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Abstract— The Weighted Taylor series is an adaptation of the 

conventional Taylor series truncated to the first order, wherein high-

order differential terms are replaced by introducing weighting 

coefficients to the initial terms. This study presents a novel approach 

for computing these weighting coefficients specifically designed for 

water wave modeling. Subsequently, the derived weighted Taylor 

series is employed to formulate both weighted continuity and the 

weighted Laplace equation. The weighted Laplace equation facilitates 

the formulation of the velocity potential equation, leading to the 

development of wave transformation equations encompassing 

important phenomena such as shoaling, breaking, and refraction-

diffraction. Additionally, the formulation of the weighted Euler 

momentum conservation equation is introduced to determine the wave 

number in deep water. By scrutinizing the outcomes of dispersion 

equations, as well as analyzing shoaling-breaking and refraction-

diffraction scenarios, optimal values for the weighting coefficients are 

identified.. 

 
I. INTRODUCTION 

Hydrodynamic equations are commonly expressed 

through a truncated Taylor series, where terms of order 2 

and higher are omitted, reducing the series to include only 

order 1 differentials. This simplification is based on the 

assumption that, within small intervals such as, 𝛿𝑡, 𝛿𝑥, 𝛿𝑧,  

the values of second-order terms and beyond become 

negligible and can be disregarded. 

 

There is a lack of prior research systematically investigating 

the Taylor series truncation method. Hutahaean (2021) 

introduced the weighted Taylor series by examining 

intervals where the values of 1st order terms significantly 

surpass those of 2nd order terms. Building upon this, 

Hutahaean (2022) applied the Forward Difference scheme 

to formulate the weighted Taylor series, assigning a 

weighting coefficient solely to the time derivative term in 

the function 𝑓(𝑥, 𝑧, 𝑡). Both studies demonstrated that the 

weighting coefficient in the truncated Taylor series can alter 

wave characteristics, shortening wavelength and reducing 

water particle velocity. These findings suggest that utilizing 

a weighted Taylor series with optimized coefficients can 

enhance water wave models. 

In this study, the Taylor series was truncated using the 

central-difference method. This method only extracts 

contributions from even-order differential terms, and is 

subsequently corrected by the remaining contributions from 

odd-order differential terms. 

The truncated Taylor series was then utilized to formulate 

the foundational equation of hydrodynamics, specifically 

the continuity equation. Each term in this equation received 

its respective weighting coefficient, leading to the 

designation of a weighted continuity equation. 

Employing the weighted continuity equation, the 

formulation of the weighted Laplace Equation followed. 

Subsequently, the weighted Laplace equation was solved 
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for sloping bottoms to derive conservation equations 

governing variations in wave constants as waves transition 

from deeper to shallower waters. 

By utilizing these conservation equations, the study derived 

equations describing changes in wave constants, including 

wave amplitude and wavelength in shallower waters. These 

equations incorporate weighting coefficients, with the 

corresponding values of the weighting coefficients studied 

based on the results of dispersion equation, shoaling 

breaking model, and refraction-diffraction model. 

 

II. WEIGHTED TAYLOR SERIES  

Taylor series for a function with two variables, 𝑓 =

𝑓(𝑥, 𝑡), (Arden, Bruce W. and Astill Kenneth N. ,1970)    is 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + +𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+

𝛿𝑥
Ƌ𝑓

Ƌ𝑥
     

𝛿𝑡2

2!

Ƌ2𝑓

Ƌ𝑡2 + 𝛿𝑡𝛿𝑥
Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2!

Ƌ2𝑓

Ƌ𝑥2 + ⋯      (1)  

 

In this paper, 𝑥 represents the horizontal axis, 𝑧 the vertical 

axis, and 𝑡 time. In the formulation of hydrodynamic 

equations, including continuity equation and Euler's 

momentum conservation equation, this Taylor series is 

truncated to a first-order differential series, assuming that 

within the interval 𝛿𝑡, 𝛿𝑥 are very small, higher-order 

differential terms are very small and can be neglected, i.e., 

it becomes:. 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

However, as the interval decreases, not only do the values 

of higher-order differential terms decrease, but the values of 

first-order terms also decrease. As a result, the relative 

values of higher-order terms to the first-order terms remain 

significant. 

Equation (1) can be written as follows, 

                                       

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 

               (1 +
𝛿𝑡

2

Ƌ

Ƌ𝑡
+ 𝛿𝑥 

Ƌ

Ƌ𝑥
+. . )  𝛿𝑡

Ƌ𝑓

Ƌ𝑡
 

               + (1 +
𝛿𝑥

2

Ƌ

Ƌ𝑥
+. . ) 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

 

There are contributions from higher-order terms to the first-

order terms. Therefore, these higher-order terms cannot be 

simply neglected. Truncating the series to the first order 

should be accompanied by providing coefficients that 

represent the higher-order terms. 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) 

                                          + 𝛾𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

 

This series is a weighted Taylor series, with weighting 

coefficients 𝛾𝑡 and 𝛾𝑥. With this equation, the role of higher-

order terms is not completely eliminated; it is represented 

by the weighting coefficients. The characteristics of the 

function present in the higher-order terms are still reflected 

in the weighting coefficients. 

 

The aim of this research is to develop a method for 

calculating weighting coefficients by extracting 

contributions from higher-order terms and adding them to 

the first-order terms. 

 

The method of absorbing contributions from high-order 

terms or the formation of weighting coefficients generally 

consists of two parts: 

a. Absorbing contributions from odd-order 

differential terms. 

b. Absorbing contributions from even-order 

differential terms. 

 

In this research, weighting coefficients will be formulated 

for the water wave modeling equation. The solution to the 

velocity potential equation of the Laplace equation (Dean 

(1991)) is: 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺 cos 𝑘𝑥 cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 

𝑘 is wave number, 𝑘 =
2𝜋

𝐿
, 𝜎 is the angular frequency, 𝜎 =

2𝜋

𝑇
, 𝑇 is wave period and ℎ is water depth. Considering that 

𝑠𝑖𝑛 function has similar characteristics to the 𝑐𝑜𝑠 function,  

a method for calculating weighting coefficients will be 

developed using a functional form., 

𝑓(𝑥, 𝑧, 𝑡) = cos 𝑘𝑥 cosh 𝑘(ℎ + 𝑧) cos 𝜎𝑡 

 

III. ABSORPTION OF CONTRIBUTIONS 

FROM THIRD-ORDER DIFFERENTIAL TERMS 

In this research, a calculation method is developed 

wherein the Taylor series is employed up to the third order 

only. Limitations are introduced by utilizing an interval size 

where terms of the fourth order and higher become 

negligible. Subsequently, the third-order terms are removed 

from the series, and their values are added to the first-order 

terms. The magnitude of the contribution of third-order 

terms to the first-order terms is expressed with a 

contribution coefficient. 

The contribution coefficient for the time differential terms 

is given by, 

𝜇𝑡 =

𝛿𝑡3

6
Ƌ3𝑓
Ƌ𝑡3

𝛿𝑡
Ƌ𝑓
Ƌ𝑡

 

As a function of time 𝑡 is 𝑓(𝑡) = cos 𝜎𝑡, the differential 

substitution of this function, performed under the condition 

cos 𝜎𝑡 = sin 𝜎𝑡 
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𝜇𝑡 = −
𝛿𝑡2

6
𝜎2 

Substituting 𝛿𝑡 = 𝜀𝑡𝑇 and 𝜎 =
2𝜋

𝑇
, 

𝜇𝑡 = −
4𝜋2

6
𝜀𝑡

2 

𝜀𝑡 is the time interval coefficient 𝑡. Similarly, for the 

function 𝑓(𝑥) = cos 𝑘𝑥, the following is obtained 

𝜇𝑥 = −
4𝜋2

6
𝜀𝑥

2 

𝜀𝑥 is the coefficient of the interval 𝑥, where 𝛿𝑥 = 𝜀𝑥𝐿, and  

𝜇𝑧 =
4𝜋2

6
𝜀𝑧

2 

𝜀𝑧 is the coefficient of the interval 𝑧, where 𝛿𝑧 = 𝜀𝑧𝐿.   

 

It is important to note that the computation of contribution 

coefficients necessitates values for the interval coefficients 

𝜀𝑡, 𝜀𝑥 and 𝜀𝑧 which will be discussed in the subsequent 

section. 

 

3.1. Calculation of Interval Coefficients  

In this section, the method of calculating the values of 

interval coefficients 𝜀𝑡, 𝜀𝑥 and 𝜀𝑧, is discussed. The 

calculation is performed using the optimization equation. 

|
𝑠2+𝑠3

𝑠1
| ≤ 𝜀                                             …….…..(2) 

𝑠1, 𝑠2 dan 𝑠3, are, in order, the first, second, and third terms 

in the Taylor series. Term 1 is a term with a first-order 

differential, term 2 is a term with a second-order 

differential, and term 3 is a term with a third-order 

differential. 

𝜀 is a small number whose value is determined. The larger 

the value of 𝜀, the larger the values of higher-order terms 

that will be extracted. Furthermore, 𝜀 is referred to as the 

optimization coefficient.. 

The optimization equation is an equation with variables 

representing the size of the interval, i.e., 𝛿𝑡, 𝛿𝑥, 𝛿𝑧. This 

equation for the interval size is converted into an equation 

for the interval coefficients, i.e., 𝜀𝑡, 𝜀𝑥 and 𝜀𝑧, by 

substituting 𝛿𝑡 = 𝜀𝑡𝑇, 𝛿𝑥 = 𝜀𝑥𝐿 dan 𝛿𝑧 = 𝜀𝑧𝐿. 𝑇 is the 

wave period, and 𝐿 is the wavelength.  

a. Calculation of Time Interval Coefficient at -𝑡 𝜀𝑡 in the 

function 𝑓(𝑡) = cos 𝜎𝑡. 

By utilizing a series up to order 3, the optimization equation 

can be expressed as, 

|
𝛿𝑡2

2

𝑑2𝑓

𝑑𝑡2 +
𝛿𝑡3

6

𝑑3𝑓

𝑑𝑡3

𝛿𝑡
𝑑𝑓

𝑑𝑡

| = ɛ       

Substituting the differentials of 𝑓(𝑡)  when cos 𝜎𝑡 = sin 𝜎𝑡, 

a second-degree polynomial for 𝛿𝑡 is obtained. 

𝛿𝑡

2
𝜎 −

𝛿𝑡2

6
𝜎2 = ɛ 

Substituting 𝛿𝑡 = 𝜀𝑡𝑇 , and 𝜎 =
2𝜋

𝑇
, where 𝑇 is wave period, 

2𝜋2

3
𝜀𝑡

2 − 𝜋𝜀𝑡 + 𝜀 = 0 

Of the two 𝜀𝑡, the least value is used.  

In the equation for 𝜀𝑡 there are neither variable 𝜎 or 𝑇. 

Hence, 𝜀𝑡 is not dependent to the wave period 𝑇 and it 

applies to any wave period 𝑇.  

 

b. Interval Coefficient -𝑥  𝜀𝑥 on function 𝑓(𝑥, 𝑡) =

cos 𝜎𝑡 cos 𝑘𝑥. 

For this function, there will be two variables in the 

optimization equation 𝜀𝑡 and 𝜀𝑥. By using 𝜀𝑡  from the 

calculation results for the function 𝑓(𝑡) = cos 𝜎 𝑡, hence 𝜀𝑥 

is the only unknown variable.  

The optimization equation for the function 𝑓(𝑥, 𝑡) is worked 

out using the Taylor series up to the third term, resulting in 

a third-degree polynomial. This polynomial can be solved 

using the Newton-Rhapson iteration method, which 

requires an initial iteration value. To obtain the initial 

iteration value, the optimization equation is first solved 

using only the second-order differential terms, forming a 

quadratic polynomial.. 

|
𝑠2

𝑠1
| ≥ 𝜀.   

Where  

𝑠1 = 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

𝑠2 =
𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
 

Substituting 𝑠1 and 𝑠2  into the optimization equation, the 

computation proceeds under the conditions cos 𝜎𝑡 = sin 𝜎𝑡 

and cos 𝑘𝑥 = sin 𝑘𝑥, resulting in the cancellation of terms 

in the numerator and denominator. Subsequently, the 

substitution 𝛿𝑡 = 𝜀𝑡𝑇, 𝛿𝑥 = 𝜀𝑥𝐿, 𝜎 =
2𝜋

𝑇
 and 𝑘 =

2𝜋

𝐿
 with 𝜀𝑡  

as a known variable, a quadratic equation in 𝜀𝑡  is derived 

from calculations involving the function 𝑓(𝑡) = cos 𝜎𝑡 

𝑐0 +  𝑐1𝜀𝑥 +  𝑐2 𝜀𝑥
2 = 0 

𝑐0 = 2𝜋𝜀𝑡𝜀 − 2𝜋2𝜀𝑡
2 

𝑐1 = 2𝜋𝜀 + 4𝜋2𝜀𝑡 

𝑐2 = −2𝜋2 

The quadratic equation yields two roots, of which the larger 

one is selected. Notably, the 𝜀𝑥 \ equation no longer contains 

the wave period 𝑇 or wavelength 𝐿. 

 

Proceeding to the optimization equation (2), we obtain a 

cubic polynomial.  

𝑠3 =
𝛿𝑡3

6

Ƌ3𝑓

Ƌ𝑡3
+

𝛿𝑡2

2
𝛿𝑥

Ƌ3𝑓

Ƌ𝑡2Ƌ𝑥
+ 𝛿𝑡

𝛿𝑥2

2

Ƌ3𝑓

Ƌ𝑡Ƌ𝑥2
 

       +
𝛿𝑥3

6

Ƌ3𝑓

Ƌ𝑥3
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Where, 

𝑐0 +  𝑐1𝜀𝑥 +  𝑐2 𝜀𝑥
2 + 𝑐3 𝜀𝑥

3 = 0 

𝑐0 = 2𝜋𝜀𝑡𝜀 − 2𝜋2𝜀𝑡
2 +

8𝜋3

6
𝜀𝑡

3 

𝑐1 = 2𝜋𝜀 + 4𝜋2𝜀𝑡 +
8𝜋3

2
𝜀𝑡

2 

𝑐2 = −2𝜋2 +
8𝜋3

2
𝜀𝑡 

𝑐3 =
8𝜋3

6
 

The solution to this equation can be determined using the 

Newton-Rhapson iteration method, initiating the process 

with the root derived from the quadratic equation. 

 

c. Interval coefficient -𝑧  𝜀𝑧 for the function 𝑓(𝑥, 𝑧, 𝑡) =

cos 𝜎𝑡 cos 𝑘𝑥 cosh 𝑘(ℎ + 𝑧). 

The equation for calculating 𝜀𝑧 is formulated using a 

method similar to the equations used to calculate 𝜀𝑡 and 𝜀𝑥, 

namely by utilizing optimization equations. By applying 

conditions such as ccos 𝜎𝑡 = sin 𝜎𝑡, cos 𝑘𝑥 = sin 𝑘𝑥 dan 

cosh 𝑘(ℎ + 𝑧) = sinh 𝑘(ℎ + 𝑧), specifically when ℎ is 

large and 𝑧  is very small, the elements in the numerator and 

denominator cancel each other out. Substituting 𝛿𝑡 = 𝜀𝑡𝐿, 

𝛿𝑥 = 𝜀𝑥𝐿, 𝛿𝑧 = 𝜀𝑧𝐿, 𝜎 =
2𝜋

𝑇
 and 𝑘 =

2𝜋

𝐿
, we obtain an 

equation with three variables: 𝜀𝑡, 𝜀𝑥 and 𝜀𝑧, with 𝜀𝑡 and 𝜀𝑥 

obtained from previous calculations, one variable, and 𝜀𝑧 

remains. 

 

The quadratic equation for 𝜀𝑧 is, 

𝑐0,2 + 𝑐1,2𝜀𝑧 + 𝑐2,2𝜀𝑧
2 = 0 

𝑐0,2 = (𝜀𝑡 + 𝜀𝑥)2𝜋𝜀 − 2𝜋2𝜀𝑡
2 + 4𝜋2𝜀𝑡𝜀𝑥 − 2𝜋2𝜀𝑥

2 

𝑐1,2 = −2 𝜋𝜀 − 4𝜋2𝜀𝑡 − 4𝜋2𝜀𝑥 

𝑐2,2 = 2𝜋2 

 

This quadratic equation yields two values for 𝜀𝑧, with the 

larger value chosen for subsequent analysis. These solutions 

form the input for a third-degree equation. 

𝑐0,3 =
8𝜋3

6
𝜀𝑡

3 +
8𝜋3

2
𝜀𝑥𝜀𝑡

2 +
8𝜋3

2
𝜀𝑡𝜀𝑥

2 +
8𝜋3

6
𝜀𝑥

3 

𝑐0 = 𝑐0,1 + 𝑐0,2 

𝑐1,3 = −
8𝜋3

2
𝜀𝑡

2 + 8𝜋3𝜀𝑡𝜀𝑥 −
8𝜋3

2
𝜀𝑥

2 

𝑐1 = 𝑐1,2 + 𝑐1,3 

𝑐2,3 = −
8𝜋3

2
𝜀𝑡 −

8𝜋3

2
𝜀𝑥 

𝑐2 = 𝑐2,2 + 𝑐2,3 

𝑐3 =
8𝜋3

6
 

𝑐0,2, 𝑐1,2 and 𝑐2,2 are derived from the quadratic equations.. 

 

Table (1) below showcases examples of interval coefficient 

calculation results for various optimization coefficient 

value 𝜀 . 

Table 1. The values of interval coefficients 

 𝜀 𝜀𝑡 𝜀𝑥 𝜀𝑧 

0.005 0.0016 0.00478 0.01452 

0.006 0.00192 0.00574 0.01747 

0.007 0.00224 0.0067 0.02044 

0.008 0.00256 0.00766 0.02342 

0.009 0.00288 0.00862 0.02641 

0.01 0.00321 0.00959 0.02942 

 

As seen in Table 1, as the value of 𝜀 increases, the interval 

coefficient also increases, indicating a greater contribution 

from higher-order terms. With these interval coefficients, 

the contribution coefficients of the higher-order terms are 

calculated. 

Table 2: The values of the contribution coefficients. 

𝜀 𝜇𝑡 𝜇𝑥 𝜇𝑧 

0.005 -0.000017 -0.000151 0.001388 

0.006 -0.000024 -0.000217 0.002009 

0.007 -0.000033 -0.000296 0.002750 

0.008 -0.000043 -0.000386 0.003611 

0.009 -0.000055 -0.000489 0.004596 

0.010 -0.000068 -0.000604 0.005705 

 

IV. CONTRIBUTION FROM EVEN 

DIFFERENTIAL TERMS 

In this stage, the Taylor series is calculated with a very 

small interval size, so the fourth-order terms and higher are 

very small, while the third-order term has been absorbed by 

adding its value to the first-order term. Thus, the remaining 

Taylor series of the second order takes the form, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) +  (1 + 𝜇𝑡)𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 

             (1 + 𝜇𝑥)𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+

𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡 𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
    

+
𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
 

The simplification of the subsequent expressions is as 

follows. 

𝛼𝑡 = 1 + 𝜇𝑡 

𝛼𝑥 = 1 + 𝜇𝑥 

Truncated Taylor series becomes 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) +  𝛼𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
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+𝛼𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+

𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡 𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
 

This simplification involves the absorption of contributions 

from even higher-order differential terms through the 

application of the Central Different Method operation. 

4.1. Function 𝑓(𝑥, 𝑡) 

Truncated Taylor series for (𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) +  𝛼𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 

𝛼𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
 +   

𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡 𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
 

 

Truncated Taylor series for (𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡) 

𝑓(𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) −  𝛼𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
− 

𝛼𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+

𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡 𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
 

 

These two equations are subtracted from each other, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓(𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡)

= 2𝛼𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 + 2𝛼𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

 

During this operation, the even higher-order differential 

terms automatically vanish. 
Ƌ𝑓

Ƌ𝑡
 will be absorbed at 

Ƌ𝑓

Ƌ𝑥
, and 

the last equation is divided by 2𝛿𝑥, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓(𝑥 − 𝛿𝑥, 𝑡 − 𝛿𝑡)

2𝛿𝑥

= 𝛼𝑡

𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ 𝛼𝑥

Ƌ𝑓

Ƌ𝑥
 

For very small values of 𝛿𝑡 and 𝛿𝑥, this equation becomes 

a total spatial differential, 

𝐷𝑓

𝑑𝑥
= 𝛼𝑡

𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ 𝛼𝑥

Ƌ𝑓

Ƌ𝑥
 

The Taylor series, which has eliminated both even and odd-

order differential terms, is, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) +  𝛼𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

+𝛼𝑡𝛿𝑥
Ƌ𝑓

Ƌ𝑥
 

Substituting the total spatial differential into 
Ƌ𝑓

Ƌ𝑥
, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛼𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛼𝑡𝛿𝑥 

                                           (𝛼𝑡

𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ 𝛼𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
) 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + (1 + 𝛼𝑥)𝛼𝑡𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                                                    +𝛼𝑥
2𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

This equation is written as, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

This equation represents a weighted Taylor series for the 

function𝑓 = 𝑓(𝑥, 𝑡) with weighting coefficients, 

𝛾𝑡,2 = (1 + 𝛼𝑥)𝛼𝑡 

𝛾𝑥 = 𝛼𝑥
2 

The use of the index 2 in 𝛾𝑡,2 indicates that the weighting 

coefficient is for a function with two variables, 𝑓 = 𝑓(𝑥, 𝑡). 

The cross-contribution, i.e., the contribution of spatial 

derivative to the time derivative, is present in 𝛼𝑥𝛼𝑡. In cases 

where contribution coefficients are negligible, where 𝜇𝑡 and 

𝜇𝑥 are both zero, resulting in 𝛼𝑡 = 𝛼𝑥 = 1, we obtain 𝛾𝑡,2 =

2 and 𝛾𝑥 = 1,  these values serve as the fundamental 

weighting coefficients for the function 𝑓(𝑥, 𝑡). 

 

4.2. Function with three variables 𝑓 = 𝑓(𝑥, 𝑧, 𝑡). 

To obtain the contribution of even-order differential terms 

for a function with three variable 𝑓 = 𝑓(𝑥, 𝑧, 𝑡), the total 

spatial derivative  
𝐷𝑓

𝑑𝑥
 from the function with two variables 

𝑓 = 𝑓(𝑥, 𝑡) and 
𝐷𝑓

𝑑𝑧
 on the function 𝑓 = 𝑓(𝑧, 𝑡) where the 

formulation of 
𝐷𝑓

𝑑𝑧
 is performed in the same method as the 

formulation of 
𝐷𝑓

𝑑𝑥
, obtaining  

𝐷𝑓

𝑑𝑧
= 𝛼𝑡

𝛿𝑡

𝛿𝑥

Ƌ𝑓

Ƌ𝑡
+ 𝛼𝑧

Ƌ𝑓

Ƌ𝑧
  

𝐷𝑓

𝑑𝑥
 and 

𝐷𝑓

𝑑𝑧
 is substituted into 

Ƌ𝑓

Ƌ𝑥
 and 

Ƌ𝑓

Ƌ𝑧
 on the Taylor Series 

𝑓 = 𝑓(𝑥, 𝑧, 𝑡)  which has eliminated its higher-order terms, 

we obtain  

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝛾𝑡,3𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                                                  +𝛾𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑧
 

𝛾𝑡,3 = (1 + 𝛼𝑥 + 𝛼𝑧)𝛼𝑡 

𝛾𝑥 = 𝛼𝑥
2 

𝛾𝑧 = 𝛼𝑧
2 

 

It is observed that the value of 𝛾𝑥 on 𝑓(𝑥, 𝑧, 𝑡) is the same 

as the value of 𝛾𝑥 for the function 𝑓(𝑥, 𝑡). In cases where 

contribution coefficients are neglected, where 𝜇𝑡 = 𝜇𝑥 =

𝜇𝑧 = 0 resulting in 𝛼𝑡 = 𝛼𝑥 = 𝛼𝑧 = 1, we obtain 𝛾𝑡,3 = 3, 

while 𝛾𝑥 = 𝛾𝑧 = 1. These values serve as the fundamental 

weighting coefficients for the function 𝑓(𝑥, 𝑧, 𝑡). 

The values of weighting coefficients for various values of 𝜀 

are presented in Table (3). 

 

Table 3:. The values of weighting coefficients. 

𝜀 𝛾𝑡,2 𝛾𝑡,3 𝛾𝑥 𝛾𝑧 

0.005 1.99990 3.00237 0.9994 1.00556 

0.006 1.99986 3.00344 0.99913 1.00805 

0.007 1.99980 3.00471 0.99882 1.01103 

0.008 1.99974 3.00619 0.99846 1.01450 
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0.009 1.99967 3.00789 0.99804 1.01847 

0.01 1.99960 3.00980 0.99758 1.02295 

 

It is evident that the values of the weighting functions are 

not significantly different from the fundamental values, 

namely 𝛾𝑡,2 = 2.0, 𝛾𝑡,3 = 3.0, 𝛾𝑥 = 1.0 and 𝛾𝑧 = 1.0.  

However, to satisfy a balance equation, it is advisable to use 

accurate values for the weighting coefficients. 

As 𝜀 increases, the values of 𝛾𝑡,2 and 𝛾𝑥,  decrease, while  

𝛾𝑡,3 and 𝛾𝑧 increase. Considering that higher-order terms 

contain information about the function's characteristics, it is 

preferable to choose 𝜀 such that the coefficients. To obtain 

the optimal 𝜀 coefficient, precise calibration of the model 

results formulated using the weighted Taylor series is 

necessary. In the modeling of water wave transformation, 

this calibration can be applied to evaluate the breaker height 

or breaker depth generated by the model. 

  

V. THE APPLICATION ON WATER WAVE 

MODELING 

The formulation of various equations in this paper is not 

provided in detail; only the final results are presented. The 

research focus is on the weighting coefficients. 

5.1. Weighted Laplace Equation and its Solution 

a. Weighted Laplace Equation 

The continuity equation formulated using the weighted 

Taylor series takes the form of a weighted continuity 

equation, 

𝛾𝑥
Ƌ𝑢

Ƌ𝑥
+ 𝛾𝑧

Ƌ𝑤

Ƌ𝑧
= 0                                       ……...(3) 

𝑢(𝑥, 𝑧, 𝑡) is the horizontal water particle velocity, and 

𝑤(𝑥, 𝑧, 𝑡) is the vertical water particle velocity. The 

weighted continuity equation cannot be expressed as 

𝛾𝑥

𝛾𝑧

Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
= 0 

Nor 

Ƌ𝑢

Ƌ𝑥
+

𝛾𝑧

𝛾𝑥

Ƌ𝑤

Ƌ𝑧
= 0 

since it yields different solutions from (3). Therefore, it can 

be said that  𝛾𝑥 s directly related to  
Ƌ𝑢

Ƌ𝑥
 and 𝛾𝑧  is directly 

related to 
Ƌ𝑤

Ƌ𝑧
. 

Substituting the velocity potential properties, 𝑢 = −
Ƌ𝜙

Ƌ𝑥
 and 

𝑤 = −
Ƌ𝜙

Ƌ𝑧
,  into the weighted continuity equation, the 

weighted Laplace equation is obtained, 

𝛾𝑥
Ƌ2𝜙

Ƌ𝑥2 + 𝛾𝑧
Ƌ2𝜙

Ƌ𝑧2 = 0                                ………..(4) 

This equation is referred to as the weighted Laplace 

equation. 

 

b. Solution of the Weighted Laplace Equation 

The solution of (4), obtained using the separation of variable 

method and working with the kinematic bottom boundary 

condition for a sloping bottom, results in the velocity 

potential equation, 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺𝛽(𝑧) cos 𝑘𝑥𝑥 sin 𝜎𝑡 + 

                      𝐺𝛽(𝑧) sin 𝑘𝑥𝑥 sin 𝜎𝑡 

In this equation, there are two wave numbers: the wave 

number in the horizontal axis\ 

𝑘𝑥 =
𝑘

√𝛾𝑥
, the wavelength in the horizontal axis 𝐿𝑥 =

2𝜋

𝑘𝑥
 and 

the wave number in the vertical axis 𝑘𝑧 =
𝑘

√𝛾𝑧
,  the 

wavelength in the vertical axis 𝐿𝑧 =
2𝜋

𝑘𝑧
. 

𝛽(𝑧) =
𝛼𝑒𝑘𝑧(𝑧+ℎ) + 𝑒−𝑘𝑧(𝑧+ℎ)

2
 

𝛽1(𝑧) =
𝛼𝑒𝑘𝑧(𝑧+ℎ) − 𝑒−𝑘𝑧(𝑧+ℎ)

2
 

𝛼 =

1

√𝛾𝑧
+

1

√𝛾𝑥

𝑑ℎ
𝑑𝑥

1

√𝛾𝑧
−

1

√𝛾𝑥

𝑑ℎ
𝑑𝑥

 

𝑑ℎ

𝑑𝑥
 is the bottom slope, which is negative for waves moving 

from deep water to shallow water.. 

On 𝛼 = 1, 𝛽(𝑧) = cosh 𝑘𝑧(ℎ + 𝑧); 𝛽1(𝑧) = sinh 𝑘𝑧(ℎ +

𝑧) 

 

c. Equation for 𝐺  

The equation for 𝐺 is obtained by integrating the weighted 

Kinematic Free Surface Boundary Condition with respect to 

time (Hutahaean (2023b),  

𝐺 =
𝜎𝛾𝑡,2𝐴

2𝑘 (
1

√𝛾𝑧
−

𝑘𝐴
2

) β(𝜃𝜋)
 

𝛽(𝜃𝜋) =
𝛼𝑒𝜃𝜋 + 𝑒−𝜃𝜋

2
 

𝜃 is the deep water coefficient, where 
𝛽1(𝜃𝜋)

𝛽(𝜃𝜋)
= 1. In this 

research, 𝜃 = 1.95. In the analysis of shoaling-breaking, 

this coefficient plays a role in determining the breaker 

depth. A larger 𝜃  corresponds to a deeper breaker depth, 

while a smaller 𝜃 results in a shallower breaker depth.  
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d. Wave Amplitude Function 

The equation for 𝐺 can be expressed as the wave amplitude 

function,  

𝐴 =
2𝐺𝑘

𝜎𝛾𝑡,2

β(𝜃𝜋) (
1

√𝛾𝑧

−
𝑘𝐴

2
) 

d. Water Surface Elevation Equation 

𝜂(𝑥, 𝑡) = 𝐴 cos 𝑘𝑥𝑥 cos 𝜎𝑡 

e. Wave Number Conservation Equation 

𝑑𝑘 (ℎ +
𝐴
2

)

𝑑𝑥
= 0 

f. Energy Conservation Equation 

𝐺
Ƌ𝑘

Ƌ𝑥
+ 2𝑘

Ƌ𝐺

Ƌ𝑥
= 0 

 

5.2. Dispersion Equation  

By using the weighted Taylor series, and by using the 

conditions in the formulation of the continuity equation 

where in a control volume the horizontal velocity only 

changes on the horizontal axis and the vertical velocity only 

changes on the vertical axis, and by working on Newton's 

principle of conservation of momentum we obtain two 

equations momentum, namely the momentum equation in 

the horizontal direction and the momentum equation in the 

vertical direction, respectively, are, 

𝛾𝑡,3

Ƌ𝑢

Ƌ𝑡
+ 𝛾𝑥𝑢

Ƌ𝑢

Ƌ𝑥
= −

1

𝜌

Ƌ𝑝

Ƌ𝑥
 

𝛾𝑡,3

Ƌ𝑤

Ƌ𝑡
+ 𝛾𝑧,3𝑤

Ƌ𝑤

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑧
− 𝑔 

The vertical momentum equation is expressed as the 

integration of the pressure equation 
Ƌ𝑝

Ƌ𝑧
, over the water depth. 

By employing surface dynamic boundary conditions 𝑝𝜂 =

0, the pressure equation 𝑝 is obtained. Subsequently, 

differentiating the pressure equation with respect to the 

horizontal axis and substituting it into the horizontal 

momentum equation, we apply this at 𝑧 = 𝜂 to yield the 

surface momentum equation. 

𝛾𝑡,3

Ƌ𝑢𝜂

Ƌ𝑡
+

𝛾𝑥

2

Ƌ𝑢𝜂𝑢𝜂

Ƌ𝑥
= −𝑔

Ƌ𝜂

Ƌ𝑥
 

The dispersion equation is obtained by utilizing the surface 

momentum equation while disregarding the convective 

acceleration term, 

𝛾𝑡,3

Ƌ𝑢𝜂

Ƌ𝑡
= −𝑔

Ƌ𝜂

Ƌ𝑥
 

Substituting the velocity potential by employing its inherent 

property and substituting the water surface equation and the 

wave amplitude function, the dispersion equation is 

derived,, 

 
𝑔𝐴

2
𝑘2 −

𝑔

√𝛾𝑧
 𝑘 + 𝛾𝑡,2𝛾𝑡,3𝜎2 = 0 

This dispersion equation is solely for the calculation of 

wave numbers in deep water. To determine wave numbers 

in shallow water, the shoaling-breaking model is utilized..  

 

5.3. Shoaling Breaking Equations 

By working on the conservation equations, the 𝐺 dan wave 

amplitude function (Hutahaean (…)), he shoaling-breaking 

equations are derived. For waves transitioning from 𝑥 to 

𝑥 + 𝛿𝑥, 

Ƌ𝑘

Ƌ𝑥
= −

4𝑘

(4ℎ + 3𝐴)

𝑑ℎ

𝑑𝑥
 

𝑘𝑥+𝛿𝑥 = 𝑘𝑥 + 𝛿𝑥
Ƌ𝑘

Ƌ𝑥
 

Ƌ𝐴

Ƌ𝑥
=

𝐺

𝜎𝛾𝑡,2

Ƌ𝑘

Ƌ𝑥
(

1

√𝛾𝑧

−
𝑘𝐴

2
) β(𝜃𝜋) 

𝐴𝑥+𝛿𝑥 = 𝐴𝑥 + 𝛿𝑥
Ƌ𝐴

Ƌ𝑥
 

𝐺𝑥+𝛿𝑥 = 𝑒ln 𝐺𝑥−
1
2

(ln 𝑘𝑥+𝛿𝑥−ln 𝑘𝑥)
 

 

5.4. Refraction-Diffraction Equations 

The shoaling-breaking equations can be transformed into 

refraction-diffraction equations using the procedure 

outlined by Hutahaean (2023a). 

 

VI. OUTCOMES OF THE MODEL 

a. The Results of Dispersion Equations 

In the following section, the computed wavelengths for 

waves with a period of 8 seconds are presented. The wave 

amplitude 𝐴 varies, with the wave height 𝐻 = 2𝐴. An 

optimization coefficient of 𝜀 = 0.01 where 𝛾𝑡,2 = 1.99960 

, 𝛾𝑡,3 = 3.00980, 𝛾𝑥 = 0.99758, 𝛾𝑧 = 1.02295.. The 

calculated results are summarized in Table (4) as follows. 

Table 4: Wavelength from the modelling outcome 

𝐻 

(m) 

𝐿 

(m) 

𝐿𝑥 

(m) 

𝐿𝑧 

(m) 

𝐻

𝐿𝑥

 

2 12.132 12.117 12.264 0.165 

2.1 11.784 11.77 11.912 0.178 

2.2 11.398 11.384 11.523 0.193 

2.3 10.959 10.946 11.078 0.21 

2.4 10.434 10.422 10.548 0.23 

2.5 9.739 9.727 9.845 0.257 

 

The calculation results for the wavelengths reveal the 

presence of two wavelengths: the horizontal wavelength 𝐿𝑥  
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and the vertical wavelength 𝐿𝑧, both exhibiting small 

differences. 

Furthermore, it is observed that within one wave period, the 

wavelength decreases as the wave height increases, 

exhibiting different wave steepness. The critical wave 

steepness according to Michell (1893) is 0.142. The critical 

wave steepness according to Toffoli, A., Babanin, A., 

Onaroto, M., and Wased, T. (2010) is 0.170, potentially 

reaching 0.200. The model results closely align with the 

critical wave steepness from Toffoli et al., specifically at 

wave heights of 2.1-2.3 m. 

In conclusion, the critical wave steepness from Michell 

(1893) and Toffoli et al. (2010) indicates the maximum 

wave height for a given wave period under undisturbed 

conditions, specifically in deep water. Referring to Toffoli 

et al.'s criteria, the maximum wave height for waves with a 

period of 8.0 sec. is expected to be 2.30 m. However, in this 

study, the maximum wave height for a wave period of 8.0 

sec. is found to be 2.50 m, with a wave steepness of 0.257. 

The relationship between wave period and wave height, 

according to Wiegel (1949, 1964), is expressed as, 

𝐻 =
𝑔𝑇2

15. 62
 

For waves with a period of 8.0 sec., the calculated value is 

𝐻 = 2.58 𝑚.. In this case, the model results closely match 

the Wiegel (1949, 1964) equation with 𝜀 = 0.01. 

 

b. The outcomes of shoaling breaking modelx 

The shoaling-breaking model is applied to waves with an 

amplitude 𝐴 = 1.20 m in coastal waters with a bottom slope 
𝑑ℎ

𝑑𝑥
= −0.005, considering various values of 𝜀 and a deep 

water coefficient 𝜃 = 1.95.. The wave period is calculated 

using the Wiegel (1949, 1964) equation: 

𝑇 = 15.6√
 𝐻

𝑔
     (𝑠𝑒𝑐) 

Given a wave amplitude 𝐴 = 1.20 m, 𝐻 = 2.40 𝑚, the 𝑇 =

7.716 sec is obtained. 

According to Komar, Paul D., and Gaughan, Michael K. 

(1968), the breaker height is 

𝐻𝑏 = 0.39 𝑔
1

5⁄ (𝑇𝐻0)
2

5⁄   m. 

𝐻0 is the deep water wave height. For waves with 𝐻0 =

2.40 𝑚, 𝑇 = 7.716 sec the Komar-Gaughan equation yields 

𝐻𝑏 = 2.809 𝑚 . In Table (6), on 𝜀 = 0.01, 𝐻𝑏 = 2.812 𝑚.   

Table 6:Breaking conditions for various values 𝜀 

𝜀 

 

𝐻𝑏  

(m) 

ℎ𝑏 

(m) 

𝐿𝑥,𝑏 

(m) 

𝐻𝑏

𝐿𝑥,𝑏

 
𝐻𝑏

ℎ𝑏

 

0.005 2.883 3.619 4.539 0.635 0.797 

0.006 2.876 3.615 4.532 0.635 0.796 

0.007 2.866 3.607 4.521 0.634 0.794 

0.008 2.854 3.6 4.509 0.633 0.793 

0.009 2.837 3.588 4.491 0.632 0.791 

0.01 2.812 3.568 4.46 0.631 0.788 

 

The results of the breaking conditions for various values of 

ε are presented in Table (6). From 𝜀 = 0.005  to 𝜀 = 0.01, 

the breaking conditions vary only in the third decimal place, 

with 𝛿𝜀 changing by 0.001. However, the difference 

between the breaking conditions with 𝜀 = 0.005  and 𝜀 =

0.01  is quite significant. 

The breaker depth index from the model is 
𝐻𝑏

ℎ𝑏
= 0.788, 

which closely aligns with Mc. Cowan's (1894) criterion of 
𝐻𝑏

ℎ𝑏
= 0.78. However, the most influential factors in 

determining the breaker depth and breaker depth index are 

the deep water coefficient 𝜃, the larger 𝜃, the smaller the 

breaker depth index. The contribution coefficient only 

corrects the third decimal place. In Table (6), the breaker 

depth index is obtained using 𝜃 = 1.95. 

The smallest breaker steepness 
𝐻𝑏

𝐿𝑥,𝑏
 is 0.631, achieved at 𝜀 =

0.01. This breaker steepness is significantly larger than the 

critical wave steepness from both Michell (1893) and 

Toffoli et al. (2010). This is because the breaker steepness 

occurs in regions of high wave energy concentration. 

Breaking occurs when (
1

√𝛾𝑧
−

𝑘𝐴

2
) = 0, 

𝑘𝐴

2
=

1

√𝛾𝑧

 

Considering 𝑘𝑥 =
𝑘

√𝛾𝑥
 or 𝑘 = 𝑘𝑥√𝛾𝑥 and 𝑘𝑥 =

2𝜋

𝐿𝑥
 the 

following is obtained, 

𝐻𝑏

𝐿𝑥,𝑏

=
2

𝜋√𝛾𝑥√𝛾𝑧

 

Hence, the breaking characteristics are determined by the 

coefficients of the truncated Taylor series. The smaller  𝛾𝑥 

and 𝛾𝑧  then the higher  the critical wave steepness 
𝐻𝑏

𝐿𝑥,𝑏
, 

making breaking more challenging. Conversely, the larger 

𝛾𝑥 and 𝛾𝑧 the smaller the critical wave steepness 
𝐻𝑏

𝐿𝑥,𝑏
, making 

waves more prone to breaking. 

 

c. Results of Refraction-Diffraction Model 

The equations derived from the shoaling-breaking 

equations can be transformed into refraction-diffraction 

equations using the method proposed by Hutahaean (2003). 

The refraction-diffraction model is executed with two 𝜀 

values: 0.005 and 0.01, considering the bathymetry of a 

submerged island (Fig (1)). Contour plots of 2D wave 

height are presented in Fig (2), with (a) using 𝜀 = 0.005  
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and (b) using 𝜀 = 0.01. Three-dimensional contour plots 

are depicted in Fig (3). 

 
Fig.1: Contour of Submerged Island Bathymetry 

 

 

(a)                                        (b) 

Fig.2: Contour of Wave Height 

  

Fig.3: 3D Contour of Wave Height 

Both refraction-diffraction model results show no 

discernible differences. From these findings, it can be 

concluded that the contribution coefficient does not play a 

significant role; the primary factors at play are the main 

values of weighting coefficients. 

In conclusion, the results of the study on weighting 

coefficients are as follows: 

The baseline values of weighting coefficients are,  

For the function 𝑓(𝑥, 𝑡): 𝛾𝑡,2 = 2.0, 𝛾𝑥 = 1.0 

For the function 𝑓(𝑥, 𝑧, 𝑡): 𝛾𝑡,3 = 3.0, 𝛾𝑥 = 1.0, 𝛾𝑧 = 1.0 

The recommended corrected values for the weighting 

coefficients are based on the optimization coefficient 𝜀 =

0.01 where,  𝛾𝑡,2 = 1.99960 , 𝛾𝑡,3 = 3.00980, 𝛾𝑥 =

0.99758, 𝛾𝑧 = 1.02295. 

 

VII. CONCLUSION 

As widely recognized, the precision of the Taylor series 

hinges on the inclusion of high-order terms. The greater the 

number of these terms, the more accurate the approximation 

becomes. High-order terms encapsulate essential features of 

the function under consideration in the series, making them 

indispensable. When restricting a series to only first-order 

terms, the incorporation of a set of weighting coefficients 

becomes necessary to account for the high-order terms, 

resulting in a weighted Taylor series. 

The Central Difference Method establishes the foundational 

values for these weighting coefficients. These baseline 

values undergo refinement through the inclusion of 

contribution coefficients derived from high-order terms 

with odd differentials, introducing relatively minor 

adjustments. In the context of modeling shoaling breaking, 

these contribution coefficients make subtle corrections to 

breaking characteristics, particularly at the third decimal 

place. Notably, the baseline values of weighting coefficients 

are derived without a prerequisite knowledge of the 

functional form, while determination of contribution 

coefficients relies on knowledge of the functional form. 

Thus, it is evident that baseline values hold a general 

applicability across various functional forms. 

Despite the modest impact of contribution coefficients on 

both weighting coefficients and model outcomes, their 

significance should not be understated, as they play a crucial 

role in ensuring accuracy in balance equations. In models 

demanding high numerical precision, such as time series 

models, it is advisable to utilize weighting coefficients 

corrected by contribution coefficients to enhance accuracy. 
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