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Abstract— This paper presents dependence of the vortex 
core axial velocity and vortex center position on 
clearance in a tip leakage vortex (TLV) for different 
angles using a system of neural networks (NNs) 
simulation in which the Resilient Propagation (RPROP) 
algorithm is applied.  These studies are simulation of the 
vortex core axial velocity and vortex center position as a 
function of clearance at different angles. The system was 
trained on the available data of the two cases. The trained 
NN shows a better agreement with that of an experimental 
data in two cases; vortex core axial velocity and vortex 
center position.  
Keywords— Neural Networks, Resilient Propagation 
(RPROP), vortex core axial velocity, vortex center 
position, clearance. 

 

I.  INTRODUCTION  
Tip vortices are prevalent in many industrial applications 
(e.g., air transportation, marine propulsion, wind turbines, 
hydraulic machines, space rockets). The need to 
understand and control the dynamics of these flows has 
driven numerous researches, producing an abundant 
literature [see Green [1] and Arndt [2] for a review]. From 
a theoretical point of view, the model of Batchelor [3], 
valid far downstream of the wing tip, is widely used to 
describe the structure of the trailing vortex flow. Moore 
and Saffman [4] developed a more sophisticated model, 
valid in the intermediate region between the completion 
of roll-up and the far field, where the Batchelor solution 
holds. In axial turbomachinery, a leakage flow occurs 
between the blade tip and the casing, driven by the 
pressure difference between the blade pressure and 
suction sides. The vorticity shed by this leakage flow rolls 
up into the so-called tip leakage vortex (TLV), which is 
strongly influenced by the vicinity of the wall 
(confinement). In axial hydraulic machines, cavitation 
may develop in the core of TLVs, leading sometimes to 
severe erosion of the runner blades and the casing, as well 
as an increase in structural vibrations. Farrell and Billet 
[5] have found that cavitation incipience in an axial pump 
may be delayed if the tip clearance is set to an optimum 
value of about 0.2 times the maximum blade thickness. 

Boulon et al. [6] examined the effect of the clearance size 
on the tip vortex generated by an elliptical foil in a setup 
without relative motion between the end wall and the foil. 
They found, conversely, that the cavitation inception 
index increases as the gap is reduced, while no tip vortex 
cavitation was observed in the most confined cases. 
Similar observations were reported by Gopalan et al. [7] 
for the case of a cambered hydrofoil in a water tunnel. 
More recently, Wu et al. [8] and Miorini et al. [9] studied 
experimentally the internal structure of the TLV within 
the rotor of an axial waterjet pump using both 2D and 
stereo-PIV. They observed that the instantaneous TLV 
structure is composed of unsteady vortex filaments that 
propagate into the tip regionof the blade passage and roll 
up into the TLV. They noticed that vortex breakdown 
could also occur as the TLV migrated toward the pressure 
side of the neighboring blade, changing drastically the 
vortex characteristics, as reported by Pasche et al. [10]. 
The measured velocity fields in these studies were, 
however, limited to a few tip clearance values. In the 
specific area of Kaplan turbines, the wake of the 
distributor guide vanes produces a highly non-uniform 
pressure field, which leads to repetitive collapses and 
rebounds of the cavitating tip vortices. Obviously, 
cavitation erosion depends not only on the vortex strength 
and core size, but also on its trajectory and how far it 
stands from solid boundaries. It should be noted that, 
nowadays, it is still not possible to fairly predict 
cavitation occurrence in axial turbines, neither from 
numerical simulations nor from reduced scale model tests. 
In their attempt to mitigate the cavitation development in 
axial turbines, engineers commonly implement the so-
called anti-cavitation lip, which consist of a simple 
winglet attached to the tip of the blades. Nevertheless, 
such a remedy often fails to reduce cavitation erosion, as 
reported by Roussopoulos and Monkewitz [11] on a 
simplified case study. Dreyer  et. al [12] study the 
structure and trajectory of a TLV generated at the tip of a 
fixed 2D hydrofoil experimentally for different 
confinements and flow parameters. They perform 
accurate measurements of the velocity field to better 
understand the underlying physics of vortex confinement. 
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It is assumed that the mean vortex flow is not 
fundamentally altered by the end wall motion. they have 
selected the SPIV technique for the measurement of the 
3D velocity field. 
In the present study, the data obtained by Dreyer  et. al 
[12] is chosen to be carried out using the neural networks 
depending on the BP and RPROP algorithms. 
Neural networks are widely used for solving many 
problems in most science problems of linear and non-
linear cases [13-15]. Neural network algorithms are 
always iterative, designed to step by step minimise 
(targeted minimal error) the difference between the actual 
output vector of the network and the desired output 
vector, examples include the Backpropagation (BP) 
algorithm [16-18], and the Resilient Propagation 
(RPROP) algorithm [19-21]. 
BP is the most widely used algorithm for supervised 
learning with multi-layered feed-forward networks [22], 
and it is very well known, while the RPROP algorithm is 
not well known and described in some detail in section 
2.1.  
The RPROP algorithm was faster than the BP [23-24]. 
Therefore, the RPROP is chosen to be carried out in this 
study. The present work offers an efficient neural network 
that is used to simulate the data of the vortex core axial 
velocity and vortex center position as a function of 
clearance at different angles. The following sections 

provide a brief introduction to NNs, describe the selected 
NN structure, training data and discuss the results. 

II.  NEURAL NETWORKS 
Neural networks consist of a number of units (neurons) 
which are connected by weighted links. These units are 
typically organised in several layers, namely an input 
layer, one or more hidden layers, and an output layer. The 
input layer receives an external activation vector, and 
passes it via weighted connections to the units in the first 
hidden layer. Figure (1) shows input layer with R 
elements, one hidden layer with S neurons, and output 
layer with one element. Each neuron in the network is a 
simple processing unit that computes its activation 
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iy with respect to its incoming excitation, the so-called 

net input neti: 
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and bi is the unit bias value. The activation of unit i, )1(
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is computed by passing the net input through a non-liner 
activation function. The tan-sigmoid function is applied in 
the proposed work as follows. 

i

(1)
tansig ii 2net

1
y f (net ) 1

1 e−= = −
+

        (2) 

 
 
 
 
 
 

 
 
 
2.1 RPROP Algorithm  

Fig.1: Network Architecture for one hidden layer 
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In the RPROP algorithm, each weight (ijw ) is computed 

by its individual update-value ( ( )t
ijD ), which determines 

the size of the weight-update. This adaptive update-value 
evolves during the learning process based on its local 
sight on the error function E, according to the following 
learning-rule [19]. 
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The size of the weight change is exclusively 

determined by the weight-specific update-value( )t
ijD . 

Every time the partial derivative of the corresponding 
weight changes its sign, the update-value is decreased by 
the factor η. This indicates that the last update was too big 
and the algorithm jumped over a local minimum. On the 
other hand, if the derivative retains its sign the update-
value is slightly increased by the factor η in order to 
accelerate convergence in shallow regions. Once the 
update-value for each weight is adapted, the weight-
update is changed as follows: if the derivative is positive 
(increasing error) the weight is decreased by its update-
value, if the derivative is negative, the update-value is 
added. Then, the weights are updated as in equation (5) 
using update-values from equation (4). 

( )

( ) ( )

( ) ( )
( )

( ) ( ) ( )

t
t

ij
ij

t
t t

ij ij
ij

t tt 1
ij ij ij

E
, if 0

w

E
, if 0                4

w

0 , else

w w w       (Riedmiller and Braun 1993)                                     5+

 ∂−∆ >
∂


∂∆ = +∆ < ∂






= +∆

 

As mentioned in the Section 1, the RPROP algorithm 
was faster than the BP, the main reason for the success 
using this algorithm is that the size of weight-step is only 
dependent on the sequence of signs, not on the magnitude 

of the derivative as showed by Riedmiller and Braun [24]. 
The RPROP algorithm has fewer parameters that need to 
be evaluated and promises to provide the same 
performance as an optimally trained network using the BP 
algorithm. 
2.2 Proposed Algorithm 
The studied problem consists of two independent-parts, 
the first is the vortex core axial velocity as a function of 
clearance in a tip leakage vortex (TLV) for different 
angles and the second is the vortex center position as a 
function of clearance in a tip leakage vortex (TLV) for 
different angles. Each part contains four groups of data. 
Each group are chosen as patterns for training and 
simulation.  
Our problem has two inputs (clearance and angle), and 
single output (vortex core axial velocity) in each part, 
because there is only one target value associated with 
each input vector; see figure (2) network (1). We have 
preferred to use the same neural network architecture in 
the both vortex core axial velocity and vortex center 
position see figure (2) network (2).  
The RPROP was trained and tested using different 
parameters, for instance, changing the number of hidden 
layers, neurons, epochs, and testing the networks. The 
chosen algorithms were first trained up to 500 epochs for 
vortex core axial velocity part and 400 epochs for vortex 
center position. After the training, it was noticed that the 
RPROP algorithm using three hidden layers was very 
effective using log-sigmoid transfer function in the hidden 
layers and a linear transfer function in the output layer.  
More hidden layers or neurons require more 
computations, but allow the network to solve complicated 
problems. Therefore, we have done many tries to find the 
best network used low number of hidden layers and 
neurons. For first network, 1, 2, 3 hidden layers with 12, 
13 and 15 neurons are used for solving the vortex core 
axial velocity problem. The second network 1, 2, 3 hidden 
layers with 14, 12 and 11 neurons are used for solving the 
vortex center position problem. We first set up the 
network with random weights and biases values.  

 
The equation which describe the normalized vortex core 
axial velocity or vortex center position is discussed in 
(Appendix A). 
 

III.  RESULTS 
The above mentioned of proposed neural network were 
applied and simulated to the data of the vortex core axial 
velocity or vortex center position as a function of 
clearance at different angles in a tip leakage vortex 
(TLV).  
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The chosen neural network was trained on four cases 
of different angles for each of the vortex core axial 
velocity or vortex center position as a function of 
clearance. These values of the normalized vortex core 
axial velocity are 3.043 multiplied by 10-5  and for vortex 
center position with clearance 4.929 multiplied by 10-5 . 
The performances of the obtained networks for two cases 
are shown in figure (3) and Figure (4). Figure (5) shows 
the neural networks results of the four cases training for 

normalized vortex core axial velocity with clearance. 
Figure (6) shows also the neural networks results of the 
four cases training for vortex center position with 
clearance. It was observed that these figures illustrate an 
excellent performance in simulation. These results of the 
dependence of normalized vortex core axial velocity and 
vortex center position on clearance at different angles are 
presented in the figure(5) and figure(6).

   
Fig.3: The NN performance for vortex core axial velocity Fig.4: The performance of NN for vortex center position 

                
Fig.5: The NN simulation of the vortex core             Fig.6:The simulation result of the vortex center  axial velocity with 

clearance                                                               position with clearance 
 

IV.  CONCLUSION 
We have done many tries to find the best network used 
low number of hidden layers and neurons. It was found 
that, 1, 2, and 3 hidden layers with 12, 13 and 15 neurons 
are used for solving the vortex core axial velocity 
problem and 1, 2 and 3 hidden layers with 14, 12 and 11 
neurons are used for solving the vortex center position 
problem are enough for reaching the optimal solution.  

The trained NN using the proposed algorithm shows 
excellent results matched with the experimental data in 
the two cases of the vortex core axial velocity and vortex 
center position problems. The NN technique has been also 
designed to obtain the one equation which simulate the   

vortex core axial velocity and vortex center position and 
matched them effectively. The (NNs) simulation using 
RPROP algorithm is powerful mechanism for simulation 
of the vortex core axial velocity and vortex center 
position on clearance in a tip leakage vortex (TLV) for 
different angles. 
Appendix A 
The equation which describe normalized vortex core axial 
velocity or vortex center position is given by: 
W or Yc =Pureline [net. LW{4,3} logsig(net.LW{3,2} 
logsig(net.LW{2,1} logsig(net. IW{1,1} A+net. 
b{1})+net. b{2})+net. b{3})+net. b{4}], 
Where, 
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A =  α  and τ  is the input 
net. IW{1,1}: linked weights between the input layer and 
first hidden layer. 
net. LW{2,1}: linked weights between the first hidden 
layer and the second hidden layer. 
net. LW{3,2}: linked weights between the second hidden 
layer and third layer. 
net. LW{4,3}: linked weights between the third hidden 
layer and output layer. 
net . b{1}: is the bias of the first hidden layer. 
net . b{2}: is the bias of the second hidden layer. 
net . b{3}: is the bias of the third hidden layer. 
net. b{4}: the bias of the output layer. 
 

REFERENCES 
[1] Green SI, Fluid vortices: fluid mechanics and its 

applications, vol 30. Springer, Berlin, (1995)  
[2] Arndt RE,  Cavitation in vortical flows. Annu Rev 

Fluid Mech. 34(1):143–175, (2002) 
[3] Batchelor GK, Axial flow in trailing line vortices. J 

Fluid Mech 20:645–658. doi: 10.1017/ 
S0022112064001446, (1964). 

[4] Moore DW, Saffman PG, Axial flow in laminar 
trailing vortices. Proc R Soc Lond Ser A Math Phys 
Sci 333(1595):491–508, (1973). 

[5] Farrell K, Billet M A, correlation of leakage vortex 
cavitation in axial-flow pumps. J . Fluids Eng 
116(3):551–557, (1994). 

[6] Boulon O, Callenaere M, Franc JP, Michel JM, An 
experimental insight into the effect of confinement 
on tip vortex cavitation of an elliptical hydrofoil. J 
Fluid Mech 390:1–23, (1999) 

[7] Gopalan S, Katz J, Liu HL Effect of gap size on tip 
leakage cavitation inception, associated noise and 
flow structure. J Fluids Eng 124(4):994–1004, 
(2002). 

[8] Wu H, Tan D, Miorini RL, Katz J, Three-
dimensional flow structures and associated 
turbulence in the tip region of a waterjet pump rotor 
blade. Exp Fluids 51(6):1721–1737. 
doi:10.1007/s00348-011-1189-9 (2011). 

[9] Miorini RL, Wu H, Katz J, The internal structure of 
the tip leakage vortex within the rotor of an axial 
waterjet pump. J Turbomach 134 (3): 031,018, 
(2012). 

[10] Pasche S, Gallaire F, Dreyer M, Farhat M, Obstacle-
induced spiral vortex breakdown. Exp Fluids 
55(8):1–11.doi:10.1007/s00348-014-1784-7, (2014). 

[11] Roussopoulos K, Monkewitz PA, Measurements of 
tip vortex characteristics and the effect of an anti-
cavitation lip on a model Kaplan turbine blade. Flow 
Turbul Combust 64(2):119–144, (2000).  

[12] Dreyer M,  Decaix J, Munch‑Alligne C, Farhat M, 
Mind the gap: a new insight into the tip leakage 

vortex using stereo‑PIV, Exp Fluids 55:1849 DOI 
10.1007/s00348-014-1849-7, (2014). 

[13] Mostafa Y. El-Bakry, Radial Basis Function Neural 
Network Model for Mean Velocity and Vorticity of 
Capillary Flow, International Journal For Numerical 
Methods In Fluids, Vol. 67:1283–1290 (2011). 

[14] Mostafa Y.El-Bakry, D.M.Habashy and Mahmoud 
Y.El-Bakry,  Neural Network Model for Drag 
coefficient and Nusselt number of square prism 
placed inside a wind tunnel, International Journal of 
Scientific & Engineering Research, Vol. 5, Issue 6, 
June(2014). 

[15] Mostafa Y.El-Bakry, D.M.Habashy and Mahmoud 
Y.El-Bakry, Effect of Particles on Flow Structures in 
Secondary SedimentationTanks Using Neural 
Network Model, International Journal of Scientific 
& Engineering Research, Volume 6, Issue 5, 
May(2015). 

[16] Yi-Chung Hu, and Jung-Fa Tsai, Backpropagation 
multi-layer perceptron for incomplete pairwise 
comparison matrices in analytic hierarchy process, 
Applied Mathematics and Computation, vol. 180, 
No. 1, pp. 53-62 (2006). 

[17] Curry B, Morgan PH, Model selection in Neural 
Networks: Some difficulties, European Journal of 
Operational Research, vol. 170, No. 2, pp. 567-577 
(2006). 

[18] Jochen J. Steil, Online stability of Backpropagation–
decorrelation recurrent learning, 
Neurocomputing, vol. 69, No. 7-9, pp. 642-650 
(2006). 

[19] Riedmiller, M., Advanced supervised learning in 
multi-layer perceptrons from Backpropagation to 
adaptive learning algorithm, Computer Standards & 
Interfaces, vol. 16, pp. 265-278 (1994). 

[20] Christian Igel, and Michael Hüsken, Empirical 
evaluation of the improved Rprop learning 
algorithms, Neurocomputing, vol. 50,  pp. 105-123 
(2003). 

[21] Carreras E S, Elkissi N, Piau JM, Toussaint F, Nigen 
S, pressure effects on viscosity and flow stability of 
polyethylene melts during extrusion, Rheologica 
Acta, vol. 45, No. 3 pp. 209-222 (2006). 

[22] Frasconi P, Gori M, Soda G, Links between LVQ 
and Backpropagation, Pattern Recognition Letter, 
vol. 18, pp. 303-310 (1997). 

[23] Riedmiller M, Braun H, A direct adaptive method 
for faster Backpropagation learning: The RPROP 
algorithm in H. Ruspini, ed., Proc. IEEE Internat. 
Conf. On Neural Networks (ICNN), San Francisco, 
pp. 586-591 (1993). 

[24] El-Harby A A, Automatic extraction of vector 
representations of line features from remotely sensed 
images, PhD Thesis (Keele University, UK), (2001). 


