International Journal of Advanced Engineering Resezh and Science (IJAERS)

V®/{ssue-6, June- 2016
ISSN: 2349-6495

Softwar e Release M anagement Evolution -
Comparative Analysisacross Agile and
DevOpsContinuous Delivery

Samer |. Mohamed

Modern Science and Arts University, Faculty of Eregiring, Electrical and communication departmegypE

Abstract—Software release management is the process of
managing, planning, scheduling and controlling a
software build through different stages and environments;
including testing and deploying software releases.
Traditional approaches like ad-hoc and
incremental/iterative approaches prove not to satisfy the
current demanding clients or I'T business. Thus a need for
new techniques arise like agile software development,
DevOps continuous delivery. DevOps and Agile
complement each other to deploy working functionality
into production faster. The main goal of Continuous
Delivery and DevOps is to release more reliable
applications faster and more frequently to satisfy the
client and business needs. This paper sheds a light on the
evolution of the software release management starting
from traditional techniques towards agile and continuous
delivery via DevOps. Analytical case study will prove how
new software release managements techniques succeeded
to bridge the gap of traditional techniques both in time to
market and quality efficiency to fulfil the IT business
needs.

Keywords—Continuous delivery, Operational
excellence, Software Release management, Agile
approach, DevOps.

l. INTRODUCTION
Software delivery evolves over the past yearsttfofithe
objective of satisfying the end clients and IT istiy
needs. The ability of IT organizations and themdurcts,
systems, and services to compete, adapt, and surviv
within the current market depends increasingly on
software delivery.Mobility, cloud computing and
virtualization all put high pressure on IT orgatiaas,
and R&D to innovate new approaches/methodologies fo
software delivery to satisfy the high demand from
customers [16]. Time to market, quality, relialyilit
productivity and customer satisfaction become aaitfor
IT organizations to survive and able to competehiwit
current IT market.
The fundamental agile principle of releasing fraglye
tends to get overlookedor ignored by organizatithat
approach agile transformations by scalingteamshak

WWW.ijaer s.com

been overlooked by these organizations that neutipes
calledDevOps and Continuous Delivery (CD) have megu
to emerge to address this gap.In DevOps, the dbgeist
to blur the lines between Development and Operation
teams so that new capabiliies flow easier from
Development into Production. On a smallscale, bigrr
the lines between Development and Operations at the
team levelimproves the flow. In large organizatiotigs
tends to require more structuredapproaches likg1&D
Applying these concepts at scale is typically theree of
thebiggest breakthroughs in improving the efficikeand
effectiveness of softwaredevelopment in large
organizations, and it should be a key focus of lange-
scaletransformation.
Software release management process for futurasese
is considered a complex process since not all
requirements can usually be met with available tand
resource constraints in one software release. ioisess
allows the product stakeholders to receive portiohs
their requirements in the product releases basedach
release constraints. This type of software devetopm
called incremental software development [10].Thare
many challenges for the release planning processhwh
make it one of the most complex process in software
requirements engineering [11], | will summarizedhsoof
these difficulties as follows.
= Requirements are not well specified and
understood because there is usually no formal
way to describe the requirements. Non-standard
format of requirement specification often leads
to incomplete descriptions and makes it harder
for stakeholders to properly understand and
evaluate the requirements.
= Uncertainty of data due to meaningful data for
release planning are hard to gather and/or
uncertain. Specifically, estimates of the available
effort, dependencies of requirements, and
definition of preferences from the perspective of
involved stakeholders are difficult to gauge.
= Constraints exist while planning the releases
needs to be taken into account by the product
manager while allocating the requirements to

Page | 52

International Journal of Advanced Engineering Resezh and Science (IJAERS)

V®/{ssue-6, June- 2016
ISSN: 2349-6495

various releases. Most frequently, these
constraints are related to resources, schedule,
budget or effort and hard to determine as shown
in figure 1.

= Unclear objectives from various stakeholders
and the facility to define “Good” release plans
are hard at the beginning. There are competing
objectives such as cost and benefit, time and
quality, and it is unclear which target level
should be achieved [19].

= Release planning is typically done ad hoc,
not based on sound data, models, experience
and methodology. This is even the case when
planning for several hundreds of features. As
a consequence, the created plans do not
create the maximum value achievable from
the resulting products.

885 _0g
(]

Set af assigmed

featnres

Tmplemeniniion
of ausipmed
features in releasen

g _________________

Fig.1: Planning and development process

Agile basically means an ability to harness chafaye
competitive advantage. An agile software delivhas

the ability to respond to and create change in g tat
allows it to react to and gain advantage overiditional
counterparts of software development approachegile A
businesses can implement concepts quickly (speed-to
market). They are able to quickly recognize, captand
respond to new and emerging markets.Agile
methodologies are the normal evolution of the tiawal
approaches of software development like water fall,
incremental delivery, and/or iterative software ivigly.
Agile methods offer a viable solution when the wafte

to be developed has fuzzy orchanging requiremésiag
able to cope with changing requirements throughbet
life cycleof a project [2]. Agile methods have pedvto
have a far higher agility and flexibility than theditional
software development [3] and are used to produgkehi
quality software in a shorterperiod of time [4]. dftion

of agile software development methods enables a

WWW.ijaer s.com

software developerto be more flexible and respansiv
the changing environments and customer demands.
DevOps and Continuous Delivery (CD) is another
subset of agile which the team keeps its software
ready for release at all times during developméns
different from “traditional” agile in that it doesot
involve stopping and making a special effort toatee

a releasable build. CD is a group of practices and
methodologies in software development that are
designed to improve the process of software dejiver
aspects and ensure reliable software releases.
Ultimately, it enables the systematic, repeatabiej
more frequent release with high quality software to
end clients[5].

The paper is organized as follows: section |l giees
background for the evolution of the software reteas
management starting from the traditional approaches
towards new approaches of continuous delivery and
DevOps; section Il illustrates the proposed E2E
framework and how IT services can be delivered in
seamless strategy under proposed framework. Section
IV introduces the proposed Proof of Concept (PoC)
model; where PoC description, details, results, and
recommendations are detailed; section V is the
conclusion of this study.

. EVOLUTION OF SOFTWARE RELEASE
MANAGEMENT/DELIVERY
BACKGROUND
There are many models exist in the literature fog t
software life cycle and release management which
describe the series of steps the system goes throug
starting from realization of need, through consiomg
maintenance and retirement. Brief description fons of
these models will be mentioned in the followingtiets.
2.1. Ad-hoc methodology
This methodology focus only on planning the corgeoft
the next direct release using manual approach. éd h
methods are used to determine solution plans teufaar
from objective demands. Many organizations havedn
hoc plan that relies solely on the judgment of gheduct
manager [11]. An ad hoc approach may be suitable fo
relatively small in-house projects involving fewnsge of
requirements and relaxed constraints.
2.2. Incremental methodology
Incremental software development is the process in
which software product is developed in incremental
manner such that additive components and/or faults
correction are produced through the sequential
product releases. This will enable the end custemer
to receive parts of the system early to get higher
business value and gain early feedbacks. Release
planning methodology for incremental software

Page | 53

International Journal of Advanced Engineering Resezh and Science (IJAERS)

\V®/{ssue-6, June- 2016
ISSN: 2349-6495

development incorporates set of decisions about
which software requirements to be implemented
during which release. This will be a critical and
challenging process especially with stakeholders
conflicting perspectives, competing targets and
different types of resources and financials coristsa
[5]. Thus the objective from the release planning
process is to maximize the business value gained
while balancing the stakeholder's objectives and
meeting the resources, costs, schedule, and métigat
risks constraints.

Reguiramants ——

[T

Cods

Taat

=

2.3. Agile methodology

Agile approaches/methodologies guide software
developer engineers to break down their software
requirements down into small releases known asr‘'Use
stories’ to accelerate the feedback and response fine
client. This will facilitate aligning the softwangroduct
features/requirements to fit for the business ne&dss
agile guiding principles centered to help small
development teams to better deliver smarter ande mor
efficient. Adopting this, software developers al#eato
produce their code in shorter iterations slotsatisg/ the
client and market needs. But the issue is raiseenwh
comes to the interlocks with the other teams dole t
stream like operations, infrastructure teams due to
difference in culture, working approach, scope airky
business processes, thus open the door for a reed t
another approach to resolve both the communication
aspects between the interconnecting teams besides t
process and execution aspect towards the end doal o
satisfying the end client needs. DevOps and Cootisau
delivery approaches designed to fix this agile dracks
from E2E perspective [9].

2.4. DevOps methodology

DevOps is a philosophy under which the businesmdea
software development teams, and the operationssteam

WWW.ijaer s.com

collaborate on a continuous basis to make sure Ithat
solutions are available to business on time as per
expectations and that they run without disruptitrcalls
for automation, collaboration, cultural change, qass
adaptation, and an organizational structure thalkess
complex and is easy to navigate. It addresseséebplp,
process, and tools, as well as the technology difoes
needed to secure this collaboration and sync up
different stakeholders to move functionality to ghwotion
faster. Both DevOps and agile in sync to releasevitiue
and benefits of the software products towards tisness
units. Besides it facilitate open channels and inanus
communications between the development and opasatio
team starting from the early stages of SDLC (Saftwa
Development Life Cycle) to understand the business
vision and release planning aspects. The edge vDp®
is pushing towards full automation SDLC towards the
clients especially for those apps require more tbae
release/day. Currently there are massive set dfntpo
towards this full automation SDLC [15].
2.5. Continuous delivery methodology
Continuous Delivery (CD) is built on the agile priples
to resolve some of the agile drawbacks as detailéde
previous section like communication, processes, and
tooling aspects. CD is composed of set of methaieto
and practices within software delivery domain tha¢
designed to improve the process of software dsfiver
ensure reliable software releases within shortee j10].
It facilitates realizing the business value of waite
products to the customer in shorter time or by othe
means in continuous manner by making the softwade c
deployable at any point of time through the develept
life cycle. Some of the added values of CD like:

» Accelerate time to market

» Ability to build the right product

* Improved productivity and efficiency

* Reliable releases

* Improved product quality.

* Improved customer satisfaction

the

II. PROPOSED PROOF OF CONCEPT
DEVOPS CONTINUOUSDELIVERY
FRAMEWORK
The previous sections show how the software release
management approaches evolve over time to satigfy t
end user demand and drawback of the Agile whicly onl
addresses the software requirements through saftwar
development and doesn’t address rapid delivery of
software to production systems. To address thedrapi
delivery to production and disconnect between
development and operation teams via DevOps which
addresses the collaboration, and automation between

Page | 54

International Journal of Advanced Engineering Resezh and Science (IJAERS)

V®/H{ssue-6, June- 2016
ISSN: 2349-6495

software development and operation teams. The peabo
framework isan approach to agile development,
continuous integration, continuous testing, and
continuous delivery through the use of automatessto
and streamlined processes. With the main objettivi@l

gap of current traditional approaches like watésfal
incremental and evolutional approaches and eveh wit
agile methodology as described earlier in the joevi
sections. It helps with the new emerge trends ibilit,
information optimization and converged clouds tsilga
deliver as per end-user rapid needs for socialraolile
applications as shown in figure 2. The frameworkvees
incremental development continuously to production,
which reduces defects, eliminates excess cycle,time
provides continuous feedback and eliminates outage
windows when deploying to production. Automatiorais
critical component of a successful DevOps contiisuou
Delivery approach, and the tools in this spaceinaatto

rapidly advance.

Traditional systems Enilisér -Soialnd

mobile
Security
!
S /8
G mald—"

] i Converged
= cloud Information
optimization

Code

Application server reposiory

Database

machine Dey Machine

Chef server

Build tools

Fig.2: Proposed DevOps continuous delivery framework
value

The proposed DevOps continuous delivery framewsrk i
agnostic to a particular toolset as shown in figdirand is
customizable based on customer preference. The key
steps for automation that enable the proposed DgvOp
continuous delivery framework include:

1. Daily Code Commit. Developers check-in code
into a central source code repository on a daily
basis.

2. Automated Builds. A Continuous Integration
(CI) server is continually polling the source
repository for changes, and when a change
occurs the code is checked out of the repository
and built. The built software is stored in a
repository manager by the CI server.

3. Automated Testing. The code is automatically
unit tested, code quality tested, smoke and Ul
tested, and performance tested.

4. Automated Delivery. The built version is
deployed using provisioning tools that treat
infrastructure as code.

The proposed DevOps continuous delivery framework
introduced in [29] in more details as shown in figB.
This detail the set of toolset used through then&aork

to facilitate End to End (E2E) continuous delivstgrting
from provisioning the infrastructure towards depi@nts

of the code into production via continuous develeptn
build, integration and testing.

Tomcat

Monitoring
SEMVEr

Test Machine

Fig.3: Proposed DevOps continuous delivery framework tool set

WWW.ijaer s.com

Page | 55

International Journal of Advanced Engineering Resezh and Science (IJAERS)

V®/{ssue-6, June- 2016
ISSN: 2349-6495

Continuous Integration (Cl) and Continuous Delivery
(CD) approach within the proposed framework as show
in figure 4 is designed to create an automation
environment for the entire end-to-end release EHE®
that every change to the application results ialeasable
version that is built automatically. Software apptions
are built using this framework in the developmemtgess

on every change checked in by the developers,iiake
the code always deployable at any point of timeisTh

Agile Development

Daily Standup
Potentinhg
7 S abid Continuous
Product Sprint 2 Product Feedback
Backlog ¥ Backiog [#Wookshsl .
Bumdawn User
Chart Stories

Continuous
Feedback

Continuous Dellvery

Infrastruciure as
Product E\ code

Provisloning
UAT L

Tools
o
QA E [Reposlion | !

Cl

" Server

i Continuous
Feedback

effectively eliminates the need for integration tites
because the code is incrementally being integratec
daily basis which removes the cost associated with
developers spending time on this phase. The feaifire
continuous deployment, ability to have frequent
incremental builds and mandating a comprehensive
automated testing process allows developers tocidete
problems early and as a result, ensure highertguali

Continuous Integration

Co?m“ Build + Unil Test + Code Quality
‘—# W= cCiserver |
Dev Code
Repository l-—-.Nlll&cT
8oda >
uality - - —
- Reposito
Metrics Y —
Continuous
Feedback

Continuous Testing

Test Tast
] d Scripts Suite
orahon AUlo
Tickel Creation

Tracking
Testin I'- T 1 TOAT :
|.f_._-_? HIN | QA”UATl.

Fig.4: Proposed DevOps continuous delivery framework architecture

The main edge for this framework to support rapid
deployment and release is the automation via stia$

as shown in figure 3 that allow the DevOps team to
automate provisioning of infrastructure resourcesl a
platforms. The server configuration, packages lesta
relationships with other servers are modeled witdeg
and is automated and has predictable outcomesyviego
error-prone manual steps. The framework also inited
automated configured toolset that fits with the
project/application scope needs and configure the
required tools into the end-to-end application
environment or infrastructure as infrastructureaasode
(laaC). It uses software development best practarethe
infrastructure code and stores the code in a Code
Repository with tags and branches, and releasesoithe
just as if it were applications software. This a&sfiructure
code is continuously integrated, tested and deploight
along the application software and is treated no
differently.

The Continuous Integration (ClI) server is configlveth
build steps to check for coding style, coding stadd,
and other features using tools such as Chef or J88%
After continuous build for the application packaggng
Jenkins [30], the frameworkrunsthe set of unit gest
regression from the CI server and deploy the codtne

WWW.ijaer s.com

development integration environment and execute
additional functional test scripts. Tools like Selan
[35]is used for smoke and Ul testing. Using Cl seyv
project teams still have the ability to get theputttesting
results and artifacts of the build, unit testingyda
deployment and functional testing along with therrse
version used for the build for better and contirsiou
improvement. The proposed automated deployment
provides a continuous delivery pipeline that aut@wa
deployments to development, staging and production
environments. This approach significantly reduche t
manual intensive tasks, resource lag time and epame
from manual repetition. This is done via E2E auttada
deployment tools and processes that aim of reducing
deployment risk, and giving the option of deploytufe
multiple times per day without any degradationervge.

The outcomes releases are small in size to fickiae the
risk for system instabilities and customer useregigmce
issues, quickly realize the value of the new fezduo the
business more quickly, make the application codmgh

is easier to roll back and easier to test becéhesaumber

of changes per release is very small.

The proposed DevOps Continuous delivery framework
close the loop by integrating the operations aspgetell.
This is done via set of tools where operations and

Page | 56

International Journal of Advanced Engineering Resezh and Science (IJAERS)

V®/{ssue-6, June- 2016
ISSN: 2349-6495

infrastructure teams are using once applicatiokage is
deployed to the production environment. These g$et o
tools like Codar [32] and Service Management (S88] [
are used to troubleshoot incidents and continuowsitor
across all phases of the application development,
testing,and deployment which is crucial for a sestd
DevOps Continuous delivery implementation. Thisl wil
facilitate minimizing the costs of errors and chesidy
providing continuous feedback throughout each pludise
the lifecycle.Tools like Splunk[36] are adopted the
proposed framework for log analysis for developems
tools like New Relic to monitor the performancetbé
applications from the user’s perspective such éshdae-
transactions, and systems monitoring to focus otJ CP
load, memory utilization, and disk space. Theselstoo
allow project teams to better understand issues and
metrics, and ensures that we are optimizing ressutc
reduce operational expenditures.

The main benefits realized from the proposed fraonkw
can be summarized as follows:

e Design an EZ2E innovative framework to
overcome current legacy approaches issues and
drawbacks.

e Adapt new IT trends Ilike converged
infrastructure, information, services and delivery
approaches to satisfy the market and client
needs.

» Enable services flexibility and portability.

» Articulate seamless and lean
approaches.

» Utilize available resources/tools to maximize
value towards clients.

e Industrialized delivery model to sustain quality
while reducing cost

e Innovative approach to align services to the
business.

* Narrow down overhead communication between
teams and build on collaboration.

» Provides reliability, predictability, and efficieyc
to ultimately get the most from the applications
portfolio.

e Build on project maturity through innovative
maturity calculator tool.

o Utilize outcomes from calculator to draft action
plan via CSFs/KPls.

e Automated environment setup toolkit based on
push button approach.

» Facilitate smooth/seamless delivery model with
all interlocked teams.

» Plugin/customize the tools/resources to fit for
project purpose.

delivery

WWW.ijaer s.com

e Create new outcomes/value for the clients by
composing tools, asset, resources and IT
experiences.

« Develop real time instant insights for continuous
improvements, innovation.

e Support growth strategy with min time to
market.

* Link service offering with business outcomes
and client’s needs.

* Adopt the ‘Smarter rather than harder’ theme

V. FRAMEWORK VALIDATION (CASE
STUDY)
To measure how the proposed DevOps continuous
delivery framework would help faster releases, cisdy
has been developed and set of measures/metrics are
used/proposed according to literature and industry
recommendations as follow§here are hard, quantifiable
technical and financial metrics we can measureh asc
* Number and frequency of software releases
* Volume of defects
e Timel/cost per release
e Change lead time
e Change failure rate Mean Time Between Failure
(MTBF)
* Mean Time To Repair (MTTR)
* Number and frequency of outages / performance
issues
The main objective from the case study is to shiav v
guantifiable figures, how the proposed frameworkrov
achieve client needs compared to other traditional
approaches using the above set of metrics. The
specification of the testbed or system under tebased
on the following assumptions as:
e Four servers (Dev, Test, Nagios, Database)
» One target is done over a java application.
» Average no of code changes is 4 changes per
week
 Average no of environmental changes is 5
changes per week
» 3 ESXI servers with 6 virtual machines with
Centos OS
* Installed chef server for provisioning of all
servers with development of cookbooks for each
machine creation to
* make the creation automated
» Codar topologies are used to configure the
automation scripts
With assumptions, the following setup and configjora
steps are implemented on the proposed infrastridtur
test the outcomes from the proposed framework.

Page | 57

International Journal of Advanced Engineering Resezh and Science (IJAERS)

\V®/{ssue-6, June- 2016
ISSN: 2349-6495

+ Build set of virtual m/c to host the new
integrated system/applications under the NSIT
framework (6 m/c of the following technical
configurations).

e 6 Virtual m/c is basically to simulate three
different environments (Development, staging,

Production).
e Configure and setup the different framework
tools (Configuration Management (CM),

Jenkins, Git, Codar, SM, Chef).

e Build the application server (front end and
backend servers including the Database (DB),
Load Balancers (LBs).

» Integrate the application servers (frontend and
DBs) hosted on the virtual m/cs.

» Deploy and configure the DB on the new build
DB server.

» Deploy the application on the new build
application server and ensure the connectivity
between the systems is as expected.

e Build the Cl/CD (Continuous
Integration/Continuous Deployment) servers and
link with ‘Jenkins’ and ensure they are linked
with the integrated system of application and
DB.

» Build the testing server and deploy set of test
cases using ‘Selinum’.

Table.1: Proposed DevOps continuous delivery comparison results

Criteria Waterfall/ad-hoc Agile Proposed Derps continuous
delivery
Releases/month 1 every 6 months 1every 3 X per day
weeks
#Defects 10 8 2
Change lead time Months Days Mins
MTBF 6 months 16 hours 4 hours
MTTR 6 months 24 hours 6 hours
Outages time X 5X shorter 10X shorter
Resour ces Productive time X 3X 7X
#Changes X 5X 14X
Change successrate X 80% X 99.5% X

As shown form the data in table 1, comparing the
different release management methodologies starting
from legacy/traditional methodologies like watelfal
through agile and proposed DevOps continuous dglive

we see huge variance and value where on average 7x

times more productive than theirnon-high performing
peers. It produces 14x more changes, with onethalf
changefailure rate with 4x higher first fix ratesyd 10x
shorter Severity 1 outages times. Highest depldg ra
produced from the framework on the tested
application/package was approximately 600 produactio
changes per week, with a change success rate5%099.

V. CONCLUSION
The proposed Continuous delivery DevOps framewark g
even beyond the entire SDLC by incorporate theestag
after package deployment to production. This papeds
light and shows how the proposed framework through
implementation of automation tools and business
processes, releases are being continuously deliviere
production systems without outage, higher qualityd

unnecessary manual processes. The proposed approach

WWW.ijaer s.com

reduces costs by providing environments that aly fu
automated thus removing the need for staff to spienel
with manual processes. The delivery processesrames
repeatable and automated to allow for more freqaedt
less error-prone releases. The proposed framewask c
study proved the value gained against other tcaditi
approaches especially with current market and lessin
increasing demand via set of benchmark metrics.ctWhi
leads to increased efficiencies through improved
development and operational processes, minimizetl an
better communication/collaboration between teams,
transparency via continuous monitoring and feedback
improved quality from continuous integration anstiteg,
and less risk due to an automated environment?

REFERENCES
[1] S. Bang, S. Chung, Y. Choh, and M. Dupuis. A
grounded theory analysis of modern web
applications: Knowledge, skills, and abilities for
devops. In RIIT 2013 - Proceedings of the 2nd
Annual Conference on Research in Information
Technology, pages 61{62, 2013.

Page | 58

International Journal of Advanced Engineering Resezh and Science (IJAERS)

V®/{ssue-6, June- 2016
ISSN: 2349-6495

[2] L. Bass, R. Je_ery, H. Wada, I. Weber, and L. Zhu.
Eliciting operations requirements for applicatiolms.
2013 1st International Workshop on Release
Engineering, RELENG 2013 - Proceedings, pages
5{8, San Francisco, CA, 2013.

[3] D. Cukier. Devops patterns to scale web application
using cloud services. In Proceedings - SPLASH '13,
pages 143{152, Indianapolis, Indiana, USA, 2013.

[4] P. Debois. Opening statement. Cutter IT Journal,
24(8):3{5, 2011.

[5] A. Schaefer, M. Reichenbach, and D. Fey.
Continuous integration and automation for devops.
Lecture Notes in Electrical Engineering, 170
LNEE:345{358, 2013.

[6] W. Shang. Bridging the divide between software
developers and operators using logs. In Proceedings
- International Conference on Software Engineering,
pages 1583{1586, 2012.

[7]1 S. Stuckenberg, E. Fielt, and T. Loser. The impéct
software-as-a-service on business models of leading
software vendors: Experiences from three
exploratory case studies. In PACIS 2011 -
15"Paci_ ¢ Asia Conference on Information
Systems: Quality Research in Pacic, 2011.

[8] B. Tessem and J. Iden. Cooperation between
developers and operations in software engineering
projects. In Proceedings - International Conference
on Software Engineering, pages 105{108, 2008.

[9] M. Walls. Building a DevOps Culture. O'Reilly
Media, Sebastopol, CA, 2013.

[10]J. Webster and R. T. Watson. Analyzing the past to
prepare for the future: Writing a literature review
MIS Q., 26(2):xiii{xxiii, June 2002.

[11]1D. DeGrandis. Devops: So you say you want a
revolution? Cutter IT Journal, 24(8):34{39, 2011.
[12]D. Feitelson, E. Frachtenberg, and K. Beck.
Development and deployment at facebook. IEEE

Internet Computing, 17(4):8{17, 2013.

[13]L. Fitzpatrick and M. Dillon. The business case for
devops: A five-year retrospective. Cutter IT Jolirna
24(8):19{27, 2011.

[14]S. Hosono and Y. Shimomura. Application lifecycle
kit for mass customization on PaaS platforms. In
Proceedings - 2012 IEEE 8th World Congress on
Services, SERVICES 2012, pages 397{398,
Honolulu, HI, 2012.

[15]J. Humble and J. Molesky. Why enterprises must
adopt devops to enable continuous delivery. Cutter
IT Journal, 24(8):6{12, 2011.

[16]B. Keyworth. Where is it operations within devops?
Cutter IT Journal, 24(12):12{17, 2011.

[17]1B. Kitchenham. Procedures for
systematic reviews, 2004.

performing

WWW.ijaer s.com

[18]0. Akerele, M. Ramachandran, and M. Dixon.
System dynamics modeling of agile continuous
delivery process. In Proceedings - AGILE 2013,
pages 60{63, 2013.

[19]A. Le-Quoc. Metrics-drivendevops.
Journal, 24(12):24{29, 2011.

[20]M. Loukides. What is DevOps? O'Reilly Media,
Sebastopol, CA, 2012.

[21]S. Neely and S. Stolt. Continuous delivery? easy!
Just change everything (well, maybe it is not that
easy). In Proceedings - AGILE 2013, pages
121{128, 2013.

[22]B. Phifer. Next-generation process integration:
CMMI and ITIL do devops. Cutter IT Journal,
24(8):28{33, 2011.

[23]H. Pruijt. Multiple personalities: the case of mess
process reengineering. Journal of Organizational
Change Management, 11(3):260{268, Jan. 1998.

[24]J. Roche. Adopting devops practices in quality
assurance. Communications of the ACM,
56(11):38{43, 2013.

[25]S. Mohamed: DevOps Maturity Calculator DOMC -
Value oriented approach, International Journal of
Engineering Science and Research, Vol 2, Issue 2,
PP 25-35.

[26]S. Mohamed: DevOps shifting software engineering
strategy-value based perspective, International
Journal of Computer Engineering, Vol 17, Issue 2,
and PP 51-57.

[27]S. Mohamed: GOAL ORIENTED DEVOPS
TRANSFORMATION FRAMEWORK — METRIC
PHASED APPROACH, International Journal of
Current Research Vol 8, Issue 3, PP 28307-28313.

[28]S. Mohamed: New style of software lifecycle
strategies — Use Case perspective, International
Journal of Management, Information Technology
and Engineering, Vol 4, Issue 3, and PP 99-114.

[29]1S. Mohamed: Innovative software delivery
framework towards software application
modernization, International Journal of Research in
Engineering & Technology, Vol 4, Issue 5, and PP
77-98.

[30] https://wiki.jenkins-ci.orgMay 2016.

[31] http://www.tutorialspoint.com/gitJun 2016.

[32] https://www.youtube.com/watch?v=fVUoWgmuYJ
M, Jun 2016.

[33]https://docs.chef.iof/install_server.hirlpr 2016.

[34] http://www.tutorialspoint.com/antMay 2016.

[35] http://www.tutorialspoint.com/seleniumnjun 2016

[36] http://www.splunk.com/view/SP-CAAAHSM May
2016.

Cutter IT

Page | 59

