative samples accepted from 1184 to 1500. 

    The reduced values of the simulated tracer concentration 

errors indicate that the values of the accepted longitudinal 

dispersion coefficients are close to the value of the reference 

coefficient used to generate the observed tracer concentra-

tion at the collection point 𝒙1 at each instant of time 𝑡𝑗. 
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Fig. 3: Tracer concentration error versus quantity of 

samples accepted. 

 

Fig. 4: Zoom of Fig. 3. Quantitative samples accepted 

from 1184 to 1500. 

 

    In Fig. 5 are presented the samples accepted of longitudi-

nal dispersion coefficients 𝐸𝑙 , through the MCMC method 

and Metropolis-Hastings algorithm based on random walk. 

In Fig. 6 are presented the zoom of stability region of Fig. 

5, this is, quantitative samples accepted from 1184 to 1500.  

    Compared to the initial value for the longitudinal disper-

sion coefficient 𝐸𝑙
(0)

, it is observed in Fig. 5 that the values 

of the accepted coefficients decrease considerably as the 

number of accepted samples increases, reaching values 

close to the reference coefficient after a burn-in of 1184 ac-

cepted samples (see Fig. 6). In fact, as were mentioned ear-

lier, this factor contributes to obtaining a reduced values of 

the simulated tracer concentration errors. Furthermore, it is 

noted in Fig. 6 that the MCMC method selects distinct lon-

gitudinal dispersion coefficients. 

 

Fig. 5: Longitudinal dispersion coefficient versus quantity 

of samples accepted. 

 

Fig. 6: Zoom of Fig. 5. Quantitative samples accepted 

from 1180 to 1500. 

 

     In Figs. (7) – (10) are presented the tracer concentration 

profiles at the 𝒙1 position, which represents the location of 

the collection point in region Ω. In these figures, the solid 

red lines correspond to the tracer concentration values ob-

tained with the reference longitudinal dispersion coefficient 
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𝐸𝑙 = 0.33𝑚
2 𝑠⁄ ; the solid green lines correspond to the val-

ues of the tracer concentrations obtained with the initial lon-

gitudinal dispersion coefficient 𝐸𝑙
(0) = 10𝑚2 𝑠⁄ ; and the 

solid blue lines correspond to the mean values of tracer con-

centrations obtained for a limited set of accepted samples. 

     For a better analysis of the behavior of the tracer concen-

tration profiles, the graphs with the respective mean profiles 

were divided into groups with the quantitative of 50 (see 

Fig. 8), 150 (see Fig. 9) and 250 (see Fig. 10) accepted sam-

ples of the longitudinal dispersion coefficient after the heat-

ing period, and also a group of with the quantitative of 50 

samples accepted before the burn-in period (see Fig. 7). 

Thus, it becomes possible to better understand the mean re-

sults of tracer concentrations close to the reference values 

observed at the collection point 𝒙1. 

     Note that there is a significant difference between the 

tracer concentration profiles determined by the reference 

(solid red lines) and initial (solid green lines) coefficients. 

In fact, this is due to the large difference between the values 

of the reference and initial longitudinal dispersion coeffi-

cients. 

     It can be seen in Fig. 7 that the mean tracer concentration 

profile (solid lines in blue) behaves very similarly and close 

to the reference concentration values, even considering the 

mean of the last 50 samples before the burn-in period. 

     However, it is observed in Figs. 8 - 10 that the MCMC 

method was able to obtain better results than those presented 

in Fig. 7. In fact, this is because the average tracer concen-

tration profiles (solid blue lines) corresponding to simula-

tions performed using 50, 150 and 250 samples accepted of 

the dispersion coefficient after the burn-in period. It is note-

worthy that at the end of the heating period, the tracer con-

centration error values are very small, compared to the er-

rors obtained at the beginning of the Markov Chain genera-

tion, as already observed in Figs. 3 - 4. Thus, it can be seen 

that the tracer concentration profiles represented by the 

solid red lines occupy the same coordinates of the graph. 

    Therefore, based on the results presented, it is observed 

that the methodology used in this research work was effi-

cient for the estimation of the longitudinal dispersion coef-

ficient. 

 

 

Fig. 7: Average of the last 50 samples before the burn-in 

period. 

 

 

Fig. 8: Average of the first 50 samples after the burn-in 

period. 

 

Fig. 9: Average of the first 150 samples after the burn-in 

period. 
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Fig. 10: Average of the first 250 samples after the burn-in 

period. 

 

V. CONCLUSION 

     In this work, a statistical methodology was used to esti-

mate the physical parameter longitudinal dispersion coeffi-

cient present in the tracer flow problem in natural rivers. This 

methodology consists of a Bayesian approach to formulate 

the inverse problem associated with the tracer transport 

problem, and an application of the Monte Carlo method via 

Markov Chains to solve the inverse problem formulated. Ob-

serving the numerical results obtained in this work, pre-

sented in Section IV, it can be stated that the MCMC method 

through the Metropolis-Hastings algorithm based on random 

walk generated a Markov Chain that converged to the equi-

librium (or stationary) distribution, which in this case is the 

posterior distribution of interest. After the burn-in period, the 

accepted samples of the longitudinal dispersion coefficient 

were able to reduce the errors of the tracer concentration and, 

consequently, obtain better average simulated profiles of the 

tracer concentrations at the collection point. Thus, it can be 

said that the results achieved by the MCMC were quite ex-

pressive. This fact confirms the relevance of using statistical 

methodology to solve problems within the scope of behav-

ioral prediction. The statistical tools used in this work were 

extremely efficient in estimating the values of the parameter 

of interest (longitudinal dispersion coefficient), which in 

turn can become a significant, respectable, useful and alter-

native resource for estimating parameters responsible for in-

troducing uncertainties contained in the mathematical model 

that describes the physical process of tracer flow in natural 

rivers. However, it is also necessary that this methodology 

continues to be applied and tested in other types of problems, 

as well as the experimentation of new parameters and differ-

ent formulations for the a priori distribution. 
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