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Abstract—The evolution of space missions and related systems has been 

promoting innovation and creation of ideas for new technologies for 

decades. The search for innovative solutions that combine the optimization of 

resources and materials guide the recent research in the space area. The 

objective of this study is to analyze the behavior of two bodies connected by 

tethers and can be a solution for reducing costs in space missions, one of the 

concepts that have the potential to fulfill the objective of efficient transport 

space. In this paper it is discussed the motion of two massive bodies 

connected by tethers in keplerian motion in a central force field, their 

viability, the rotational dynamics and the system behavior in the space 

environment. Models will be created that simulate and explain the dynamics 

of the object and that analyzes the main parameters for determining the 

stability and the uniform rotations conditions. 

 

I. INTRODUCTION 

Tethered systems have many areas of application and has 

been studied in several published articles ([1]–[9]). 

Beletsky and Levin[1], begins by setting the scene for 

tethers in space summarizing possible applications and 

also discussing fact and fiction, analyzing clearly the main 

parameters and applications for Tethers Systems, as the 

density of the material the effective forces, orbital 

dynamics, mechanics models, attitude and possible 

disturbances for a flexible tethers with end masses, 

massless and massive variations.  

The motion of tethers considering dumbbell 

oscillations, bodies in the central field of vibrating forces 

(Burov et al.  ([10]–[14]), showing stability solutions for 

angles on the chaotic dynamics in elliptical orbit, 

analyzing the problem in another aspect of Moon-tethered 

pendulum, to considering the uniform rotations of a two-

body tethered system in planar motion and the control the 

length of the tether [15]. In studies ([15]-[21]) were 

suggested methods of controlling the geometric 

configurationand Moon-tethered system with variable 

tether length in restricted three-body problem ([16] and 

[22]) were studied and demonstrated important results for 

tethers applications in systems. 
 

II. DYNAMICS OF THE PROBLEM 

Consider planar motion of a dumbbell body in the central 

Newtonian gravitational field (Fig.1). The tether length (l) 

is small compared to the orbit the system center of mass 

(𝑐𝑚⊗), moves along an elliptic keplerian orbit. 

 
Fig.1: Geometry of the tether system in reference frame. 
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The body consists of two-point masses (𝑚1 and 𝑚2) 

connected by a light tether 

𝜌 =
𝑝

1 + 𝑒 cos(𝜈)
 (1) 

where p is the focal parameter, e the eccentricity and 𝜈 the 

true anomaly of the orbit. The system coordinates are 

{
  
 

  
 

𝑥0 = 𝜌 cos(𝜈)

𝑦0 = 𝜌 sin(𝜈)

𝑥1 = 𝑥0 + 𝑙1 cos(𝜈 + 𝜑)

𝑦1 = 𝑦0 + 𝑙1 sin(𝜈 + 𝜑)

𝑥2 = 𝑥0 − 𝑙2 cos(𝜈 + 𝜑)

𝑦2 = 𝑦0 − 𝑙2 sin(𝜈 + 𝜑)

 (2) 

 

1.1. Potential and Kinetic Energy 

The potential energy of the system can be obtained by the 

following expression, 

𝑉 = −
𝜇0𝑚1

|𝑟1⃗⃗⃗  |
−
𝜇0𝑚2

|𝑟2⃗⃗  ⃗|
 (3) 

where 𝑚𝑖 represents the mass of the point; 𝑟𝑖⃗⃗ the position of 

the point mass with respect to center of the Earth; 𝜇0 =

𝐺𝑀; 𝐺 is the universal gravitational constant and 𝑀 the 

mass of the Earth. Introduced the parameters, 𝜇 and 𝑚, 

given by 

𝜇 =
𝑚1

𝑚
 (4) 

𝑚 = 𝑚1 +𝑚2 (5) 

Substitute on Eq. (3)leads to 

𝑉 = −𝜇0𝜇 (
𝑚

√𝑥1
2 + 𝑦1

2
+

1 −𝑚

√𝑥2
2 + 𝑦2

2
) (6) 

The Eq. (7)is cumbersome and can be simplified, 

introducing a new parameter 𝜆 =
𝑙

𝑝
, and assuming 𝜆 ≪ 1 

the tether length is much smaller than the focal parameter 

𝑝. The Taylor Series expansion up to the 2𝑛𝑑 order of 𝜆 for 

the potential energy is 

𝑉

= −
𝑚𝜇0(1 + 𝑒 cos(𝜈))

𝑝

+
𝑚(𝜇 − 1)𝜇𝜇0(1 + 𝑒 cos(𝜈))

3(1 + 3 cos(2𝜑))𝜆2

4𝑝
 

(7) 

The kinetic energy of the system can be written as 

𝑇 =
𝑚1|𝑣1⃗⃗⃗⃗ |

2

2
+
𝑚2|𝑣2⃗⃗⃗⃗ |

2

2
 (8) 

𝑇 =
1

4
𝑚(

2𝑝2(1 + 𝑒2 + 2𝑒 cos(𝜈))𝜈2̇

(1 + 𝑒 cos(𝜈))4

− 2(𝜇 − 1)𝜇(𝑙2(𝜈̇ + 𝜑̇)2

+ 𝑙2̇)) 

(9) 

 

1.2. Lagrange Equations of Motion 

For the subsequent analysis, the generalized coordinates 𝜑 

and 𝑙 are used and the system is assumed to be subject to 

the gravity-gradient forces. 

{
 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜑̇
) −

𝑑𝐿

𝑑𝜑
= 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑙̇
) −

𝑑𝐿

𝑑𝑙
= 0

 (10) 

𝑙 (3𝜇0𝑠𝑖𝑛(2𝜑)(1 + 𝑒𝑐𝑜𝑠(𝜈))
3
+ 2𝑝3(𝜈̈ + 𝜑̈))

+ 4𝑝3𝑙(̇𝜈̇ + 𝜑̇) = 0 

(11) 

The equation is rewritten as a function of the true 

anomaly 𝜈 (Eq. (11)- (12)) 

( )′ =
𝑑

𝑑𝜈
 (12) 

𝑑

𝑑𝑡
= 𝜈̇

𝑑

𝑑𝜈
= 𝜔0(1 + 𝑒 cos(𝜈))

2
𝑑

𝑑𝜈
 (13) 

with 

𝜔0 =
𝜇0
𝑝3

 (14) 

The equations of motion of the spacecraft can be 

written as 

(1 + 𝑒 cos(𝜈))𝜑′′

+ 2(
𝑙′

𝑙
(1 + 𝑒 cos(𝜈))

− 𝑒 sin(𝜈)) (𝜑′ + 1)

+ 3 cos(𝜑) sin(𝜑) = 0 

(15) 

considering a movement with uniform rotations, 

𝜑 = 𝜔𝜈 + 𝜑0 (16) 

𝑙(𝜈) = 𝜂(𝜈)
𝑙0

1 + 𝑒 cos(𝜈)
 (17) 

Suppose the following relation for the tether 

performance (Eq. \ref{equa16}), the Eq. \ref{equa14} with 

respect to the true anomaly 𝜈 takes the form: 

𝜂′(𝜈)

𝜂(𝜈)
= −

3 sin(2(𝜔𝜈 + 𝜑0))

4(𝜔 + 1)(1 + 𝑒 cos(𝜈))
 (18) 

The analytical integration function is difficult but 

substituting values for the variable 𝜔 and solving the 

http://www.ijaers.com/
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equation with respect to the variable 𝜂, it is possible to 

obtain the following solutions (Table 1 and Figures 

\ref{fig2} - \ref{fig5}). Analytical solutions were found 

for this 𝜔 values previously chosen. The values for 𝜔 =

(±
1

4
, ±

3

4
, ±

5

4
, ±

7

4
, ±

9

4
, ±

11

4
, ±

13

4
, ±

15

4
) closed-form no 

solution. For 𝜔 = 0 was examined in previous studies [12] 

where the relative equilibrium was studied. 

 

Fig.2: Tether length control for 𝜔 =  1. 

 

Fig.3: Tether length control for 𝜔 =  2. 

 

Figure 4 -Tether length control for 𝜔 =  −4 

 

The control laws are periodic in true anomaly (𝜈). In 

Fig.2to Figure 4describe the change in tether length 

depending for different eccentricities,𝑒 =

 (0.04, 0.2, 0.3, 0.5, 0.8 ). The formulation also guarantees 

uniform rotation for fractional values of 𝜔, as seen in 

Figures6–9. 

 

 

Fig.5: Tether length control for 𝜔 = −
1

2
 

 

 

Fig.6: Tether length control for 𝜔 =
1

2
 

 

1.3. Uniform Rotations: 𝝋 = 𝝎𝝂 +𝝋𝟎 

Substitute (φ = ων + φ0) to Eq. (14)) and considering 

Eq. (17), it is possible to obtain the nonlinear differential 

equation that describes the motion of the tether. 

A general analytical integration for all values of ω 

cannot be found but for some values ω the closed form 

solutions obtain. A numerical integration has been 

performed, where ω and φ0 were substituted previously, 

with the objective of analyzing the behavior of the cable 

system. The logarithmic plots of  ln (
η

η0
) for a number of 

fractional angular velocities (Figures 6 - 9) was made. For 

the particular case when the value of ω is zero (ω =  0) 

and φ0 is constant, there are a uniform for  φ0 =
(𝑘)π

2
,  𝑘 =

{0,1,2,3,4, . . . }. 

http://www.ijaers.com/
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Fig.7: The control law for the tether length for 𝜔 = 0 and 

𝜑0 = 0. 

 

An approximate solution for small eccentricities can be 

obtained using Taylor series in Eq. (17)and obtain 

applying the series of order 3, in the variable e obtain: 

η′(ν)

η(ν)
=
3𝑒3 cos3(ν) sin(2νω)

4(ω + 1)

−
3𝑒2 cos2(ν) sin(2νω)

4(ω + 1)

+
3𝑒 cos(ν) sin(2νω)

4(ω + 1)

−
3 sin(2νω)

4(ω + 1)
 

(19) 

 

One obtains the expression that has analytical 

integration, however this procedure introduces 

impossibilities in the system and restricts the solutions to 

the variable $\omega$, which after integration generates 

singularities for values: ω = (−
3

2
, −1, −

1

2
, 0,

1

2
, 1,

3

2
). 

Increasing the expansion terms for order 5, the 

singularities also increase, ω =

(−
5

2
, −2, −

3

2
, −1, −

1

2
, 0,

1

2
, 1,

3

2
, 2,

5

2
). 

 

1.4. Stability Conditions 

We study stability using to the Floquet Theory, let´s 

linearize the equation of motion in the vicinity of solution 

(Eq. (16) ), it is possible to check the stability analyzing 

system behavior around small oscillations. Considering 

Eq. (19)andEq. (20)analyzing the neighborhood of the 

point φ0 = 0, it follows: 

𝜑 = ων + δφ (20) 

Substituting Eq. (17)in Eq.(15)one obtains: 

4(ω + 1 + δφ′)(1 + 𝑒 cos(ν))
η′(ν)

η(ν)

+ 3 sin(2(ων + δφ))

+ 2(1 + 𝑒 cos(ν))δφ′′ = 0 

(21) 

Replacing Eq. (18), concerning the η(ν) variable, 

𝛿φ′′(1 + 𝑒 cos(ν))

+ 3 cos(2ων + δφ) sin(δφ)

−
3 sin(δφ′)

2(ω + 1)
= 0 

(22) 

This is the nonlinear equation of the perturbed motion 

\cite{ref16}. The linearized equation is 

(1 + 𝑒 cos(ν))δφ′′

+
3

2
(2 cos(2ων) δφ

−
sin(2ων) δφ′

ω + 1
) = 0 

(23) 

Applying the Floquet theory find the monodromy 

matrix (A) for this system, one is obtained numerically by 

integrating a periodic orbit (2π) and the variation 

equations (Eq. (23)).  

A good numerical method to refine the closure of the 

orbit is essential to obtain an accurate monodromy matrix 

(A), which is obtained to analyze to stability with respect 

to small perturbations (δφ) of the orientation angle φ. It is 

possible to analyze the stability using the Floquet theory, 

since this equation is a differential equation of the second 

order. The linearized equation constricts this analysis to 

small variations of φ. The stability monodromy matrix (A) 

has some important properties, which are ([13] and [19]): 

1. det(A)=1; 

2. {λ1 = λ; λ2 = λ−1}eigenvalues; 

3. 𝑇𝑟(𝐴) = 2 + ∑ 𝜆𝑖𝑖  

The indicator of stability 2 − |𝑇𝑟(𝐴)| is given by 

𝑇𝑟(𝐴) between 0 and 2 (0 < 2 − |𝑇𝑟(𝐴)| ≤ 2) 

\cite{ref13}, where 𝑇𝑟(𝐴) means Trace of the matrix A. 

Positive values between the described boundaries 

correspond to stable solutions (linear approximation), 

negative values correspond to instability and zero values 

correspond to critical cases. The conditions of stability for 

ω are demonstrated in Figures 8 -- 18, where the positive 

values of ω correspond to direct rotations (direction of the 

orbital motion). 

Table 1 - Intervals of stability. 

 e 

-4 [0, 0.2956] U [0.9063, 0.9334] 

-3.75 [0.7821, 0.8333] 

-3.5 [0, 0.0966] U [0.6824, 0.7690] 

-3.25 [0.6328, 0.7542] 

-3 [0, 0.7895] 

-2.75 [0, 0.6370] 

-2.5 [0, 0.4906] 
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-2.25 [0, 0.1935] 

-2 [0, 0.5453] 

-1.75 No Solutions found 

-1.5 No Solutions found 

-1.25 No Solutions found 

-1 - 

-0.75 No Solutions found 

-0.5 0 

-0.25 [0.4521, 0.9999] 

0 [0, 0.9999] 

0.25 No Solutions found 

0.5 No Solutions found 

0.75 [0.0177, 0.0325] 

1 [0.8789, 0.8805] 

1.25 No Solutions found 

1.5 [0.0, 0.1338] 

1.75 [0.0, 0.2684] 

2 [0, 0.5539] U [0.9778, 0.9789] 

2.25 [0, 0.5820] 

2.5 [0, 0.6451] 

2.75 [0.6426, 0.7665] 

3 [0, 0.0989] U [0.9666, 0.9859] 

3.25 [0, 0.0890] U [0.7768, 0.8296] 

3.5 [0, 0.2961] U [0.7656, 0.8173] 

3.75 [0, 0.3412] U [0.8506, 0.8792] 

4 [0, 0.4207] 

 

The regions of stability with solutions (Figures  8–18   

and Table 1) have been shown for a number of 𝜔 ∈

[−4,4]. When 𝜔 =  −1 there is no solution and when 𝜔 =

 1 there is a small stable range (Table 1). The Table 1 

shows the complete set of stable solutions for the 

monodromy matrix, as a function of the eccentricity and of 

the true anomaly. 

 

Fig.8: Stability region for 𝜔 = {−4;−
15

4
; −

7

2
; −

13

4
}. 

 

 

Fig.9: Stability curve for 𝜔 = {−3;−
11

4
; −

5

2
; −

9

4
} 

 

Fig.10: Stability curve for 𝜔 = {−
1

4
}. 

 

Fig.11: Stability curve for 𝜔 = {0;
3

4
}. 
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Fig.12: Stability curve for 𝜔 = {1;
3

2
;
7

2
}. 

 

Fig.13: Stability curve for 𝜔 = {2;
9

4
;
5

2
;
11

4
} 

 

Fig.14: Stability curve for 𝜔 = {3;
13

4
;
7

2
;
15

4
; 4}. 

 

 

Fig.15: Stability curve for 𝜔 = {− 
3

2
}. 

 

 

Fig.16: Stability curve for 𝜔 = {−4; −3; −2}. 

 

Fig.17: Stability curve for 𝜔 = {2;  3;  4}. 

 

Fig.18: Stability curve for 𝜔 = { 0;  1}. 

 

The stability analysis suggests the system's viability. 

Some parameters for the system are shown in monodromy 

matrix. 

 

III. FORCES IN TETHERS 

The force on the tethers can be calculated using the 

relation of the forces involved in the problem, applied to 

the tether, 

𝑚1𝑟1̈ = −μ0
𝑚1

|𝑟1⃗⃗⃗  |
3
𝑟1⃗⃗⃗  + 𝑇⃗  (24) 

The force on the tether for a system composed of: 

𝑚1 = 𝑚2 = 1000 kg, 𝑙0 = 100km, p = 7000km, the 
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direction is tether length (l) and sense 𝑚1 to 𝑚2, and Tis 

magnitude of the tether force, solving the Eq.(16) with 

respect to l, it is possible to show that the cable suffers a 

large variation in tension and that these values are periodic 

and, in some cases, increase with grows to the eccentricity 

(Figures 19 -- 32). 

 

 

Fig.19: Tether Force T for 𝜔 =  0 and e = 0. 

 

 

Fig.20: Tether Force T for 𝜔 = {
1

2
, 1} and e=0. 

 

 

 

Fig.21: Tether Force T for 𝜔 =  0. 

 

 

Fig.22: Tether Force T for 𝜔 =  1. 

 

Fig.23: Tether Force T for 𝜔 =  2. 

 

 

 

Fig.24: Tether Force T for 𝜔 =  3. 

 

Fig.25: Tether Force T for 𝜔 =
 1

2
. 
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Fig.26: Tether Force T for 𝜔 =
 1

4
. 

 

Fig.27: Tether Force T for 𝜔 = −
 1

2
. 

 

Fig.28: Tether Force T for 𝜔 = −
5

2
. 

 

Fig.29: Tether Force (𝑇⃗ ) with 𝜔 =  0 for several 

eccentricities (e). 

 

Fig.30: Tether Force (𝑇⃗ ) with 𝜔 =  1 for several 

eccentricities (e). 

 

 

Fig.31: Tether Force (𝑇⃗ ) with 𝜔 = 
1

2
 for several 

eccentricities (e). 

 

 

Fig.32: Tether Force (𝑇⃗ ) with 𝜔 = −4 for several 

eccentricities (e). 
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IV. CONCLUSION 

The uniform rotations of a dumbbell and with several 

possibilities are considered in the present study, as well as 

the stability analysis and the viable control laws. In some 

cases are possible obtain solutions closes-form, in other 

cases only numerical solutions for the control of the tether 

systems are available. The necessary conditions of stability 

for uniform rotations were analyzed using the parameters 

ω and the eccentricity of the orbit, generating the control 

laws for the cable length. 
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