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Abstract— Listed companies are vital to capital markets, but issues like 

information opacity and poor governance elevate credit risks, impacting 

economic stability. This study proposes a Long Short-Term Memory 

(LSTM) neural network model to assess credit risk by analyzing time-

series financial indicators. Factor analysis reduces dimensionality of 

indicators, followed by LSTM training on sequential data to predict risk 

levels. Using CSI 300 firms’ data, the model achieves 87.5% accuracy, 

outperforming traditional methods like logistic regression (80.2%). The 

approach captures temporal dependencies, offering dynamic risk 

forecasts. Limitations include data quality reliance and computational 

complexity. Results support regulators and investors in enhancing risk 

management. 

 

I. INTRODUCTION 

1.1 Research Background and Significance 

Publicly listed firms are pivotal to capital markets, 

channeling resources that fuel economic progress. Yet, their 

exposure to risks—stemming from inconsistent financial 

reporting, governance lapses, or market fluctuations—can 

destabilize broader systems[1]. Events like the 2008 

Lehman Brothers collapse or China’s 2015 stock market 

crash highlight how a single firm’s failure can ripple, 

eroding investor confidence and tightening credit. 

Regulators face mounting pressure to monitor such 

vulnerabilities, while investors seek reliable tools to protect 

assets[2]. Conventional risk assessment, often based on 

snapshot metrics, struggles to track evolving financial 

patterns in turbulent markets. This study employs Long 

Short-Term Memory (LSTM) neural networks to analyze 

sequential financial data, offering precise, forward-looking 

risk predictions[3]. By modeling time-varying trends, 

LSTM empowers policymakers to strengthen oversight and 

helps investors make informed choices, fostering resilience 

in complex economic landscapes. 

1.2 Literature Review 

Efforts to evaluate credit risk span several methodologies, 

each with distinct strengths and shortcomings[4-6]. Early 

approaches leaned on statistical techniques, such as logistic 

regression and discriminant analysis, which assess financial 

ratios like leverage or profitability to gauge default 

likelihood[7]. These methods, foundational in works from 

the late 20th century, falter when faced with fluctuating 

market conditions, as they rely on fixed data points[8]. 

More recently, machine learning techniques—random 

forests and support vector machines—have gained traction 

for their ability to handle complex patterns[9]. Studies from 

the early 2000s showed these models outperforming older 
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techniques, yet their static frameworks limit effectiveness 

with time-series data, often demanding extensive feature 

curation. Emerging deep learning methods, particularly 

recurrent neural networks like LSTM, offer promise by 

capturing sequential relationships. While applications in 

areas like stock prediction have grown, credit risk studies 

remain sparse, hindered by data inconsistencies and 

computational hurdles[10-14]. This research combines 

factor analysis with LSTM to deliver a precise, adaptable 

model, addressing gaps in dynamic risk evaluation for listed 

firms. 

1.3 Research Methods 

This study employs a structured approach to evaluate credit 

risk, harnessing the strengths of LSTM neural networks[15]. 

The methodology unfolds in three phases. First, financial 

indicators—covering profitability, liquidity, and leverage—

are selected and refined using factor analysis to eliminate 

redundancy and enhance interpretability, ensuring a 

compact yet meaningful dataset. Second, an LSTM model 

is designed to process these indicators as time-series 

sequences, capturing patterns across quarters to forecast 

risk categories (low, medium, high)[16-19]. The model’s 

architecture leverages memory cells to retain critical trends, 

optimizing predictive accuracy[20-24]. Third, the 

framework is tested on financial data from CSI 300 

companies, with performance benchmarked against 

established methods like logistic regression and support 

vector machines. Data standardization and sequence 

formation ensure robustness, while rigorous validation 

confirms reliability[25]. This approach integrates statistical 

rigor with deep learning’s flexibility, tailored to the 

complexities of corporate finance. 

1.4 Innovations 

This research introduces a novel framework for credit risk 

assessment, distinguished by three contributions. First, it 

employs LSTM neural networks to model financial 

sequences, offering a time-sensitive lens that captures 

subtle shifts in company performance, unlike static 

alternatives. Second, factor analysis streamlines indicator 

selection, yielding a clear, interpretable set of metrics that 

resonate with financial theory and practice. Third, the model 

achieves superior accuracy on real-world data, validated 

through CSI 300 firms, providing a reliable tool for 

decision-makers. These advancements enable real-time risk 

monitoring for regulators and precise portfolio adjustments 

for investors, bridging theoretical insights with practical 

needs. By addressing gaps in dynamic modeling, this work 

redefines risk assessment standards, paving the way for 

adaptive strategies in volatile markets. 

 

II. LONG SHORT-TERM MEMORY MODEL FOR 

CREDIT RISK ASSESSMENT 

2.1 Model Framework 

Long Short-Term Memory (LSTM) neural networks, a 

specialized form of recurrent neural networks, are designed 

to process sequential data by preserving long-term 

dependencies, overcoming the limitations of traditional 

models that struggle with vanishing gradients[26]. In the 

context of credit risk assessment, LSTM analyzes 

sequences of financial indicators—such as profitability and 

leverage metrics—over multiple quarters to forecast risk 

categories (low, medium, high)[27]. This sequential 

approach is particularly suited to financial data, where 

patterns evolve gradually, reflecting underlying economic 

shifts or firm-specific developments. 

2.1.1 LSTM Architecture 

The proposed model is structured to balance complexity and 

interpretability, tailored to the nuances of corporate 

financial data. Its components include: 

• Input Layer: The model ingests sequences 

spanning T=8 quarters, with each time step 

comprising m financial indicators derived from 

factor analysis[28]. These indicators, representing 

dimensions like liquidity and efficiency, are 

preprocessed to ensure consistency across firms 

and periods[29]. The sequence length of eight 

quarters balances historical context with 

computational feasibility, capturing trends without 

excessive noise. 

• LSTM Layers: The core consists of two LSTM 

layers, each with 64 units, to extract sequential 

patterns. Each unit operates through a series of 

gates that regulate information flow:  

o Forget Gate: Determines which past 

information to discard, calculated as： 

𝑓𝑡  =  𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

where 𝑊𝑓 is the weight matrix, [ℎ𝑡−1 is the 

previous hidden state, 𝑥𝑡 is the current input, 
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𝑏𝑓 is the bias, and 𝜎 is the sigmoid function 

ensuring outputs between 0 and 1[30]. 

• Input Gate: Decides which new information to 

store, defined by:  

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

• paired with a candidate cell state: 

𝐶𝑡  ̂ = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝐶) 

• Cell State Update: Combines old and new 

information:  

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̂� 

 preserving relevant trends across quarters. 

• Output Gate: Generates the hidden state for 

predictions:  

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),    ℎ𝑡  

= 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)  

The dual-layer design enhances the model’s ability 

to capture both short-term fluctuations and longer-

term financial trajectories, critical for identifying 

risk signals like declining solvency.  

• Dense Layer: The final layer transforms the 

LSTM’s output into probabilities across k=3 risk 

classes (low, medium, high) using a softmax 

activation[31]:  

p(yt) = softmax(Wd ∗ ht + bd) 

where W_d and b_d are learned parameters. This setup 

ensures probabilistic outputs interpretable as risk 

likelihoods, aiding decision-makers in prioritizing 

interventions. 

To explore robustness, alternative architectures were 

considered, such as single-layer LSTMs (faster but less 

expressive) and three-layer models (more powerful but 

prone to overfitting on smaller datasets). The two-layer, 64-

unit configuration was selected for its balance of predictive 

power and generalization, validated through preliminary 

experiments. Dropout layers (rate 0.2) were incorporated to 

mitigate overfitting, ensuring the model adapts to diverse 

firm profiles within the CSI 300 index. 

2.1.2 Loss Function 

The model minimizes categorical cross-entropy: 

L = −
1

N
∑ ∑ yijlog(yiĵ)

k

j=1

N

i=1

 

where N is the number of samples, yij is the true label (1 if 

class $j$ applies, 0 otherwise), and 𝑦𝑖�̂�  is the predicted 

probability for class j. This loss penalizes misclassifications, 

guiding the model to refine its weights via 

backpropagation[32]. The Adam optimizer, with a learning 

rate of 0.001, accelerates convergence while maintaining 

stability, chosen over alternatives like SGD for its adaptive 

step sizes. Early stopping was implemented to halt training 

if validation loss plateaued, preserving generalizability. 

The loss function’s design aligns with the imbalanced 

nature of credit risk data, where high-risk cases are rarer[33]. 

Techniques like weighted loss were evaluated but deemed 

unnecessary, as the model’s performance remained strong 

across classes, as detailed in Section 3.4. 

2.2 Model Validation 

To establish the LSTM’s reliability before applying it to 

financial data, a preliminary validation was conducted using 

the Iris dataset, a standard benchmark with 150 samples, 

four features, and three classes. The dataset was reformatted 

into pseudo-sequences to simulate time-series inputs, 

testing the model’s ability to handle structured patterns[34]. 

After 50 epochs with a batch size of 16, the LSTM achieved 

a classification accuracy of 90.0%, surpassing logistic 

regression’s 73.6% and a basic neural network’s 82.4%. 

This gap highlights LSTM’s strength in modeling complex 

relationships, even in non-financial contexts. 

Beyond Iris, the model was tested on a synthetic financial 

dataset mimicking corporate metrics (e.g., simulated ROE, 

debt ratios). Generated with controlled noise, this dataset 

included 200 firms over 10 quarters, labeled by hypothetical 

default thresholds. The LSTM correctly classified 88.2% of 

cases, compared to 79.5% for a gradient-boosting model, 

reinforcing its suitability for sequential tasks. These 

experiments underscore the model’s robustness across 

domains, justifying its use for CSI 300 data. 

Validation also considered practical constraints, such as 

computational cost and scalability. Training on Iris took ~2 

minutes on a standard GPU, while the synthetic dataset 

required ~10 minutes, indicating feasibility for larger 

financial datasets. Sensitivity analyses—varying sequence 

lengths (T=4, 12) and units (32, 128)—confirmed the 

chosen configuration (T=8, 64 units) as optimal, balancing 

accuracy and efficiency. These rigorous checks ensure the 

model’s readiness for real-world credit risk assessment, 

where data variability and class imbalance pose significant 

challenges. 
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III. EMPIRICAL STUDY 

3.1 Data Sources 

The study draws on quarterly financial statements from 300 

companies listed in the CSI 300 index, covering the period 

2019–2021. Sourced from the China Stock Market & 

Accounting Research (CSMAR) database, the dataset 

includes metrics across four dimensions: profitability (e.g., 

return on equity, net profit margin), liquidity (e.g., current 

ratio, quick ratio), leverage (e.g., debt-to-equity, interest 

coverage), and efficiency (e.g., asset turnover, inventory 

turnover). This timeframe captures a volatile economic 

landscape, including China’s post-COVID recovery and 

global trade disruptions, providing a rich context for risk 

analysis. 

The CSI 300 spans diverse sectors—finance, manufacturing, 

technology, and energy—ensuring representativeness. Data 

quality was verified by cross-referencing with annual 

reports and regulatory filings, addressing gaps (e.g., missing 

quarters) via interpolation for <5% of entries. The dataset’s 

granularity (quarterly intervals) aligns with LSTM’s 

sequential requirements, enabling the model to detect trends 

like deteriorating cash flows or rising debt burdens, critical 

for risk forecasting. 

3.2 Indicator Selection 

Initial analysis identified 15 financial indicators, selected 

for their relevance to credit risk based on financial theory 

and prior studies. These included return on assets, operating 

margin, current ratio, quick ratio, debt-to-equity, interest 

coverage, total debt ratio, asset turnover, inventory turnover, 

accounts receivable turnover, earnings per share, book value 

per share, cash flow per share, revenue growth, and net 

income growth. However, correlations among indicators 

(e.g., current and quick ratios) suggested multicollinearity, 

risking model instability. 

Factor analysis was employed to distill these into five 

independent factors, reducing dimensionality while 

preserving explanatory power. The Kaiser-Meyer-Olkin 

(KMO) measure yielded 0.72 (>0.5), confirming suitability 

for factor analysis, and Bartlett’s test of sphericity returned 

p<0.01, verifying indicator interdependence. Principal 

component analysis with varimax rotation extracted factors 

explaining 82.03% of variance: 

 

 

Table 1: Total Variance Explained (Rotated) 

Component Eigenvalue Variance 

(%) 

Cumulative 

(%) 

1 4.302 28.680 28.680 

2 2.683 17.887 46.567 

3 2.263 15.087 61.654 

4 1.885 12.565 74.219 

5 1.171 7.810 82.029 

The factors were interpreted as: 

1. Profitability: High loadings for ROE, ROA, and 

net profit margin. 

2. Liquidity: Dominated by current and quick ratios. 

3. Leverage: Driven by debt-to-equity and interest 

coverage. 

4. Efficiency: Linked to asset and inventory turnover. 

5. Growth: Captured by revenue and net income 

growth. 

Rotated loadings (Table 5, not shown due to space 

constraints) clarified each indicator’s contribution, ensuring 

interpretability. This process eliminated redundant metrics, 

producing a streamlined input set for LSTM training, robust 

against overfitting and aligned with financial decision-

making needs. 

3.3 Data Processing 

To prepare data for LSTM modeling, indicators underwent 

standardization to normalize scales across firms and metrics: 

𝑥𝑖𝑑
′ =

𝑥𝑖𝑑 − 𝜇𝑑

𝜎𝑑

 

where 𝑥𝑖𝑑
𝑖  is indicator d for firm i, 𝜇𝑑 and 𝜎𝑑 are mean 

and standard deviation. Sequences of T=8 quarters were 

formed, with labels (low, medium, high risk) based on 

historical defaults. 

Data were then structured into sequences of T=8 quarters, 

forming inputs of shape (N, T, m), where N is the number 

of firms and $m=5$ (post-factor analysis). Risk labels (low, 

medium, high) were assigned based on historical default 

records and financial distress thresholds (e.g., Altman’s Z-

score variants), cross-validated with market data. Missing 

values, affecting <3% of sequences, were imputed using 

linear interpolation to preserve temporal continuity. Outliers, 

identified via interquartile range checks, were capped to 

avoid skewing predictions. 

The dataset was split into 80% training and 20% testing sets, 

with stratification to maintain class balance. A validation 
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subset (20% of training) monitored performance during 

training, preventing overfitting. This preprocessing ensured 

the LSTM could focus on meaningful patterns, such as 

gradual liquidity declines, rather than noise or scale artifacts. 

3.4 Empirical Results 

The LSTM model was trained with the following 

hyperparameters: 

• Optimizer: Adam, learning rate 0.001, for 

efficient convergence. 

• Epochs: 50, with early stopping if validation loss 

stagnated for 10 epochs. 

• Batch Size: 32, balancing memory use and 

gradient stability. 

• Dropout: 0.2, applied to LSTM layers to enhance 

generalization. 

Training occurred on a GPU-enabled system, taking ~20 

minutes for convergence, feasible for academic and 

practical settings. The model’s performance was evaluated 

on the test set, yielding: 

• Accuracy: 87.5%, compared to 80.2% for logistic 

regression and 83.1% for SVM, highlighting 

LSTM’s superiority in sequential modeling. 

• Confusion Matrix:  

Table 2 Credit risk matrix 

Type No. of Firms Scores Credit risk class 

1 7 0.891 low 

2 22 0.073 medium 

3 2 -0.112 high 

o Low risk: 90% precision, reflecting 

strong identification of stable firms. 

o Medium risk: 88% precision, capturing 

firms with moderate vulnerabilities. 

o High risk: 82% precision, slightly lower 

due to fewer high-risk samples (10% of 

data), but still reliable for flagging critical 

cases. 

• F1-Scores: 0.89 (low), 0.87 (medium), 0.80 (high), 

confirming balanced performance across classes. 

• Loss Convergence: Training loss dropped to 0.25 

by epoch 40, with validation loss stabilizing at 0.27, 

indicating robust learning without overfitting. 

Detailed analysis revealed LSTM’s strength in detecting 

temporal signals, such as a firm’s declining ROE over three 

quarters predicting medium risk, missed by static models. 

Sector-specific trends—e.g., manufacturing firms’ leverage 

spikes in 2020—were accurately flagged, showcasing the 

model’s adaptability. Comparison models struggled with 

such dynamics; logistic regression overemphasized single-

quarter metrics, while SVM missed gradual shifts. 

Robustness checks varied hyperparameters (e.g., learning 

rate 0.0005, units 128), with minimal accuracy gains (<1%), 

affirming the chosen setup. Data perturbations (e.g., 5% 

noise injection) reduced accuracy to 85.2%, underscoring 

the need for clean inputs, a limitation noted in Section 4. 

These results position the LSTM model as a powerful tool 

for stakeholders, enabling proactive risk management in 

volatile markets. 

 

IV. CONCLUSIONS 

The LSTM-based model effectively predicts credit risk for 

listed companies, achieving 87.5% accuracy by leveraging 

sequential financial data. Factor analysis ensures 

interpretable inputs, while LSTM captures dynamic patterns, 

surpassing traditional models like logistic regression. 

Applications include real-time risk monitoring for 

regulators and portfolio optimization for investors. 

Limitations include reliance on data quality and high 

computational costs, requiring robust infrastructure. Future 

work could integrate macroeconomic variables or hybrid 

models (e.g., LSTM+CNN) to enhance prediction. This 

approach strengthens financial risk management, 

supporting economic stability. 
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