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Abstract —This article presents the methodology to use 

cubic splines interpolation method to fit the stress-strain 

curve, in the field of permanent deformation, based on 

experimental data obtained on performed tests on a 

standardized specimen of SAE 1020 steel hot rolled flat. 

The third-order polynomial for each interval between 

knots was used to fit the stress-strain curve.  
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I. INTRODUCTION 

According to Vicente Chiaverini (1986), the materials 

tend to deform when subjected to mechanical stresses, 

and, depending on the nature of each material, their 

behavior during deformation may vary. Metals can 

undergo considerable permanent deformation before to 

rupture. The application of cubic splines for the 

construction of the strain-strain curve, in the field of 

permanent deformation, through the mathematical 

manipulation of data obtained in experimental tests, 

allows the identification of third-order interpolator 

polynomials to obtain the value of the acting axial tension 

for a certain measured deformation. 

The benefits are the possibility of obtaining values of the 

axial tension for a given deformation, point of constraint 

and better approximation of the stress-strain curve. 

 

II. MATERIAL AND METHODOLOGY OF 

THE TEST 

The experimental data were obtained by tensile tests 

performed on samples of specimens made of SAE 1020 

hot rolled material. The tests were performed on a vertical 

traction machine.  

 

2.1 SPECIMEN USED ON EXPERIMENTAL TESTS 

The specimens used in the tensile tests were prepared 

according to the recommendations of ASTM E8 / E8M. 

The material used was SAE 1020 hot rolled steel. 

 
Fig. 1: Specimen Used on Experimental Tests 

 

2.2 METHODOLOGY OF THE EXPERIMENTAL 

TESTS 

The tests were carried out on four identical samples of the 

test specimen, in order to compare the values obtained in 

the tests and to guarantee the responses of the equipment 

used.  

The specimens were fixed to the vertical traction machine 

by means of wedge-shaped jaws, suitable to reduce 

slippage during load application, which reduces errors in 

data collection. 

The axial tensile load was applied to the test pieces 

gradually, causing the deformation of the same. The axial 

tensile load was raised until fracture of each of the test 

specimens used in the tests. 

 

2.3 RESULTS OBTAINED IN THE 

EXPERIMENTAL TESTS 

The results obtained in the tensile tests of each of the four 

test specimens are described in the table below. Seven 

measuring points were taken, all within the permanent 

deformation field, where the values of the axial tensile 

load and its respective value of permanent deformation of 

the specimen were collected. 

The value of the deformation collected in the first 

measurement covers the field of elastic deformation, 

which was linear for all the specimens tested. As this 

work aims to work only with the data of the curve of 

permanent deformation, which is not linear, the data 

referring to the field of elastic deformation were 

suppressed. 
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Table. 1: Results of Experimental Tests 

 
 

III. MATHEMATICAL ANALYSIS OF 

RESULTS OF EXPERIMENTAL TESTS 

3.1 MATHEMATICAL TREATMENT OF TEST 

RESULTS 

Based on the results obtained in the experimental tests, a 

new the table was elaborated with the results that will be 

taken as basis for the application of the interpolating 

polynomials of the cubic splines. "Table 2" was 

constructed by taking as reference the mean values 

obtained in the experimental tests of the four specimens 

of the specimen. 

Table. 2: Mean values obtained in the experimental tests. 

 
The data in Table 2 will be used to develop the 

mathematical equations that will be demonstrated in the 

next topic. 

 

3.2 MATHEMATICAL TREATMENT OF TEST 

RESULTS 

According to Steven C. Charpa and Raymond P. Canale 

(2011), the spline concept originated from a drawing 

technique in which a thin, flexible strip (called a spline) 

was used to draw a smooth curve through a set of points . 

A smooth cubic curve results from interspersing the strip 

between the pins. Thus, the name "cubic splines" was 

adopted for such polynomials. 

Cubic splines will be applied to determine a third-order 

polynomial, for each of the intervals, of the seven 

experimental measurements, in order to approximate the 

strain x strain curve of the experimental results. 

First, we will write the third-order polynomials for each 

of the experimental data ranges. 
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Applying the condition that the function values must be 

equal at the interior knots, and the first and last functions 

must pass through the end points, we have the following 

equations: 

S(7,44)=411,83.a1+55,35.b1+7,44.c1+d1=38,76             (7) 

S(9,30)=804,36.a1+86,49.b1+9,30.c1+d1=45,56             (8) 

S(9,30)=804,36.a2+86,49.b2+9,30.c2+d2=45,56             (9) 

S(11,16)=1389,93.a2+124,55.b2+11,16.c2+d2=49,80   (10) 

S(11,16)=1389,93.a3+124,55.b3+11,16.c3+d3=49,80   (11) 

S(13,02)=2207,16.a3+169,52.b3+13,02.c3+d3=51,89   (12) 

S(13,02)=2207,16.a4+169,52.b4+13,02.c4+d4=51,89   (13) 

S(14,88)=3294,65.a4+221,41.b4+14,88.c4+d4=52,88   (14) 

S(14,88)=3294,65.a5+221,41.b5+14,88.c5+d5=52,88   (15) 

S(16,74)=4691,01.a5+280,23.b5+16,74.c5+d5=52,92   (16) 

S(16,74)=4691,01.a6+280,23.b6+16,74.c6+d6=52,92   (17) 

S(18,60)=6434,86.a6+345,96.b6+18,60.c6+d6=51,68   (18) 

 

Applying the condition that the first derivatives at the 

interior knots must be equal, we have the following 

equations: 

 

259,47.a1+18,60.b1+c1 =259,47.a2+18,60.b2+c2           (19) 

373,64.a2+22,32.b2+c2 =373,64.a3+22,32.b3+c3           (20) 

508,56.a3+26,04.b3+c3 =508,56.a4+26,04.b4+c4           (21) 

664,24.a4+29,76.b4+c4 =664,24.a5+29,76.b5+c5           (22) 

840,68.a5+33,48.b5+c5 =840,68.a6+33,48.b6+c6           (23) 

 

Applying the condition that the second derivatives at the 

interior knots must be equal, we have the following 

equations: 

 

55,80.a1+2.b1 =55,80.a2+2.b2                                        (24) 

66,96.a2+2.b2 =66,96.a3+2.b3                                        (25) 

78,12.a3+2.b3 =78,12.a4+2.b4                                        (26) 

89,28.a4+2.b4 =89,28.a5+2.b5                                        (27) 

100,44.a5+2.b5 = 100,44.a6+2.b6                                   (28) 

 

Applying the condition that the second derivatives at the 

end knots are zero, we have the following equations: 

 

02.b+44,64.a 11                                                         (29) 

02.b+.a60,111 66                                                       (30) 
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Solving the linear system, from equation 7 to equation 30, 

with their respective twenty-four unknowns, the 

following values were obtained. 

 

a1 = -0,05497, b1 =1,22701, c1= -5,28285 e d1 =32,78479; 

a2 = -0,03342, b2 =0,62565, c2 =0,30979 e d2 = 15,44759; 

a3=0,07327, b3= -2,94646, c3=40,17451 e d3= -133,42537; 

a4 = -0,00696, b4=0,18739, c4 = -0,62827 e d4 = 43,65871; 

a5 = -0,02213, b5 =0,86487, c5= -10,70909 e d5=93,65957; 

a6 =0,04421, b6 = -2,46692, c6=45,06517 e d6= -217,5607. 

 

In this way, we can write the polynomials that 

approximate the value of the acting axial stress as a 

function of the deformation measured in the experimental 

tests, for each of the intervals between the measurements. 

 

S(x)= -0,05497.x3 + 1,22701.x2 - 5,28285.x + 32,78479; 

if x ϵ [7,44;9,30] 

S(x)= -0,03342.x3 + 0,62565.x2 + 0,30979.x + 15,44759; 

if x ϵ [9,30;11,16] 

S(x) = 0,07327.x3 - 2,94646.x2 + 40,17451.x - 133,42537; 

if x ϵ [11,16;13,02] 

S(x)= - 0,00696.x3 + 0,18739.x2 - 0,62827.x +43,65871; 

if x ϵ [13,02;14,88] 

S(x)= -0,02213.x3 + 0,86487.x2 - 10,70909.x +93,65957; 

if x ϵ [14,88;16,74] 

S(x) = 0,04421.x3 - 2,46692.x2 + 45,06517.x - 217,56079; 

if x ϵ [16,74;18,60] 

 

3.3 APPROXIMATION OF THE STRESS-STRAIN 

CURVE WITH THE USE OF THE CUBIC 

SPLINES 

The cubic splines that approximate the stress values for 

the deformations evidenced in the experimental tests, 

obtained through the mathematical methods demonstrated 

in topic 2.2, were used to construct the strain-strain curve, 

as can be seen in Fig. 2. 

The curve was constructed with the application of the 

cubic splines in the numerical calculation software VCN. 

 

 
Fig. 2: Stress x strain curve obtained through the cubic 

spline polynomials 
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