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Abstract— Due to the complexity of modern
technological exchanges, the need of the security of the
image remains till now a challenging problems. In this
paper, we present a new encryption scheme based on a
non-classical aspect of the elliptic curve cryptography
and the Ramanujan graph to encrypt JPEG compressed
image. Our algorithm operates on the hardness to predict
the exact walk of the Pizer graph formed by the elliptic
curve isogenies. The proposed approach has been
compared with classical protocols.
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I INTRODUCTION
The security of the data transmission become martk a
more important nowadays due to thamiltitude ways and
uses for exchange many types of data, medicineynetha
TV, satellite image, military transmission, etct®aecurity
is proved by encryption scheme and it has receivege

amount of interest by researchers who have proposed

hundreds of approaches, especiaiyecent decades using
mathematical theories. A simple and an effectiveéhoe
remains an interesting topic for many researchers.
Generally, the existing approaches of encryptidestein
cryptography are classified into two categoriesvgte or
public key encryption. Unlike text messages, the
multimedia information including image data has som
special characteristidéke high capacity, redundancy and
high correlation among pixels. Many techniques Hasen
developed to the security of multimedia informatidn
some cases image applications reqtiresatisfy their own
needs like real time transmission and processindgnas
satellite image offV channel. As known, there are three
kinds of encryption techniques namely substitution,
transposition or permutation and techniques thalude
both transposition and substitution.

Elliptic curve cryptography, ECC, rises and became of
the more important mathematic#teory for encryption;
the strongest and classical point of ECC is based o
hardness to computie discrete logarithm in the set of
points of an elliptic curve which have their comaties in

a finite field Fp, wherep is a prime or power of prime
number. By using the benefits of EQfle new algorithm,
we present in this paper is based on another aspégtet
exploited, which is the difficulty to find the exawalk in
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the Pizer graph having as vertices elliptic curaed as
edges the isogenies. Our algorithm matches to the
coefficients DC of an image in the JPE€@mpression
process a set of isogenies in the graph of Pizesarh
according to a secret keVhis algorithm has been clearly
proved to be comparable to a proved existing method
like ECC-DLP, AES and RSA [4]. The remaining of this
paper is organized as follows. In Se2tand 3, we recall
some necessary properties of elliptic curves amgbrgiof
Pizer. Section 4 presents the proposed approach.
Performance evaluation and comparative resultsgyaen

in detail in Sect. 5. Finally, some conclusions areena

Il. ELLIPTIC CURVE CRYPTOGRAPHY

l. Definitions

We call elliptic curve [5] defined over the finifeeld Fpa
non-singular curve writed in thé&/eierstrass form

E: y?=x3+ax+h.

Let denote byA(E) the discriminant oE and defined as

A= 7{}%!’)8 — Sbl —27 bg +9 bzb_'b(,.
And by j(E) the(j-invariant) of E defined as

3
=&
A

J(E)
Il Isogeny
LetEandE two elliptic curves defined over afinite fiefg.
One can define an isogeny betwedh and E, an
applicatione such as for a poir € E we associate an
image¢(P) = Q € E. We can gather all the isogenies
betweenE andE' in a set denoted biiom(E, E). The
dimensionof the kernel of the isogenybetween E and E
is called the degree af. Let¢ : E — E and let d the
degree ofp, then there is a unique isogeny denoted by
betweenE and E such asp ° ¢ =[d]e, where fl]e is an
isogeny defined by

[dlee E—E
P—mP.

Il. RAMANUJAN GRAPH
We begin by defining the family of graphs. Lgand| be
two distinct prime numbers. Definthe graphG(p, I) to
have vertex sety, the set of isomorphism classes of
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supersingular ellipticcurves over the finite field.. We
label vertices with theirj — invariants, which can be
computeddirectly from the curve equation and are a priori

elements oF?. The number of verticesf G(p,|) is 7] +e

, wheree € {0,1,2}, depending on the congruence clasp of
=12. Later,we will imposep= 1(mod12), in which case

= 0. Since there are roughly/12 distinctj — invariants,
we will choose a linear congruential function topma—
invariants from F2 to Fp. The edge set is as follows: given
a supersingulaj —invariant, j1, choose an elliptic curvi;
with j(E1) = j1 in the manner described in the next
paragraph and a subgrobi < E; of orderl = p. Connect
jito j2 := j(E2) whereEz is the elliptic curveEi/Hi. A
priori, sincethere ard +1 subgroups of ordérthis gives a
directed [+ 1)- regular graph. However, if wessume that
p = 1(mod12), then the graph can be made into an
undirected graph as follows: faach subgroupli € E; of
orderl, there is a canonical choice of subgréiyc E, (of

orderl) such thaE/H2 =E;. Thus, we can identify the edge
associated tbl; with the edge associatédlH, [3].

V. NEW ENCRYPTION SCHEME FOR

MULTIMEDIA

isogeny¢ and the process will ended when the algorithm
cover all the DC coefficients of the image. The new
encryption scheme is a secret key scheme anthtter is
in fact constituted by an ellliptic curvigp and a set of
isogeniesho, d1, 02, ...,4n,

KGYEncryption = (EO. 0o, ¢1, ¢2.---,¢n)-
The decryption way is allowed by using the key
constituted byE, and the dual isogenies
$o, 91, $2,...0n,

KQ/Decryption = (En. &O, &1, (152, ---,dsn)-
The construction of this scheme is in fact a wajlkénound
the Pizer graph, each coefficieid sent to a different
position from its original one and so on. We exeautvalk
on ak —regular expander graph by converting the input
block into a new vertex of the graph to a basel)
number whose digits then dictate which edge to &leach
step. We do not allow backtracking
in the walk, so onlyk — 1 choices for the next edge are
allowed at each step.

l. Walking into the Graph

For C a subset of the group of the points on an elliptic
curve E, Vélu in [2] gives explicit formulas for
determining the equations for the isog&my E/C and the

The use of expander graphs to produce pseudo-randomWeierstrass equationf the curveE/C. We give here the

behavior is well-known to complexityheorists. The idea

formulas wheris an odd prime and in the next section we

here is to use expander graphs to produce a new give those for the formulas whér 2. LetE be given by

encryption scheme whicban be used in the multimedia
security. The first input to our scheme is the ficieht
DGy of the first 8 x 8 pixel block and this initializatida
used to compute the directions for walkirsgound a
graph, we associate ©Cp an elliptic curveEy, this bloc
first coefficient is sent toanother position using an
and set

Y wQ)+x(0)(Q)).

0€(C—{0g})
Then the curv&/C is given by the equation
Y2+ A1 XY +A3Y = X° +ArX? + AuX + As,
Where
Ay =ai, Ay =a, Az = as,

Ay =aq—5t, Ag = ag — (ff% +4ay)t — Tw.

From the Weierstrass equation 8/C we can easily
determine thej - invariant of E/C. We apply Vélu's
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the equation
Y2 +aixy +agy =X +apx? +asx +as.
We define the following two functions i(E). ForQ = (X,
y) a point orE{O}, define
o(Q) = 3¢ + 2axx +auauy, d(Q) = yauxas,

formulas for subgroups of ordérand it is clear that this
procedure can be domsingO(l) elliptic curve operations
for each of thé +1 groups of ordelr,

Ei—-E>—..—E —>E+—...— En
II. Explicit Casel =2
In this paragraph we study the explicit case2. Here are
the steps to compute the encryptischeme when using
supersingular elliptic curves and 2-isogenies (i.e.?2).
Since there ar@ edges emanating from each vertex, and
no backtracking is allowed in a walk, there are two
choices of which edge to follow next from each &rrtand
this can be determined by 1 bit fadlows. Start at a vertex
E1. Subgroups oE; of order 2 are each given by a single
two-torsion point on the elliptic curvess : y2 = f(X). The
3 non-trivial 2-torsion points ar® = (x;, 0), where the
cubic f(x) factors as

(x —x1)(x —x2) (x —x3)

over an extension field. As an example, when comgut
the isogeny which corresponds to
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taking the quotient byP:), both of the other 2-torsion
points are mapped to the same 2-torgiomt$(P>) =¢ (Fs)
on the isogenous elliptic curv&p. In turn, the isogeny
which correspondgo taking the quotient oE, by the
subgroup generated pyP) is the dual isogeny and leads
back toEi1. So to choose the next step fré it suffices
to choose between the two oth@rtorsion subgroups
different from(¢(P>)). An efficient way to determine the 2
new 2-torsionpoints onE; is to keepXz, the x-coordinate
of ¢(P), and to factorX—x2) out of the new cubicx(x),
leaving a quadratic to be factored. The roots & th
guadratic can be ordered accordinggome convention,
and one bit suffices to choose between them fomghe
step in the walk. Sdf the input bit length i:, then the
walk into the graph takes steps. Using Vélu's formulas
[2] one calculates that E is given byy? = x® + asx + ag
and the 2-torsion poin® is (o, 0) thenthe elliptic curve
E/(Q) can be given by the equation

V2 =x° — (4as+ 150%)x+ (8as — 1403).

Furthermore, the equation for the isogeny is

(¥+ (3052—1—(14)
. o

 (Ba’+ag)y
T (x-a)?

).

The formula given here shows the dependence or2the
torsion pointQ = (a, 0). So summarizing, each vertex
corresponds to an elliptic cur& given by an equatioy?

= fi(x), wherefi(x) is a cubic. To compute the 2-torsion
subgroups at each step, factor the cubfg). At each
step, calculate the 2-torsion by keeping the imafyéhe
other 2-torsion point (not used to

quotient by), and then factoring the quadratic. eAft
ordering, choose which one to quotient layd apply
Vélu's formulas (field operations i, or F2) [7].

(x,y) —

lll.  Complexity of the new scheme computation

To compute the complexity of our method we need to
enumerate the number of elementargeration cost per
block of the walking. After are the essential stefpghe
method

1. Find the 2-torsion:

a Apply the isogeny from the previous step to ooiatp 7

field multiplications.

b Factor out the linear factor from the culfi): one field
inversion.

¢ Factor the quadratic by completing the square and
taking a square root: roughly(3/2)og2(p) field
multiplications plus a field inversion i = 3(mod4). If p

= 3(mod4), then one can do this with 2 Idp)
multiplications in a residue ring ofFp[x]. The
construction of the residue ring requirespagndom bits.

2. Order the 2-torsion.

3. Use Vélu to obtain the equation of the next altipt
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curve: 9 field multiplications.

In addition, at the first vertex, the cubic defigithe curve
must be factored, and at the lagep, computing the j-
invariant requires several field multiplicationsdah field
inversion. An estimate of total cost can be made by
estimating a field inversion as 5 field multiplicats. To
summarize the efficiency of the walking under these
assumptions: the cost per bit in terms of

field multiplications is roughly 2 logp) [7].

V. RESULTS
In this section we give the results of our algaritlused
for the encryption of image. We uS#ATLAB on a 64-bit
Intel Core 17-4500U CPU 2.4Ghz,6G RAM machine to
implement ourencryption scheme to test its performance
for an input bit. Our results are given below. Bor
prime p of 192 -bits and| = 2, the time per step of the

walk (which is also the time per inpbitt) is 2.7 x 18secs.
For a primep of 256-bits, the time per input bit is 5.3 x

10°secs.

Experimental results are given in this section
demonstrate the performance of our proposed matked
for image in different purpose: standard use, nadic
image and satellite image, we used our algorithm to
encrypt and decrypt a large number of images. Thegss

of the JPEG compression is depicted in the figubelbw.
Here below we give some results of the implemeoatif

our algorithm to encrypt compressed images.

As the purpose of our scheme is to address thdegrobf
image retrieval in encrypted do- main while pregeg\the

file size and format compliance for JPEG imagesg hee
first take a partial image encryption techniqu® iatcount

to epcrypt JPEG images. The problem is difficulstdve

for the traditional cryptography. The most existipartial
encryption techniques for JPEG images are mainseta
on blocks shuffle, DCT coefficient permutation, and
encrypting the signs of DCT coefficients. The pregd
encryption in our method in can meet the requiresiefi
format compliance and file size preservation argb db
provide valuable information regarding the lengfreach
variable length integer (VLI) code for DCT coeffaits.
More importantly, the encryption method can make th
length of each VLI code remain unchanged before and
after encryption. It means that one can still abttie
original length of any VLI code related to DCT
coefficients from an encrypted JPEG image. Dueht® t
dependencies of DCT coefficients in each component,
their corresponding VLI code length may have simila
relationships, which can be exploited to generatguie

for image retrieval. As commonly known, a color BPE
image is composed of Y, U, and V components, edch o
which is partitioned into non-overlapped blocksesiz38.

to
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In each block, there are 64 DCT coefficients namehe
DC and 63 AC coefficients. According to JPEG stadda
[8], DC and AC coefficients can be transformed into
intermediate symbols by utilizing the one-dimenaion
predictor and the run length coding (RLC), respetyi,
and then are further Huffman-coded into binary seges,
each of which consists of two parts: the Huffmadecand
the VLI code. Obviously, the generation of the
abovementioned binary sequences is conditionedhby t
Huffman and VLI coded tables, which are beforehand
stored in the JPEG file. In general, the Huffmadeof
the DC coefficient only contains the informatioroabthe
length of the VLI code. But the Huff- man code foe AC
coefficient also has other information about thenbar of
consecutive zero AC coefficients before the nexizeoo
AC coefficient in the zigzag sequence. The finaEGP

image will be formed by concatenating the JPEG file
header and binary sequences of all DCT coefficiehts|
components. As a matter of fact, the JPEG bit-siréa
also a binary sequence and thus converts into & JitE
when writing to a file byte by byte. Based on thmwae
knowledge about color JPEG image encoding,
procedure of performing the color JPEG image engp
scheme is to encrypt all the DC coefficients in pinecess
In the following figure 3, we studied the effect time
color distribution in the histogramef an image before
and after the encryption scheme. We can see thdtein
case of encryptionmage the distribution present a random
and uniform noise which is essential to stop thaous
hacking methods.

the

2x8 blocks Calor Dewn- < =
transform R L » Quantization Encoding
l JPEG Compressionj
Original image: |
- IPEG Decampression I
Recqnst.'rtuﬁon Color Up- sampling Inverse | Decoding
of the image transform Quantization
Fig.1: JPEG compression process
(a) Origi ige (b) Crypt €) ryptos ge
Fig.2:Encryption and Decryption process for 4 types of images
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Fig.3: Histogram of encryption (a) and decryption (b) image

I Comparison VI. CONCLUSION

To prove the efficiency of a new protocol, this anast be In this paper we give an efficient new encrypticheme to
compared to the existing and see thévantages it offers encrypt compressed image, thpsotocol was compared to
compared to those. The table below published byTNISother existent and the results proved that it &efaand it
(National Instituteof Standards and Technology) comparesan bea good candidate to the hardware implementation.
different protocols for the same security levelatree to the We can easily extend this method to vid#ecoder which is

sizes of keys. the subject of other works that are submitted tpudadish.
NIST guidlines for public key size

RSA key size (bits) | ECC key size (bits) | Key size ratio REFERENCES

163 1024 1:6 [1] Jean-Pierre Deschamps, “Implement Finite-Field

256 3072 1:12 Arithmetic in Specific Hardware (FPGA and ASIC),”

384 7680 1:20 .

313 15360 30 McGraw- Hill, (2099). o

[2] J. Ve'lu , “Isognies entre courbes elliptiques,” K.

We can distinguish from this table that small EGEy kize Acad. Sc. Paris 273, (1971).
provides a very good level of security, this is agé [3] W. Li, , “A Survey of Ramanujan Graphs,” in R.
advantage for implementations of this method coerpdo Pellikaan, M. Perret, and S.G Vladut 'eds.), Arittiu,
hardware constraints such as memory size andimsal t Geom- etry, and Coding Theory, Proc. Confat CIRM,

In our study we compared over time encryption for  Luminy, France, de Gruyter, Berlin, (1996).

large library of images our method ECC- Graph tieeot [4] Alfred Menezes, Paul van Oorschot, and Scott

that are most popular as AES, RSA, and the clabsica vanstone , “Handbook of Applied Cryptography,”

ECC-DLP protocol based on the discret logarithm  CRC Press, (1996).

problem (DLP).We obtained the following results in[5] Henri Cohen, Gerhard Frey, Roberto Avanzi,

Figure 4. Christophe Doche, Tanja Lange, Kim Nguyen and

o Evrypian eahes — Frederik Ver- cauteren, “Handbook of Elliptic and
S SO SO U Hyperelliptic Curve Cryptography,” Dis. Math.Its Ap
1st Edition, (2005).

[6] Yang Yang, Bin B. Zhu, Shipeng Li and Nenghai Yu,
“Efficient and Syntax-Compliant JPEG 2000
Encryption Preserving Original Fine Granularity of
Scalability,” EURASIP J.Inf. Sec. (2007).

[7] Denis X. Charles, Kristin E. Lauter and Eyal Z. &ar

“Cryptographic Hash Functions from Expander

Graphs,” J. of Crypt. 22, Issue 1, (2009).

Hang Cheng, Xinpeng Zhang, Jiang Yu and Fengyong

Fig.4: Comparison of protocols Li3, “Markov process-based retrieval for encrypted

JPEG images,” EURASIP J.Inf. Sec. 1 (2016).

Time 409 542

Siwze of images x 107 Ko [8]
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