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Abstract—In this paper we propose a full revised version G represents th&ravitational Qnstant ¢ the Speed of
of a simple model, which allows a formal derivation of an  Light, Rn the mean value of the radius of thédl, and

infinite set of Schwarzschidke solutions (nofotating Mot mthe corresponding mass. According to our mogel,

and noncharged fiblack hol esd) ,andMiicancba eonvenigorallyrcansidergd asg heing real
General Relativity. A new meaning ssigned to the usual values, since the metric variation of the cosmological
SchwarzschileLike solutions (Hilbert, Droste, Brillouin, distances is not thought to be a real phenomenon (in other
Schwarzschild), as well as terms, wé bypoihesize that the ceal pamaunt ©ff spaee | a

hol ed and e We hypothdsiaer a closeu 6 . between whatever couple of points remainsstant with
Universe, homogeneous and isotropic, characterized by a  the passing of timg)}] [5]. In this regard, we specify how,
further spatial dimension. Although the Universe is  in order to legitimize the sealledCosmological Rdshift
postulated as belonging to the-salled oscillatory class the Plank @nstantmay vary over timgs] [7].

(in detail, we consider a simplarmonically oscillating
Universe), the metric variation of distances is not thought
to be a real phenomenon (otherwise, we would not be able
to derive any static solution): on this subject, the Y

cosmological redshift is regarded as being caused by a

variation over t ismeandafo. t Te ;&pglﬂgaﬁgsgﬁ/e rtl)aﬁ/echgplgthegzedfmsy be approx:)mathely
considered as being absoluteThe influence of escribed, with obvious meaning of the notation, by the

matter/energy on space is analysed by the superposition of following inequality:

three threedimensional scenarios. A short section is O 0w 0 o
dedicated to the scalled gravitational redshift which,
once having imposed ttemnservation of energy, may be

Replacing, for convenienc®io,m with Miot, and Ry with
Rs(the Schwarzschild Radijsfrom (1) we have
Q) @)

w

v 3

The Universe we areallowed to perceive (static

ascribable to a |l ocal wvari agolnﬂlgtérattogz c%n be_taﬁws_?”a_tsdlt%%h%ll_('ymr%rfgcgnst a
) i efined by the underlying identity:
Keywords—Black Holes Schwarzschild, Hilbert, Droste,

2 . X . . oo 4)
Brillouin, Extra Dimension, Weak Field Redshift. 0w w0 0 0 Y

Let us denote witle the centre of the-ball, withO andP

two points on the surface, the first of which taken as origin,
and with O 6the centre of the scalled Measured
Circumference to which P belongs. BothO and O 6are
considered as belonging tew. The Angular Dstance
betweerO andP, as perceived by an ideal observer placed
in C, is denoted by.

The arc bordered b9 andP, denoted byr,, represents the
so-called Proper Radiugthe measured distance between
the abovementioned points). We have:

YooY Q)

I.  INTRODUCTION
We hypothesize a closed Universe, homogenesncs
isotropic, belonging to the soalledOscillatory Qass[1].
The existence of a further spatial dimension is postulated.
Although space, as we are allowed to perceive it, is curved,
since it can be @proximately identified with a Hyper
Sphere (tle radus of which depends on tkéate of motion)
[2], the Universe ints entirety, assimilated to a Feur
Dimensional Rll, is to be considered as being flat. All the
points are replaced by straight line segmd@ts[4]: in
other terms, what we perceive laging a point is actually
a straightine segmehcrossing the centre of theBall.
Consequently, matter is not to beaeded as evenly spread
on the (Hyper)Surface of the-Ball, but rather as
homogeneously filling the-Ball in its entirety.
We have dewherd4] deduced the following identity:

The straighine segment bordered Ky éand P, denoted
by R., represents the smlled Predicted (or Forecas}
Radius(the ratb between the perimeter of the Measured
Circumference an@p). We have:

v ¢ ) Y .. ®.. YOEI ®)
w From the previous we immediately deduce:
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AOAQET @)
Consequently, we have:
QY YQ Qo
8
o ®
v

The scenario is qualitative depictedrigure 1

Figure 1. 4Ball

At this point, for theHyperSurface defined in(4), the
Friedmann RobertsoinWalkermetric[8] can be written:

Qi ©Qo O Q— OERQ- 9)
PV

Let us denote withs, the 2Sphere characterized by a
radius of curvature equal t&. In order to simplify the
notation, from now onwards vehall denote with the same
symbol both the geometrical objeahd the corresponding
surface area or volume. Consequently, we have:

Yo.oo® OEHQ—Q«% Q 1@ (19
™Y OEN.

The abovementioned surface is simultaneously border of

a 3Ball, denoted bys, and of a HypeSpherical Cap,

denoted bySs. Vsrepresents th@redicted (or Forecast)

Volume SstheProper VolumeWe have:

T
w0 .. YY1t A0 =0
o 1y
T LA
-“Y OEI.
o
Yo Y.Ly Y OELQ.. (1
¢‘Y .. OEIRT.O
We can generalize the foregoing as follows:
13

Y Yh.. ¢‘i ... OEJAT.O 'Y~ mhy
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The HyperSurface S defined in(12) is associated to a
HyperSpherical 8ctor, denoted bys. We have:

® ... Y Y. QY ¢ ... OEIAT.O 'YQY
(14
g"'v .. OEIAT.O
Il. GRAVITY: HOW MASS “BENDS” SPA

1.Gravitational ASingularitie
As previously stated, the (curved) space we are alldgaed
perceive can bepproximately identified with a Hyper
Sphere, the radius of which depends on our state of motion:
at rest, this radius equat®s In our simple model the total
amount of mass is constant: in other terms, mass can only
be redistributed.Let us consider a generic poir@,
belonging to the surface of theBall, and let us denote
with cmaxthe angular distance between this point and the
origin O. I n order to create a fg
correspondence of the origin, we have to ideally
concentrate i©, from the point of view of an observer at
rest (who is exclusively allowed to perceive a three
dimensional curved universe), all thegsaanclosed in the
2-Sphere defined by10) (with ¢=cmay. This surfae
represents the border of the Hyy&pherical @p defined

in (12) (with ¢c=cmay Which, in turn, is associated to the
hyperspherical sector defined §%4) (with c= Cmay.

According to air theory, in enacting the ideal procedure
previously expounded, we actually hypesize that all the
mass of the HypeBpherical 8ctor earlier defined may be
concentrated (and evenly spread) along the material
segment bordered b§ and O. The procedure entails a
linear mass (energy) density increment, no longer
compatible with the previous radial extension:
consequently, both the segment and the corresponding
space undergo a radial contraction (the segment shortens
together with space) drthe surrounding spatial lattice, the
integrity of which must be in any case preserved, results
deformed. We want to determine the new radial extension
of the segment (that represents the singularity) and the
shape of the deformed spatial lattice.

It is worth specifying how, abiding to the global symmetry
elsewhere introducel@®] [4] and herein taken for granted,
the procedure previously exploited is symmetric with
respect to the centre of theBall: consequently, we should
have atually consideredtwo opposite HypeSpherical
Sectors, characterized by the same amplitude, and a single
material segment, crossing the ce@r&ordered by and

its antipodal point.

2. ThreeDimensional Scenarios
From(3), by setting equal to zero, one at a timex. and
X3, we obtain the following thredimensional scenarios:
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Y (15
(16

QY 17
Evidently, if we take into consideration one among the
static scenarios we have just obtained, flrecedure
previously discussed (the creation of the singularity) is
equivalent to concentrating along a segment the mass of a
spherical sector.

Let us denote witl%.1, the Grcumference defined by the
following relation:

I 2 S A (18
In the three dimensional scenario we have been
consideringS1fipl ay s t 9, defiredin(l®)0 o f
The circumference defined ifl8) is simultaneosly
border of a isc, denoted by/s1, and of a $here, denoted

by S.1. In the threaedimensionalscenario we have been
considering, thd i r st fApl ays the rol
Forecast) dlume Vs, defined in(11), while the second

Apl ays t heePropeoVlameS;, defined ih(12).
We have:
® .. Yo L.Qy
19
¢ OQLd“® “YOEIL
Y o Y ..y ¢ OEIl.. (20)
¢Y p AT.O
We can generalize the foregoing as follows:
Y oYh. ¢l op AT.O 'Y mhiy @1

Consequently,Ss.1 is associated to a Sphericaécsor,
denoted bw..1, characterized by a volume provided by the
following relation:
®» .. "YOYh.QY ¢t p AT.O YQY
(22
¢
o
In the three dimensional scenario we have been
consideringVa1fipl ay s t\a eefiledih(le)do o f
As previously highlighted, the new radial extension of the
segment (that represents the singularity) is still unknown,
as well as the shape of the deformed spatial lattice. Let us
carry out some hypotheses.
Let us denote withi the Radial Gordinateof a generic
point of the warped
notwithstanding the deformation of the spatial lattice
induced by the mass, if the angular distance between
whatever couple of points does not vary, the corresponding

“Y p AT.O
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sur face.

measured distance rams constantActually, there is no
point in hypothesizing a differefitehaviour.

From now onwards, we spoal |
every time we refer to a quantity measured after the
creation of the singularity.

We must impose the following:

Qi
Q...

i Q...Y.. @3

v
Qi
Q...
From the previous we easily obtain the following banal
differential equation:
Qi

The boundary conditions can be easily determined by
resorting to the welknown shell theorem: in other terms,
we have to impose that, for all the points belonging to the
circumference defined irf1l8) once having set= Cmax
gagFualy,ffor talhtge qgiptse t()jeloncgipgetg thtzsghrere
defined in(10), once having set= cmay, there must be no
difference between the initial condition and the final one
(matter concentrated in a single point).
Therefore, we have:

Qi

v i (24)

(29

i T

- (26)

P v @7)

From(25), taking into accounf26) and(27), we obtain:

i... YAT Q (28)

From the pevious, we can immediately deduce

YAT.O (29)

i im

The scenario is qualitative depictedHigure 2

Xmax

/

>~

N §igure 2. Gravitagional Yngylaty, < ¢
Figure 2 qualitatively shows how space results in being

deformed due to the Gravitationah8ularity, perceived as
being placed irDy. At the beginning, the origin coincides

that,
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with O. If we concentrate i@ (actually along the segment
bordered byC and O) the mass of the Spherical Sector
(actually a HypeiSpherical 8ctor) with an amplitude
equal to2cmax Space undergoes a contraction. The new
origin coincides withQq4, and the surrounding space is
symmetrially warped. The initial radial coordinate of a
generic pointP (actually its initial radial extensionis
represented by the segment borderedCognd P. The
corresponding angular distance is denotedbyhe final
coordinate (actually the final radial extension), represented
by the segment bordered Byand Py, is shorter than the
initial one, and its value is provided §8). The proper
radius does not undergo any modification: the arc bordered
by O and P, in fact, is evidently equal to the one bordered
by Og andPg.

If we denote withx the Reducedfi F 10 £dordinate(the
Reduced Forecastaliug, we have:

1OE]l 'YOERT & (30

Yi

Moreover, with obvious meaning of the notation, we can
immediately write:

1 .. Y 1. Yp Al Q (8D
1 1 m Yp Al.O (32
If we denote witiVliist he mass of t he

rol eo -Bafi with Wwhéch we identify our Universe),
and withM¢maxthe mass contained in the spherical sector
with an amplitude equal t@cmax (Which, as previously
remar ked, fipl ay s -Spheecal Batol),e 0
we can write, taking into accou(g2), thefollowing:

0. 1

f (33
- p Ai.O

(34

0. QP
Y

1 Y

V) W
In other terms, the procedure entails a reduction of the
radial coordinate ofO (actually, the material segment
bordered byC andO undergoes a contraction) the size of
which is equal to the Schwarzschild radiusviafax

The scenario is qualitatively portrayed in the following
figure, where the singularity (as we can perceive it)
coincides with the poinDy.

Figure 3. Gravitational Singularity (Particular)

www.ijaers.com

Figure 3shows once again how the singularity, perceived

as being placed i@y, does not influence the measured
distance (the proper radius). The arc bordere® bndP,

as previously underlined, is evidently equal the one
bordered byOqy and Pg. On the coattrary
Coordinate (the ForecastaRius) undergoes a reduction.

The segment bordered ByandP represents the Forecast
Radius K) when matter is evenly spread; the segment
bordered byBy and Py represets the Reduced Forecast
Radius §).

Il QUANTIZATION
If mass homogeneously fills the-Ball with which we
identify the Universe (static configuratioty virtue of the
symmetry [3] [4], the Energy of a Material Segment
provided with a mashl, can bewritten as follows:
0 0o (39)
ThelLinear Mass [2nsity[3] [4] is defined as follows:
_— (36)
v ¥
By virtue of the foregoing, thiinear) Energy [2nsitycan
be defined as follows:
0 06 ., .

OV v 0w

37

B a |f We dénbtd itkeR fihe (R&MIfQuantlirg of pace[4],

the Punctual Mass denoted byn, is defined as follows:

« oy L @

A$ forahe ddryeppendingEnergy, by virtue of (37) and

(38), we canimmediatelywrite:
':‘) (i) yY .
&Y aw

0 oYY (39

Let us denote wittMmin the Minimum Linear Mass The

correspondingenergycan be obviously written as follows:
o b B (40)

As for theMinimum Linear Mass Bnsitywe have:

B (41)

v Y

The Minimum (Linear) Energy Bnsityis clearly provided
by the following:

, (0} V)
° v v

BB (42)

The Minimum Punctual Mss denoted bynyin, is defined

as follows:

a A U,Y Yy (43)

Consequently, as for thEnergy related to the above
mentioned mass, we have:

. 0 . .
ox 0 VY vooa o Y
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By virtue of (34), we can write the expression for the
Minimum Schwarzschild Radius
@

®

(49

vi
Now, takinginto account the symmetry, thdaximum
WavelengtHor a photon can be written as follows:

wry (46)

Denoting withh, as usual, the Planck Constant, we can
determine théVlinimum (Rercaved) Ehergy.
o . @ 47
i -

From(44) and(47), we careasily obtain thexpression for
the Minimum Punctual Mss:

0 ﬁ — oy a o (49
, Q (49)
a “OY

For a (linear) mass to induce a spatial deformation (a radial
contraction), the value difie corresponding Schwarzschild
Radius must be greater than equal to the value of the
(Radial) Quantum of @ace.

Consequently, we have

Yk (50)

vy
If we banally impose thaMmin represents the value of
linear mass, still unknown, below which no deformation of
spatial lattice (no rddl contraction) occurs, we can carry
out the following(upperlimit) position
v v (51)
When mass homogeneously fills thd3dll, denoting with
an integer the Number of Radial Qantg, we have:

Y T ¥y (52
Now, from(43), (45) and(51) we have:
. 0 o ¢ (53
a —,Y Y'Y —,Y Yh W—
Fromthe previous, by virtue #9), we obtain:
¢ Q (54)

From the previous, takingito account the definition of
Reduced Planck @éhstant we finally obtain:
N w 2w
¢

(59

0

. 20
V] - V]
O

(56)

The previous represents the Minimum Value famear
Mass. It is worth underlining how this value formally
coincides with the one of the-gsalledPlanck Massherein
denoted withM,.

www.ijaers.com

From (56), taking into accoun{43) and (52), for the
Minimum Punctual Miss we have:

Yy

Y

5
a b L L S

Sl gl

Finally, from (45) and (56), we obtain the value of the
(Radial) Quantum of jgace:

. @ 20 -
Y i g C

(59
¢Jb YY
w

7

At this point, we can also carry out a Timaughtization.
Taking into account the previous, denoting wijtithe se
called Planck Time we define theQuantum of ime as
follows:

yw yY yi hr S'/w . 20 . (59)
(0] —(‘:)— o 0O fjr ¢ —-— GO

We can now start concretely building our simpiledel of
(nonrotating and noithargedli B1 ac k. Hol e 0

V. “BLACK HOLES"”
1. Short Introduction
Let us suppose that the total available mass may be
concentrated i©. Abiding by our modelfrom (27) and
(298), by settingcma= pl2, we can write the following:

i ... 'YAT cé Y OE] (60)

i Py (61)
G

Evidently, the value of the Radial Coordinate (fexluced

Radial Extension coincides, for ang, with the one of the

Predicted Rdiusprovided by(6):

Yoe i (62)

For the Rducel Predicted Rdius, we have:
Yy Y OEL (63)
Yi 6o QOEL YOEL (64)

The scenario is qualitatively portrayedrigure 4

i Bl

ack Hol
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As for S, V3 andS;, the Sngularity induces the following In other terms, we have bednmypothesizing a lcal
modifications: variabil ity oonfsttamd 0PI &mrokn ftd
e .. TG 1Y OEL (69 taking into account60), we easily deduce the following:
2L e 2 (79
. A, e T QY e
WE ... Yy ... QYR T 0wQw —“w
o (66) TheVariable Quantum ofimeis defined as follows:
. o 3 _
5"y OEL. v - v - N/ o0 (7
0 f - 0 q 5 q 5 COnR
i Yi 8V Ty ORLQ. By virtue of(59) and(73), from the previous we obtain
P (67) O 8 Y 8 g P 77
EY ... OEIAT.O Y6 s N . —y“—
¢OELAT.O
3. AGravitational 06 Mass
2. Variable SpaceQuantum In case of singularity, a material segment does not undergo
We want to carry out a quantization of the coordimates any radial reduction (in other terms, it does not shorten

shown in (60), this coordinate depends on the angular  Within space): as previously remarked, both the segment
distancea: the more wei nagpup raorai ct hy @t thet camesponding space undergo a radial contraction

more the value of decreases. (the segment shortens together with space).
However,once againr does not shortewithin spaceit Consequently, if we denote witl the Mas of afi Te st 0
shortens together with space, since space itself undergoes Material Segmentthe (Variable) Linear Mass Bnsity in
a progressive (radial) contractiom approaching the case of gravitational singularity, con be defined as follows:
fisi ngul arity 5 U_ (78)
Consequently, we consider \dariable (Radial) Space !
Quantum denoted witheg; . mthe value of which depends As for the Mass of dest Rarticle (the mass we perceive),
on the angular distanee by virtue of (71) and (78), we can write, withobvious
If * represents the same integer introduced5i), we meaning of the notation, the following:
impose the following: @ O% § O " oy A Ty, (M
LI/ B (68) l v
From the previoudyy virtue of(38) and(52), we have:
According to the previous, taking into accos®) and . . 0 o o (80)
a ayr =YY — «
(61), we must have: Y
i Vi ohr Y VY (69) In other terms, thanks to the position(&8) (the meaning
of which should now be clearer), theGr av i t aass on al
Consequently, by virtue ¢68), we can write: and the inertial one coincide (as requested by the
Vi nr VY /b (70) Equivalence Principlg[9].
From(68) and(69)‘we immediately gbtain: 4. Conservation of Energy
- : Y Y (71) As elsewhere deduced, t@®nservation of Bergyfor a
Now Y Y Free Material ®gmentan be written as followg] [4]:
From the foregoing, taking into accoyf0), we have: ~ o [ P 81
ngﬁgy‘lgﬁ ; OL(EI) 72 O Lw UV VU Vuw U 0 W (81)
Aowr VY Y ' In our case, by virtue of what has been specified in the
In the light of the previous relation, wart now introduce previous paragraph, bearing in mind the meaning ofe
the following NonDimensional Rrameter which have tobanallyimpose:
represents nbtng but a simplé&cale Fctor. 5D (82
o A koYY Y P (73)
I Yi v Y 5 1 OEIl As a consequence, for a Test Materiad@ent, the mmon

Now, from (58) and(72), we immediately obtain: of which is induced by #Gravitational) Potential from
— — (81) and(82) we immediately obtain:
. - . ..90 070 (74) i L 83)
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From the previouselation taking into accoun{80), we
immediately obtain the Conservation ofEnergy for a
(Free-Falling) Test Rarticle:

0 0. © iob .,
0o — 2o 2o - 2o (84)

ad (89)

5. The (Gravitational) Potential and the Coordinate R*
From(60) and(85) we can easily deduce:

. I oo (86)
U wp v wAl.0
i 0 L (87
V P -(‘:) OE.L
Pev Paop L Pav Pepii o n®d
G G Y < <
From(2) we immediately obtain:
@ (89)
© Ty
Consequently, we have:
. oo @ L.
PHAT 6. ——Ai O (90
G Y

Let us introduce &New ordinate[10], denoted byR*,
defined as follows:

Ad (9D
AT O.
Obviously,from the previousve have:
Y oY 02
1 EWY H (93
© T
- Y (94)
Al.O va
- Y (95)
OEl p
From (), takinginto account (), we obtain:
Pav D 4 & (96)
C Y
Let us define th&seudeNewtonian Btential denoted by
G, as follows:
@ v o 2
—  PHAi 0 %.. ©7
Y q

Evidently, with obvious meaning of the notation, from the
previous we have:

Y Y %o... %oTU %o P& 8)
From (), taking into account (), we immediately obtain:

gdb % (%9
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6. Speef a FreeFalling Particle
From(2), (97) and(99), we have:

| % ¢ . D .
V] G700 V2 w oY @

(100

<1<

0 @AT.O (10

The Speedconsists of twadComponentsdenoted by, and
vii. We carevidentlywrite:

I (102
From(100) we can easily deduce:
Y ¢%o (203

_

Yoo
Consequentlyy; andv, assume the following forms:

Y Y . % % (10
b GOERIO G p 7 & cb%)—” %)3" (109

e Y %
b GAT 6 G o (109
Y W

The components of speed are depicteldigure 5

[V -

%)
~
-

——— e - - —————

Figure 5. Speed of a Frdealling Particle

Figure 5shows how, when a test particle approaches the
singularity, the value ofi decreases while, on the contrary,
the value ofv, increases. It is commonly said that, in
approaching the singularity, the Spakike Geodesics
become TimeLike, and viceversa. In our case, the abeve
mentioned interpretation is not correct, since tadial
coordinate is nothing but the extension of a material
segment, that we perceies being a material point (the
Test Rarticle). The straighline segment bordered bg
(that evidently coincides witlDg) and Py represents the
radial extension of the particle, the one bordere@ddand
PyrepresentsthRe duced T#AFI at
of theReduced €cumferencé.

7. Parameterization

We want to find two new coordinates, related to each other,
that coul d fRadndy t he rol eod
Firstly, in the light of(23), we must impose:

Page | 125

Coordi


https://dx.doi.org/10.22161/ijaers
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers.6.4.14

[Vol-6, Issue-4, Apr- 2019]
ISSN: 2349-6495(P) | 2456-1908(0)

—Q " Yy Y
(106)
aQy s
-— Y

Secondly, in the light ai60), we must additionally impose:
i© Y OFd (107

From(106) and(107) we easily obtainhte following

[2) RPN (108)
v ¢ O AdXx
The general solution of the foregojmienoting withK an
arbitrary constant, is:

0 (109

AT O.

From the previous we immediately deduce the underlying
noteworthyidentity:

AT v (110
OELl »p v
From (109 we have:
v s QFE! (11
. VAT o
From(107)and(109), we have:
. . ..~ . OEI (112
i Y OEl 0273
Qf . p OEI. (113
a.. VAT o
As for the Predicted &lius coherently with(62), we have:
Yoo Y OEL i° (1149

In the light of (63), the relation between the Predicted

Radi uses with
additional subscript) theilgyularity must be the following:
Yo YOEL (119

Therefore as for the Reducdelredicted Rdius we have:
Yo & YOELI & OEl i"0El v oEL.(119

From the previous, taking into accoh09), we obtain:

o emia O (117)
o UVOAI. 75 Y 0
Qb QY (118

According to(106), the Proper Rdius is not influenced by
the singularityTherefore from (109 and(111) we obtain

Qv Qv 0
QY — Y Q.. — p —0..
Q... Q... TOAL.. (119
P o9 o
P reATRY O
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In Figure 6 a useful omparison between old and new
(Parameterized) @brdinates, once having sitRs, is
qualitatively displayed.

O S
CP =R,
O'P =X =R,siny O’
[ L ——

CPy=r=Rgsiny
OB =x =rsiny 0
CP" =R* =R,/ cos’ x OL?
O*P*=X"=R"siny g
CPf=r"=R*siny
OjF; =x*=r*siny I

O

Figure 6. Parameterization (K=R

8. Parameterized Quantization

The parameterization also affects the quantization.
Obviously, it is not a real phenomenon.

Coherently with the parameterization we have been
resorting to, by virtue of52) we must now impose:

YUY TR 120
From the previous, taking into accoh09), we obtain:
Ny Y 0 p (122)

If we setkK=Rs, taking into accoun{52), the foregoing can
be written as follows:

. Y p Y (122
Y TEKTe ATG
Obviously, by virtue of68), we must also impose:
TR (123

(agaddi andrfnawvi t Babscript f

From the previous, taking into accoihi?), we obtain:
., i’ 0 OEIl (1249
Vi

ﬁ o =
Al O.

If we setkK=Rs, taking into accoun{68), the foregoing can

be written as follows:

i 'YVO E.I~ P )fl _h (125
Al O. Al O.
Evidently, by virtue 0{121) and(124), we can write:
Vit iy VY (126

From (72), (122 and (124), taking into account the
foregoing, we have:
Y“e n M s o5 Yok
YN wy YY yY i gy

oei (127

In the light of the previoysesorting to(110), we can ow

introduce the new followin@arameterized Scaled€tor.
. Yy Yy P P 1
Y %, % o, BElI —@w 129

P v
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TheParameterized Quantum oiffieis defined as follows: PRV (140
vi - ys . Uk (129
O f - JO R &) Thanks to the previougl39 can be written as follows:
Taking into account(77), (127) and (128), from the Qi 6°Y ©®Qo 6°'Y Qi
previous we obtain: Y Q— OEFQ- (141)
YO iy Yy Yo Yo gy ’ . )
(130 As for theMetric Tensor from (141) we obtain:
p 0 oY s 18 LS
3 Py o T &Y om T )
T 11 Y 1 ”
It is worth highlighting how, from(73), (87) and (128), u T 1 I Y OERY
denoting witho the secalledRelativisic Factor, we have: P ,
z P P t varva V s i s ll
5 v gy ——= (131) 19
: o %) W] - p - - ¥l
w N ] 02Y Iy
Q 0] p 1 (143)
1 T — Tt 1l
V. METRIC S l Y 0
1. I ni ti al (nofsiRdularity Met r i c (- - - P,A",'
We can immediately write the following general metric: u Y OEHY
0f  &0d 0OV Y 0— OELO. (139 Let 6 s d€hdistoffet SymnkvleGenerally, we have:
5 Pyo e roe roe (144)
Beaing in mind the definition of Predicted aRius ® C To T Tow
provided by(l,‘lf") we ha}\ie: The indexes run fror@ to 3. Clearly,0 stands fot, 1 for r,
) ;;‘:’7 ) ;;‘? 1 EDEL p (133 2 for d, and3 for (.
Settingk=0, from (142), (143) and(144), we obtain:
Congquently, far from the origin, Predicted Radius and . . p
Radial @ordinateare interchangeable. We can write: © 9 Far (145)
Ye'Y (139 All the other symbols (ik=0) vanish.
i Settingk=1, from (142), (143) and(144), we obtain:
Now, we evidenthyhave: 0w
P (135 ® 6 QY
s 5P AT P o W ) T
) GOy ho 6—th‘p 3 OE+
Far from the origin, therefore, by virtue @19) Proper o
Radius and Radial@rdinate e interchangeable: All the other symbols (ik=1) vanish.
0¥e QY (136 Settingk=2, from (142), (143) and(144), we obtain:
©® @ %m OEMRT-0 (147)
Finally, far from the origin (132)becomes:
of $ad 9Y Y 0— OELO. (137 All the other symbols (ik=2) vanish.
Settingk=3, from (142), (143) and(144), we obtain:
It is fundamental to underline how thepapximation in PP ﬁﬁd) o p (148)
(134) prevents the PredictedaRius from assuming a null T ooy Y OA+
value. In detail, by virtue ofL09), we have: All the other symbols (ik=3) vanish.
Yy .. Ym YT O (138 Letds now deduce tRlte Temsormp o n ¢
Generally, with obvious meaning of the notation, we have:
L . . o . Tw T o 149
2. Schwarzschilelike Metric: Conventional Derivation Y — 00 0w (149)

To To

As is well known, theGeneral $tic, Spherically (and . . .
P y( By means of some simple mathematical passages, omitted

Time) Symmetric Slution cannow be written as follows: . . -
ez T s ez e for brevity, we obtain all the nemanishing components:
Qi O0Y wQo 6°Y QY o az Yz i 2 i~ 2
) o oy p Qo p® pd® p '™

Y MY MY = p m’

Y 62 QY

(150)

Let us carry out the following positida1]:
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p Qo p W p® p®
co’qay  T16°qQY 6 QY 6 QY
(151)
p D
Y 62 QY
: P Y p®d p®
Y ¥ & wvor sar P (1D
.- P Y p® p W
Y OB+ B oray say P (153)
OE+*RyY

If we denote witlRtheRicci Scalarand withT; the generic

component of th&tressEnergy TensartheEinstein Field

Equationg9] [12] can be written as follows:
P ¥ Q

0

o P (166)
Now, if t represents th&ravitational Potential for an
arbitrary metric we have:
%o (167)
@
The value oK; can be directly deduced by resorting to the
so-calledWeak Field Approximatian

0

%o %o (168
p Y ep q 5
Far from the sourcirom (97), (110)and(168) we have:
. ) (169

: o %0 s 2
0 Qep o p Al O p

Y E'Y‘Q Y (154) If we setkK=Rs, the foregoing can be written fslows:
- ¢d Y 17
If we impose that, outside the mass that produces the field, O P I P ¥ 79
there is the fAabsolute not hiFanQ(PGZ)&nH(?GiQ)tVJ%ﬁa(/e' matter nor
the first member o{154), that represents the -salled ’ o '
Einstein Tensqmust vanish. Consequently, we have: 0 0 171
vy Pvo =& (155) Y
¢ If we setK=Rs, the previous can be written as follows:
From(155), exploiting the fact that the Einstein Tensor and s p
the Ricci Tensor are trageverse of each other, we have: 0 0 Y (172
Y o (156) Y
From(150), (151) and(156), we immediately obtain: At thi? point, t.he Schwarzs.chiltdiilfe Metric can be
o Qb oW p®W p B immediately written by substituting intd41) the values
0°6°QY 106 QY 5 QY B8 QY of A* andB* deduced, respectively, (169 and(171).
(157)
ymz
%W 3. SchwarzschildLike Metric: AlternativeDerivation
. . ., o According to our model, taking into accoufit06) and
pQ 0 p% ﬂ% ﬂ% (115), from (137) we can deduce, in case ahgularity,
coTeTQY  ToTeTaY oty 670 (158) the following solution:
w* . Lo I
%W Qf u)'Q‘)Z QY Y OEILL.Q— OE+Q- (173)
From(157) and(158), we have: The previous represents an analytic solution, built without
(o'} w* (159) taking into acount the modified value of the Space
o° 0’ Quantum. The abovmentioned condition is expressed by
P u_ (160) means ofgoe, the value 6 which is manifestly unitary:
0° Space and Time @anta, in fact, are related to each other

The value of the constakt can be deduced by imposing
that, at infinity, the~lat Metricin (137)must be recovered.
In other terms, we must impose the following condition:

LEO"Y 1 EEY p (161)
From(160), taking into accoun{l61), we obtain:
,, p
G 162
6° % (162)
Q"Q P (163
From(152) and(156) we have:
L. YO p® . Q p
< Fav Car & w169
0° Y a7y P EYZ i0 p T (165)
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by means 0{129).

Obviously, t* represents the proper time (the time
measured by an observer ideally placed at infinity, where
the singularity has no longer effect).
We can rewritg173) in the underlying form:
Qf oW QY 174
Y Q— OEfO

In other terms, we have carried out the following positions:
Y YOEI Y OEL (175)
QY QY QY (176)

Now, from (130 we immediately obtain:
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ybz FI T S'/c‘)z

Y& 5 ... Y& i - -
- (177
. 0
Yo P v
In the light of the previous, we can write:
,Q 3, .mz .
06 — Or 22 oy p % (178
-y -y
From(175), taking into accounfl20) and(127), we have:
Y T OEN  ; T Vi & (179

Exploiting (134) and(175), we can temgrarily introduce
to following Non-Dimensional (Normalized) @drdinates

v Y Y .
Oy (180)
. Yoo
Y ﬁ (181)

Evidently, the value of the PredictedaRius, as lon@gs it
is expressed in terms of SpaQeanta, can be regarded as
being constant. Consequently, fr¢b80) and(181) we can
banally write:

YoOY (182

Now, if we replacedt* with dtg*, taking into accourn(tL78),
we obtain a new value fapo:

0
9 o _yL (183

The value ofggo reveals how we measure time (which is

still considered as being absolute) and space and nothing

else. In other wats, we have simply changed tbeits of
Measuremenfwe havemodified the Scale &cto)).

By virtue of (183), we can rewrit173) by changing the
Scale Rrameter:

L
Qf P O 0F
Yi , @— OEin.

From (175), (176) and (183), we can write, with obvious
meaning of the notation, the following:

7 (184

Yioo o, 3 Yk Y Ys o (189
QY ;v Q% - QY
QY Qv (186)
X
We can findly write theso-calledDroste $lution [13]:
of O ..., QY
. p v W 5
v (187
Y o— OEia. af
Y0

www.ijaers.com

The Sngularity is not a point, but a3phere characterized
by a radius equal tid. However, this strange phenomenon
is anything but real, since it is clearly and exclusively
caused by the approximation {t34). According to the
new scenario, the value of tiescape Peedis now
provided by(104): it is easy to verify how this value
formally coincides with the onéat can be derived by
resorting to the&Seodesic uation

As for the New Proper Rdius we have:

e aQy Y U. U,QY o
0 Y 0
P (188
C Y 0 m Q Y o

We have just found an integral of the following kind:

S 0. - -—
W mw Qw EI o w 0

(189
- W V] [0}
G
Consequently, froni188) and(189 we have:
QY R
Y 1Y Y 0
p % (190
YV o 6
As for the constarnty we have:
Yo m o6 0l (199
Finally, from(190) and(191) we have:
.Y 0 Y _
vi ool i — 2 T oy o 199
2]
The previous, by virtue qL17), canbe written as follows
v 0i1 2% Y% FE o (9
Mo
4. Generalization
Taking into accounfl17), we have:
NS N A (194
JEF JEFp— o
By virtue of the previous, we can write:
el g ef Y
4B LES
LY 00 (199
s F—¥ P
WN T
Therefore, far from the source, we obtain:
Y e Y U 0 (196)
Ye Y U 0 g 0 Yy (197
Evidently, moreover, we have:
m Yy 0 (198
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| o3 0“’&‘*765,“’ p2® | EF— 1 EFE— ] EDEI]
Q... Q. © T - © T - © T
(199 (209
no - i Ep 2

From (1995, (198 and (199) we deduce how th&lew

. . . . Consequently, far from the source, we can write:
Parametric Wordinate defined in (197) and the one d Y

! ) . . C o P (210
gezned in (1(|)9) hare fully mtertl:hanr?eable (smcehthey ae —y P 31 P
ehave exactly the same way). In other terms, we have: : o
y Y) 20 From the foregoing, taking into accouy@tl0), we have:
Yhe'Y (209 : P
o = P (219
Taking into account the foregoing, by settawl in (197), - P v
from (187) we obtain: . .
o ) b If we setK=Rs, according ta(2) and (109), the previous
Qf P o O —— can be written in the following weknown form:
P 5T . &
“ ) U, . (201) @ ——— P (212
d 0 o— OElQ. )
- P ey
W T
ot 9% b — Qb VIl.  BRIEF CONCLUSIONS
p -(i)\—)r w The coordinate deduced([{b09), which appears both in the
L o (202) metrics and at the denominator of the pseNeéatonian
W v Q— OE+HQ- . . L .
relation we have obtained for the gravitational potential,
w 7 does not represent a real distance nor a real radius of
The previous represents the originairh of the secalled curvature. In fact, it is clear how the expression of the
Brillouin Solution[14]. abovementioned coordinate arises from a banal
From(187), by settinga=3 in (197), we have: parameterization, by means of which we are able to write
v . (203) the initial i F | aétriz in f437). From the latter, it is
h @ v possible to derive an imfite set of Schwarzschillike
By substituting the previousito (187), we can finally Metrics suitable for norrotating aad nonc har ged A BI
obtain the reaSchwarzschild rm[15]. Ho | ,ewsthibut resorting to Relativity. According toeh
simple model herein proposedtie minimum value for the
VI GRAVITATIONAL REDSHIFT coordinate in(109 equates the Schwarzschildadus.
If we impose the Conservation oh&rgy, we can write, When this coordinate equatethe Schwarzschild radius,
with obvious meaning of the notation, the following: both theProper Radius and the Forecast Raditesequal
(209) to zero: in other terms, we are exactlyaged in

(0] FQ’ Q' (@) . N
n LA correspondence of thiSingularityd.

From the previous, by virtue ¢75), we obtain:
Qv o ACKNOWLEDGEMENTS
T OBEI. (209

Qr | would like to dedicate this paper to my very little friend

If we impose theSpeed of Light Ghstancy we have Carmine Vasco Costa, sincerely hoping he may preserve
. ‘ ‘ (206) his great interest, already astonishingly deep despite his
© - =T 7 age, towards mathematics and physics.

The two foregoing dations allows to immediately define
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