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Abstract— Laccases benzenediol: oxygen oxidoreductase (EC1.10.3.2), 

multicopper containing oxidoreductase enzymes, are able to catalyze the 

oxidation of various low-molecular weight compounds, specifically, 

phenols and anilines, while concomitantly reducing molecular oxygen to 

water. Because of their high stability, selectivity for phenolic substructures, 

and mild reaction conditions, laccases are attractive for fine chemical 

synthesis. This manuscript provides a discussion of the recent applications 

of this interesting enzyme in synthetic chemistry, including laccase and 

laccase-mediator catalyzed reactions. There for fungal laccases are 

consider as a perfect green catalysts is a prominent biotechnological 

applications. Thus laccases find potential applications in bleaching of 

paper pulp, biofuel cells and organic synthesis. They can perform 

transformations from the oxidation of functional group to the hetero 

nuclear coupling product of new antibiotics derivative. 

 

I. INTRODUCTION 

Societal interest in green chemistry and advances 

in biotechnology have brought to the forefront the 

application of enzymes to address many of the challenges 

of modern synthetic organic chemistry. This multi-faceted 

challenge is being addressed by an ever-increasing suite of 

environmentally benign enzymes. Laccases 

(benzenediol: oxygen oxidoreductase[EC 1.10.3.2] 

belong to the multicopper oxidase family, along with 

such different proteins as plant ascorbic oxidase, 

mammalian ceruloplasmin ferroxidase from 

Saccharomyces cerevisiae, among others [1]. These 

copper containing enzymes catalyze the oxidation of 

various substrates with the simultaneous reduction of 

molecular oxygen to water [2]. Yoshida first 

discovered laccases in 1883 after observing that latex 

from the Japanese lacquertree (Rhus vernicifera) 

hardened in the presence of air [3]. This makes laccase 

as one of the oldest enzymes ever described. Since 

then, laccase activity has been found in plants, some 

insects [4], and few bacteria [5]. However, most 

biotechnologically useful laccases (i.e. those with 

high redox potentials) are of fungi origin. Over 60 

fungal strains belonging to Ascomycetes, 

Deuteromycetes and especially Basidiomycetes show 

laccase activities. Among the latter group, white rot 

fungi are the highest producers of laccases but also 

litter decomposing and ectomycorrhizal fungi secret 

laccases [6]. 
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Fig.1: Scheme of Scheme of T1 (Cu1) and T2/T3 (Cu4/Cu2-Cu3) copper sites of laccase Cot A 

from Bacillus subtilis, with indicated distances between the most important atoms 

 

Laccases are typically monomeric extracellular 

enzymes containing four copper atoms bound to 3 redox 

sites (T1, T2 and T3). The termed blue copper at the T1 

site because of its greenish blue colour in its oxidized 

resting state is responsible of the oxidation of the reducing 

substrate. The trinuclear cluster (containing one Cu T2 and 

two Cu T3) is located approx. 12 Å away from the T1 site, 

and it is the place where molecular oxygen is reduced to 

water [1] figure-1. Laccases catalyze one electron substrate 

oxidation coupled to the four electron reduction of O2. It is 

assumed that laccases operate as a battery, storing 

electrons from the four individual oxidation reactions of 

four molecules of substrate, in order to reduce molecular 

oxygen to two molecules of water. Fungal laccases often 

occur as multiple isoenzymes expressed under different 

cultivation conditions. Most are monomeric proteins, 

although laccases formed by several units have been also 

described [7, 8]. They are glycoproteins with average 

molecular mass of 60-70 kDa, and carbohydrate contents 

of 10-20% which may contribute to the high stability of 

laccases. The covalently linked carbohydrate moiety of 

the enzyme is typically formed by mannose, N-

acetylglucosamine and galactose. The amino acid 

chain contains about 520-550 amino acids including 

a N-terminal secretion peptide [4]. 

 

II. CATALYTIC PROPERTIES OF 

LACCASES AND MECHANISM OF 

CATALYSIS 

Reduction of dioxygen blue copper-containing 

oxidases including laccases, there is no general opinion 

about the electron transfer pathway inside the protein 

globule and the mechanism of dioxygen reduction in the 

molecule. The T1 site of laccases is thought to accept 

electrons from reducing substrates, and then they are 

transferred onto the three nuclear T2/T3 cluster where 

molecular oxygen is activated and reduced to water. 

Interaction of a completely reduced laccase with molecular 

oxygen results in different forms of the enzyme. Two well-

studied forms are termed peroxide intermediate and native 

intermediate. The native intermediate plays an important 

role in the catalytic cycle of laccase. During reaction with 
17O2, this intermediate acts as an oxygen radical shown in 

figure-2. 
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Fig.2: Catalytic cycle of laccase showing the mechanism of reduction and oxidation of the enzyme copper sites 

 

III. BIOLOGICAL FUNCTIONS AND 

INDUSTRIAL APPLICATIONS 

Biological functions attributed to laccases 

include spore resistance and pigmentation [9, 10] 

lignification of plant cell walls [11] lignin 

biodegradation, humus turnover and detoxification 

processes [8] virulence factors [12] and copper and 

iron homeostasis [13]. Laccases exhibit an 

extraordinary natural substrate range (phenols, 

polyphenols, anilines, aryl diamines, methoxy 

substituted phenols, hydroxyindols, benzenethiols, 

inorganic/organic metal compounds and many others) 

which is the major reason for their attractiveness for 

dozens of biotechnological applications [14]. 

Moreover, in the presence of small molecules, known 

as redox mediators, laccases enhance their substrate 

specificity. Indeed, laccase oxidizes the mediator and 

the generated radical oxidizes the substrate by 

mechanisms different from the enzymatic one, 

enabling the oxidative transformation of substrates 

with high redox potentials otherwise not oxidized by 

the enzyme, figure 1A. The industrial applicability of 

laccase may therefore be extended by the use of a 

laccase-mediator system (LMS) figure-2 (A). Thus, 

laccase and LMS find potential application in 

delignification and biobleaching of pulp [15] 

treatment of wastewater from industrial plants [16] 

enzymatic modification of fibers and dye bleaching in 

the textile and dye industries [17] enzymatic cross 

linking of lignin based materials to produce medium 

density fiberboards [18] detoxification of pollutants 

and bioremediation [19]. 

Detoxification of lignocellulose hydrolysates 

for ethanol production by yeast [20] enzymatic 

removal of phenolic compounds in beverages wine 

and beer stabilization, fruit juice processing [21] and 

construction of biosensors and biofuel cells [22]. In 

organic synthesis, laccases have been employed for 

the oxidation of functional groups [23] the coupling of 

phenols and steroids [24], the construction of carbon- 

nitrogen bonds [25] and in the synthesis of complex 

natural products [26] and more. As mentioned above, 

many of these applications require the use of redox 

mediators opening a big window for new 

biotransformation of non natural substrates towards 

which laccase alone hardly shows activity. On the 

other hand, in most of the cases large quantities of 

enzymes are required, which makes the efficient 

expression of laccase in heterologous systems an 

important issue. Moreover, the protein engineering of 

fungal laccases with the aim of improving several 

enzymatic features (such as activity towards new 

substrates, stability under harsh operating conditions 

e.g. presence of organic co solvents, extreme pH 

values-, thermo stability, and others) is a critical 

point in the successful application of this remarkable 

biocatalyst. All these issues are addressed in the 

following lines, paying special attention to their 

application in organic synthesis. 
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IV. LACCASE MEDIATOR SYSTEM  

The combination of the laccase with low 

molecular weight molecules such as 2,2'-azino-bis-(3-

ethylbenzothi-azoline-6-sulphonic acid) (ABTS) or 1-

hydroxybenzotria-zole (HBT) not only lead to higher 

rates and yields in the transformation of laccase 

substrates but also add new oxidative reactions to the 

laccase repertory towards substrates in which the 

enzyme alone had no or only marginal activity, 

figure-2 A, B. Thus, LMS enlarges substrate range 

being able to oxidize compounds with redox potential 

(E°)  figure2(B) higher than that of laccase (typically, 

laccase E° at the T1 site is in the range +475 to +790 

mV but the LMS allows to oxidize molecules with E° 

above +1100 mV) [27,28]. Besides, the mediator acts 

as a diffusible electron carrier enabling the oxidation 

of high molecular weight biopolymers such as lignin, 

cellulose or starch [1]. Hence, the steric issues that 

hinder the direct interaction between enzyme and 

polymer are overcome by the action of the redox 

mediator. LMS has resulted highly efficient in many 

biotechnological and environmental applications as 

regards the numerous research articles and invention 

patents published [29]. Many artificial mediators 

have been widely studied, from ABTS the first 

described laccase mediator [30], to the use of synthetic 

mediators of the type-NOH (such as HBT, violuric 

acid (VIO), N-hydroxyphtalimide (HPI) and N-

hydroxyacetanilide (NHA), the stable 2,2,6,6- 

tetramethyl-1-piperidinyloxy free radical (TEMPO), or 

the use of phenothiazines and other heterocycles (e.g. 

promazine or 1-nitroso-naphthol-3,6-disulfonic acid) 

[18] figure-2 (A) . More recently, complexes of 

transition elements (polyoxometalates) have been 

also demonstrated to mediate lignin degradation 

catalyzed by laccase [31]. The choice of a proper 

mediator (over 100 redox mediators have been 

described [32] represents a key consideration for a 

given biotransformation. The use of different 

mediators may yield different final products when 

using the same precursors. This is basically due to 

the fact that substrate oxidation in laccase mediator 

reactions occurs via different mechanisms. The 

mediator radicals preferentially perform a specific 

oxidation reaction based on its chemical structure 

and effective redox potential (or dissociation bond 

energy) [33].  

Despite all the associated advantages of 

LMS, there are two major drawbacks hindering the 

use of mediators: they are expensive and they can 

generate toxic derivatives. Moreover, in some cases, 

while oxidizing the mediator, laccase is inactivated 

by the mediator radicals, or the latter can be 

transformed into inactive compounds with no more 

mediating capability (e.g. generation of benzotriazol 

from HBT by losing the hydroxyl group). Last trends 

are focusing in the use of low-cost and eco-friendly 

alternative mediators in this sense, several naturally 

occurring mediators produced by fungi (phenol, 

aniline, 4-hydroxy benzoic acid and 4-

hydroxybenzyl alcohol) have been identified. More 

recently, phenolic compounds derived from lignin 

degradation (such as acetosyringone, syringaldehyde, 

vanillin, acetovanillone, ferulic acid or  p- coumaric 

acid) have been demonstrated to be highly efficient 

laccase mediators of natural origin (even better than 

the powerful artificial ones) for dye decolorization, 

removal of polycyclic aromatic hydrocarbons, pulp 

bleaching and pitch removal [34]. These natural 

compounds can be obtained at low cost due to their 

abundance in nature and also in industrial paper pulp 

wastes, smoothing the progress to a more 

environmental friendly and sustainable white 

biotechnology processes figure-3. 

 

Fig.3: Potential biotechnological applications of laccase enzyme 
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V. APPLICATIONS OF LACCASES IN 

ORGANIC SYNTHESIS 

Organic synthesis of chemicals suffers from 

several draw backs, including the high cost of 

chemicals, cumbersome multi step reactions and 

toxicity of reagents [2]. Laccases might prove to be 

very useful in synthetic chemistry, where they have 

been proposed to be applicable for production of 

complex polymers and medical agents. Indeed, the 

application of laccase in organic synthesis has 

arisen due to its broad substrate range, and the 

conversion of substrates to unstable free (cation) 

radicals that may undergo further non-enzymatic 

reactions such as polymerization or hydration figure-

4.  

 

Fig.4: Structure of some artificial [ABTS, HBT, Violuric acid VIO-, TEMPO, pyromazine, 1-nitroso-naphthol-3, 6-disulfonic 

acid-NNDS] and lignin derive derived natural mediators [acetosyringone, syringaldehyde, vaniline, acetovanlone, p-

coumaric acid, ferulic acid and sinapic acid] 

 

VI. LACCASES FOR ENZYMATIC 

POLYMERIZATION 

Enzymatic polymerization using laccases has 

drawn considerable attention recently since laccase or 

LMS are capable of generating straight forwardly 

polymers that are impossible to produce through 

conventional chemical synthesis [35]. For example, 

the polymerization ability of laccase has been applied 

to catechol monomers for the production of 

polycatechol [36]. Polycatechol is considered a 

valuable redox polymer; among its applications are 

included chromatographic resins and the formation of 

thin films for biosensors. Former methods for the 

production of polycatechol used soybean peroxidase 

or horseradish peroxidase (HRP), which suffers from 

the common suicide H2O2 inactivation. The main 

limitation of all heme containing peroxidases is their 

low operational stability, mostly due to their rapid 

deactivation by H2O2 with half lifes in the order of 

minutes in the presence of 1 mM H2O2  [37]. Inert 

phenolic polymers, for example poly (1-napthol), may 

also be produced by laccase catalyzed reactions [38]. 

These polymers have application in wood composites, 

fiber bonding, laminates, foundry resins, abrasives, 

friction and molding materials, coatings and 

adhesives [39]. 

The enzymatic preparation of polymeric 

polyphenols by the action of laccases has been 

investigated extensively in the past decades as a 

viable and non-toxic alternative to the usual 

formaldehyde based chemical production of these 

compounds [40]. Poly (2,6-dimethyl-1,4-oxy- 
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phenylene) poly(phenylene oxide), PPO-, is widely 

used as high-performance engineering plastic, since 

the polymer has excellent chemical and physico 

mechanical properties. PPO was first prepared from 

2,6-dimethylphenol monomer using a copper/amine 

catalyst system. 2,6-Dimethylphenol was also 

polymerized through HRP catalysis to give a polymer 

consisting of exclusively 1,4- oxyphenylene units 

[41]. On the other hand, a small amount of Mannich 

base and 3,5,3'5'-tetramethyl-4,4'- diphenoquinone 

units are contained in the commercially. 

 

 

 

 

 

VII. OXIDATIVE TRANSFORMATION 

OF ORGANIC COMPOUNDS BY 

LACCASE ENZYME 

Laccases have been used to synthesize 

products of pharmaceutical importance. The first 

chemical that comes to mind is actinocin, synthesized 

via a laccase catalyzed reaction from 4-methyl-3-

hydroxyanthranilic acid as shown in figure 7A. This 

pharmaceutical product has proven effective in the 

fight against cancer as it blocks transcription of 

tumor cell DNA [42]. Other examples of the potential 

application of laccases for organic syntheses include 

the oxidative coupling of katarantine and vindoline 

to yield vinblastine. Vinblastine is an important 

anticancer drug, especially useful in the treatment of 

leukemia. Vinblastine is a natural product that may 

be extracted from the plant Catharanthus roseus 

figure-5 and 6.  

 

Fig.5: (A) Synthesis of actinocin via a laccase catalysed reaction, (B) Synthesis of novel cyclosporine reaction product 

obtained from cyclosporine A by HBT mediated laccase oxidation, (C) Products obtained by the laccase/hydroquinone 

mediated oxidation of (+)  catechin. 
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Fig.6: (A, ii-v) Dimeric products obtained by the oxidation of β-estradiol, (B) Dimeric product obtained by the oxidation of 

the phytoalexin resveratrol. 

 

The compound is however only produced in 

small quantity in the plant, whereas the precursors-

namely katarantine and vindoline are at much higher 

concentrations, and thus are relatively inexpensive to 

obtain and purify. A method of synthesis has been 

developed through the use of laccase with preliminary 

results reaching 40% conversion of the precursors to 

vinblastine [2] figure 6. Laccase coupling has also 

resulted in the production of several other novel 

compounds that exhibit beneficial properties, e.g. 

antibiotic properties. 

 

VIII. CONCLUSION 

This manuscript demonstrates the usefulness of 

the laccase in recent synthetic applications. Laccase or 

laccase mediator systems it provide alternative, 

environmentally friendly, oxidation methods that can be 

used to replace a host of traditional chemical oxidants for a 

wide range of substrates. This increased application of 

laccase in organic synthesis will future as our 

understanding of the enzyme structure and mechanism and 

new laccases are discovered. It is anticipated that the 

reaction conditions under which laccase performs will be 

broadened and this will open further research 

opportunities. In addition, it is also used in fast moving 

consumer goods (FMCG) as tooth paste, mouthwash, 

detergent, soap, and diapers in cosmetics as deodorants; in 

beverage and food industry for wine and juice 

stabilization.  
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