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Abstract — In reservoir simulation, the most known well-reservoir coupling technique is based on the
Peaceman’s equivalent radius, which is applied on the productivity index computation, that is used to
relate flow rate, wellbore pressure, and the mesh block pressure. Original Peaceman’s model considers
the assumption of steady-state flow, leading to an artifact on the calculation of the wellbore pressure,
called numerical wellbore storage. This artifact is more significant for coarser meshes and initial time
instants, and it is also a function of fluid and rock properties. In this context, we have implemented and
compared different Peaceman’s technique extensions for productivity index calculation incorporating
transient effects to prevent numerical wellbore storage. We have also considered some production
scenarios for a vertical well and single-phase oil flow.
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I. INTRODUCTION
During the 1960s, the term Numerical Simulation

of Reservoirs became common in the oil industry [14],
referring to the use of physical-mathematical models
and computational tools to predict the performance
of hydrocarbon reservoirs under different production
scenarios. According to Dumkwu et al. [16], Numeri-
cal Reservoir Simulation has become an ally in Reser-
voir Engineering, and we use it in decision making that
involves many financial resources, in estimating un-
derground reserves, and to forecast and improve per-
formance production of reservoirs in the oil and gas
industry. This work focuses on the calculation of pres-
sure estimates in wells, using well-reservoir coupling
techniques.

1.1. Determination of pressure in oil wells
Petroleum is the name given to natural hydrocar-

bon mixtures that can be found in the solid, liquid, and
gas phases, depending on the pressure and temper-
ature conditions. In nature, oil can appear in only one
phase, or it can appear as a multiphase mixture in
equilibrium [30]. In many cases, the fluid phase in the
reservoir depends on the thermodynamics properties

of the fluid produced at the surface. Knowledge of the
behavior, under pressure and temperature variations,
of oil, natural gas, and water, alone or in combina-
tion, is of fundamental interest to Petroleum Engineer-
ing [14], whether under static or moving conditions, in
the rocks of the reservoir or ducts.

Over the years, Petroleum Engineering has rec-
ognized the need for accurate information related to
physical conditions in the well and inside the reser-
voir. With the initial progress in oil recovery methods,
it became clear that calculations made with informa-
tion from the surface or the top of the well could of-
ten lead to misunderstandings. Sclater et al. [33] de-
scribed the first pressure value record at the bottom
of the well and fluid collection in the well, under pres-
sure, for sampling. These same authors define rock
bottom data by referring to pressure, temperature,
gas-oil ratio, and the chemical and physical nature
of the fluid. Millikan et al. [21] highlighted the need
of accurate wellbore pressure measurements when
they described the first accurate pressure gauge, and
they pointed to the fundamental importance of well-
bore pressure knowledge for Petroleum Engineering,
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in search of more efficient recovery and lifting proce-
dures. Based on this contribution, we were able to
measure pressure, which is essential information for
reservoir performance calculations [14].

The Well Testing Analysis is the engineering
branch which obtains estimates of properties of the
well-reservoir system from wellbore data under pro-
duction/injection conditions, as well as through the
application of inverse problems. We are interested
in the pressure variation in the well as a function of
time. We accomplish this by measuring the pressures
at the bottom of the well and the flow at the surface,
for example. From the measured pressure response,
it is possible to determine reservoir properties useful
for planning the completion of the well or the reser-
voir depletion plan [35]. During a well test, we can
create a transient pressure response by a temporary
change in the production rate. The well response is
usually monitored for a relatively short period, com-
pared to the reservoir life, depending on the test ob-
jectives. For estimates involving regions around the
wells, we often carried out tests in less than two days.
In the case of tests to analyze the reservoir bound-
aries, it may take several months to register pressure
data [20].

It is usual to use analytical solutions to interpret
the results of pressure tests in wells. Theis [37] pro-
posed one of the first theoretical solutions for deter-
mining the well pressure, depending on the flow rate
and the duration of production. Considering the one-
dimensional flow in the radial direction in a reservoir
described in Cylindrical coordinates, producing at a
constant flow qsc (defined in standard conditions, neg-
ative for production and positive for injection), from the
initial time t=0, the analytical solution for the pressure
in the reservoir in a radius r is given by [30]:

p(r, t) = pi +
qscBµ

4πkh

[
−Ei

(
−φµctr

2

4kt

)]
, (1)

where pi is the initial pressure of the porous medium,
µ is the viscosity of the fluid, k is the permeability
of the medium, h is the reservoir thickness, Ei is
the Integral Exponential Function, φ is the porosity of
the medium and ct is the total compressibility that in-
cludes the contribution of the fluid (co) and rock (cφ)
compressibilities (ct = co + cφ).

For small values of the argument (X < 0.025),
the integral exponential function can be approximated,

with an error of less than 1%, by [26],

Ei(−X) ∼= ln(λX), (2)

where λ = exp(0.57722), and 0.57722 is the Euler
constant. Thus, the pressure in the well (pwf ) is ap-
proximated by

pwf (t) ∼= pi +
qscBµ

4πkh

[
− ln

(
λφµctr

2
w

4kt

)]
, (3)

where rw is the radius of the well.
Throughout the years, researchers have devel-

oped models for more complex reservoirs. However,
there are many situations for which analytical solu-
tions do not exist or are difficult to obtain. Hetero-
geneous reservoirs with irregular borders and with
complex well geometry are examples where numeri-
cal simulation is the alternative to determine transient
pressure responses.

1.2. Numerical reservoir simulation
As already said, we often use reservoir simulation

models in the oil and gas industry. The reasons for
such acceptance are due to some advances [17]:

1. in computing (particularly concerning the speed
of processing and the increase in the storage
capacity of computers);

2. numerical techniques for solving partial differen-
tial equations (PDEs);

3. reservoir simulators suitable for use in modeling
field cases;

4. reservoir characterization techniques, among
other factors.

The ultimate goal of a numerical simulation study
is to accurately predict flow and pressure in the well
and estimate pressure distributions in the reservoir
(and saturation, in the multiphase case). When we in-
tend to incorporate well modeling in reservoir simula-
tion, some difficulties appear, which we can separate
into three main categories [17]:

1. The cell of the computational mesh that contains
the well is usually large compared to the well-
bore radius, due to the discrepancy between the
spatial scales involved. The average diameter
of the production/injection well is about 10 cm,
while the dimensions of a reservoir can be kilo-
meters. Therefore, the cell pressure calculated
is a poor estimate of the pressure in the well;
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2. Coupling is a complex interaction between the
reservoir (porous medium) and the well (a
duct), particularly in the case of wells that pass
through several layers of the porous medium;

3. There are difficulties in describing the well-
reservoir coupling in the multiphase flow when
the total production flow of the well is specified.

It is also worth noting that there is a variation in
the time scale, with phenomena involving strong pres-
sure gradients that may occur in short periods, such
as fractions of an hour, and border effects (such as, for
example, pressure drop at the reservoir boundaries
concerning the initial pressure) that may take months
to appear. These times are a function of the charac-
teristics of the well-reservoir system. Other problems
can also arise when considering the location of the
producer/injector well displaced from the center of the
cell, or even when there are several wells in a cell in
the computational mesh.

The well-reservoir coupling model appears as a
central component in reservoir simulation. Peaceman
[26] introduced a well-known and commonly used
model, which considers that the flow between the
reservoir and the producing well is steady-state. Ex-
tensions were also created, for example, for the case
of anisotropy [27], the incorporation of transient ef-
fects [9], and techniques for horizontal wells [2]. Al-
though this coupling model provides suitable results
for reservoirs in a wide range of applications, including
their extensions, it introduces a phenomenon called
numerical storage (due to the similarity of the results
when considering wellbore storage, although it does
not correspond to the physical behavior in the well)
for the initial instants, and the application of method-
ologies to circumvent this numerical issue is the main
objective of this work.

Therefore, this work aims to implement a model
for a transient coupling of the well-reservoir system to
minimize the phenomenon of numerical storage orig-
inating from the steady-state well-reservoir coupling,
using the technique of Peaceman [26]. We consider
here a single-phase flow, of a slightly compressible oil,
in a reservoir containing a vertical producer well that
penetrates the entire oil reservoir. We also use a poly-
nomial function, with low error and wide application
range, when calculating the integral exponential Ei.

II. FLOW MODELING IN POROUS MEDIA
In this work, we consider the following hypotheses

for the flow in the porous medium:

1. the porous medium is homogeneous and
anisotropic in terms of its permeability;

2. porosity is a linear function of pressure;

3. the compressibility of the rock is small and con-
stant;

4. the fluid is Newtonian and slightly compressible;

5. the fluid has a constant chemical composition;

6. there are no electrokinetic effects;

7. there are no inertial or turbulent effects;

8. the flow is single-phase and isothermal;

9. there are no chemical reactions.

2.1. Governing equations
The continuity equation is a mass balance equa-

tion so that the difference in mass entering and leav-
ing a control volume must be equal to the accumula-
tion of mass within the control volume in a given time
interval. In oil reservoirs, the control volume is a por-
tion of the porous medium that can contain one, two,
or three phases of fluid [17]. It is worth mentioning
that we consider the porous medium as a continuum.
So, we define the physical properties, at any point, us-
ing the concept of Representative Elementary Volume
(REV) [41]. For single-phase mass flows in a porous
medium, we can write the continuity equation in the
form:
∂

∂t
(φρ) +∇ · (ρv)− qm

Vb
= 0 (4)

where ρ is the density of the fluid, v is the apparent
fluid velocity (flow rate divided by the cross-sectional
area), qm is a source term representing the production
or injection of fluid, and Vb is the volume of the rock
(solid material plus pores).

We can also write the continuity equation in terms
of the formation volume factor [17], B = ρsc/ρ, as

∂

∂t

(
φ

B

)
+∇ ·

( v
B

)
− qm
Vbρsc

= 0, (5)

where the sc subscript indicates the standard condi-
tions.

The civil engineer Henry Darcy, in 1856, through
experiments of vertical water filtration in columns of
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homogeneous sand, obtained the first equation used
to describe the movement of fluids in porous media.
This equation was later called Darcy’s law. It is an
empirical relationship between the mass flow rate of
fluid through a porous medium and the potential gra-
dient, defined in the form [15]

−∇Φ =
v

K
, (6)

where K symbolizes the hydraulic conductivity of the
porous medium, which combines fluid and medium
properties, and ∇Φ is the potential gradient, defined
as [17, 30],

∇Φ = ∇p− γG∇D (7)

where γG = ρg, g is the magnitude of the acceleration
due to gravity, and D is the depth (positive in the ver-
tically downward direction). Later, Darcy’s law could
be deduced mathematically from the balance equa-
tions that govern the single-phase flow of a Newtonian
fluid [40].

Rewriting Darcy’s law in terms of the properties of
the fluid, we can express the surface flow velocity as

v = −k

µ
(∇p− ρg∇D) , (8)

where k is the absolute permeability tensor.
From the definition of the compressibility coeffi-

cients of the rock and the fluid, it is possible to rewrite
the transient term of Eq. (5) in the form

∂

∂t

(
φ

B

)
= φ

d

dp

(
1

B

)
∂p

∂t
+

1

B

dφ

dp

∂p

∂t

=

[
φ
d

dp

(
1

B

)
+

1

B

dφ

dp

]
∂p

∂t

=

(
φco
B0

+
cφφ

0

B

)
∂p

∂t
, (9)

where we considered that φ = φ(p) and B = B(p) and
that [17]

φ = φo [1 + cφ(p− po)] , (10)

ρ = ρ0
[
1 + co(p− p0)

]
, (11)

B =
B0

[1 + co(p− p0)]
, (12)

µ =
µ0

[1− cµ(p− p0)]
, (13)

where the superscript 0 indicates the reference con-
ditions, and cµ is the coefficient of variation of viscos-
ity, and we assume that co and cφ are small and con-
stants.

We obtain the Hydraulic Diffusivity Equation (HDE)
by combining Darcy’s law with the mass conservation
equation. Now, writing Eq. (8) in terms of its compo-
nents,

vx =
kx
µ

(
−∂p
∂x

+ ρg
∂D

∂x

)
, (14)

vy =
ky
µ

(
−∂p
∂y

+ ρg
∂D

∂y

)
, (15)

vz =
kz
µ

(
−∂p
∂z

+ ρg
∂D

∂z

)
. (16)

In turn, we can write the conservation equation as

∂

∂t

(
φ

B

)
= − ∂

∂x

(vx
B

)
− ∂

∂y

(vy
B

)
− ∂

∂z

(vz
B

)
+

qm
Vbρsc

.

(17)

Next, we multiply Eq. (17) by Vb = dxdydz,

Vb
∂

∂t

(
φ

B

)
= − ∂

∂x

(
vxAx
B

)
dx− ∂

∂y

(
vyAy
B

)
dy

− ∂

∂z

(
vzAz
B

)
dz +

qm
ρsc

, (18)

where Ax, Ay, and Az are, respectively, the areas of
surfaces normal to the x-, y- and z- directions.

Then, replacing vx, vy, and vz and using the defi-
nition qsc = qm/ρsc we finally obtain

Vb
∂

∂t

(
φ

B

)
=

∂

∂x

[
Axkx
µB

(
∂p

∂x
− ρg ∂D

∂x

)]
dx

+
∂

∂y

[
Ayky
µB

(
∂p

∂y
− ρg ∂D

∂y

)]
dy

+
∂

∂z

[
Azkz
µB

(
∂p

∂z
− ρg ∂D

∂z

)]
dz

+ qsc. (19)

Now, using the result obtained in Eq. (9),

Γp
∂p

∂t
=

∂

∂x

[
Axkx
µB

(
∂p

∂x
− ρg ∂D

∂x

)]
dx

+
∂

∂y

[
Ayky
µB

(
∂p

∂y
− ρg ∂D

∂y

)]
dy

+
∂

∂z

[
Azkz
µB

(
∂p

∂z
− ρg ∂D

∂z

)]
dz + qsc (20)
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where the Γp coefficient represents the compressibil-
ity effects of rock and fluid, given by

Γp = Vb

(
φco
B0

+
cφφ

0

B

)
. (21)

Incorporating the gravitational effects in the term
ΓG, we can rewrite the HDE as follows:

Γp
∂p

∂t
=

∂

∂x

(
Axkx
µB

∂p

∂x

)
dx+

∂

∂y

(
Ayky
µB

∂p

∂y

)
dy

+
∂

∂z

(
Azkz
µB

∂p

∂z

)
dz + qsc + ΓG, (22)

where

ΓG =
∂

∂x

(
−ρg ∂D

∂x

)
dx+

∂

∂y

(
−ρg ∂D

∂y

)
dy

+
∂

∂z

(
−ρg ∂D

∂z

)
dz. (23)

2.2. Initial and boundary conditions
To solve Eq. (22), we need to provide the appropri-

ate initial and boundary conditions. As an initial con-
dition, we take

p (x, y, z, t = 0) = pini (x, y, z) , (24)

where pini is the initial pressure distribution before the
reservoir is disturbed by fluid production/injection.

As external boundary conditions (external borders
of the reservoir), we can use prescribed pressure or
flow rate. For a sealed rectangular parallelepiped
reservoir of edges Lx, Ly and Lz, we have(
∂p

∂x

)
x=0,Lx

=

(
∂p

∂y

)
y=0,Ly

=

(
∂p

∂z

)
z=0,Lz

= 0.

(25)

2.3. Source term
In the numerical simulation of reservoirs, wells are

considered internal boundaries, and, in the case of
the use of Cartesian coordinates, the term source,
used to represent wells, is directly related to the use
of well-reservoir coupling techniques. We can impose
these boundary conditions specifying the pressure in
the well (Dirichlet condition) or the flow rate in the well
(Neumann condition) [17].

For the representation of wells, it is necessary to
obtain an expression that relates the pressure in the
porous medium, p, with the pressure in the well, pwf ,
and the flow rate in the well, qsc. As an example of

how we can use expressions of this type, we assume
steady-state flow in the region close to the well. Fur-
ther, we consider the radial flow of an incompressible
fluid towards the vertical well of radius rw, in a rock for-
mation with uniform permeability and thickness. So,
assuming these conditions, it is possible to write [17]:

qsc =
−2πkHhr

µB

∂p

∂r
, (26)

where kH represents the permeability value in the ra-
dial direction.

Integrating Eq. (26) between the radius of the well,
rw, and an arbitrary radius, r, where rw ≤ r ≤ re (re
is the external radius), it is possible to obtain an equa-
tion for the pressure distribution for the steady-state
well-coupling,

p = pwf −
qscµB

2πkHh
ln

(
r

rw

)
. (27)

For r = re, where we define the pressure as pe, we
can rewrite Eq. (27) as

qsc =
−2πkHh

µB ln

(
re
rw

) (pe − pwf ) , (28)

so that Eq. (28) provides the well production in terms
of external and well pressures.

In general, we express the production rate, under
standard conditions, using the pressure of the well
and the average pressure of the reservoir [17]. From
the development of Van et al. [39], for a reservoir de-
scribed in Cylindrical coordinates, considering the av-
erage volumetric pressure in the oil reservoir, p, be-
tween rw and re, and even though re � rw, we have

qsc =
−2πkHh

µB

[
ln

(
re
rw

)
+ s− 1

2

] (p− pwf ) , (29)

which differs from Eq. (28) only by the skin factor s,
the 1/2 in the denominator, and by replacing pe with p.
The introduction of the skin factor makes Eq. (29)
more general, valid for the case where there is an ad-
ditional pressure drop around the well, for example,
due to the formation damage. For the specific case
in which the permeability may change, we determine
the s factor by [18, 30]

s =

(
k

ks
− 1

)
ln

(
rs
rw

)
, (30)
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where ks is the modified permeability, and rs is the
radius of the region where the permeability can vary.
When ks < k, the value of s is positive, and we have
damage to the formation. Otherwise, s is negative,
and we have stimulation. On the other hand, when
s = 0, there is no influence on the productivity of the
well by local permeability changes near the well [30].

Commonly, we rewrite Eq. (29) in a more compact
form, introduced by Van et al. [39],

qsc = −Jw(p− pwf ) (31)

where Jw is the Productivity Index (PI):

Jw =
2πkHh

µB

[
ln

(
re
rw

)
+ s− F

] (32)

or yet,

Jw =
Gw
µB

(33)

where Gw is the geometric factor of the well, defined
as

Gw =
2πkh

ln

(
re
rw

)
+ s− F

. (34)

The factor F , in Eqs. (32) and (34), assumes the
values of 1/2 for steady-state conditions and 3/4 for
the pseudo-steady state [17]. The representation of
Eq. (32) for the Productivity Index comes from ana-
lytical solutions. However, we also apply the concept
of the Productivity Index in the context of numerical
reservoir simulation, and its calculation is associated,
in this case, with the use of well-reservoir coupling
techniques.

III. NUMERICAL METHODOLOGY

We describe fluid flow in porous media using a set
of partial differential equations, and we can not always
obtain analytical solutions due to the non-linear nature
of the equations. Therefore, we must use numerical
techniques to solve the balance equations that govern
the flow. Among the numerical methods that we can
apply in its resolution, we choose to use the Finite Dif-
ference Method (FDM), which is the most used in the
oil industry [17, 26].

3.1. Discretization
Discretization is the process of converting the

PDE, valid in the continuous medium that defines the
resolution domain, by a set of algebraic equations de-
fined in a discrete domain, to obtain a numerical so-
lution. The first step in the discretization stage is the
choice and construction of the numerical mesh, that
is, the partitioning of the resolution domain. In the Fi-
nite Difference Method, this implies a computational
mesh with a finite number of nodes where we deter-
mine the values of the dependent variables. Then, we
must approximate the existing derivatives in the gov-
erning partial differential equations.

Generally, we use two mesh systems in numerical
simulation of reservoirs: the centered block system
and the distributed point system [17]. In this work, we
use the former.

The mesh system contains, in the x-direction, nx
cells that we superimpose on the reservoir. We cen-
ter each i cell on xi, and we designate its borders by
xi−1/2 and xi+1/2. The cells have dimensions equal to
∆xi, constants or not, satisfying the following relation

nx∑
i=1

∆xi = Lx. (35)

so that the cells must cover the entire Lx length of the
reservoir [17]. Similarly, it is also possible to discretize
the reservoir in the y- and z- directions.

The cells should be small enough to describe
the heterogeneous nature of the reservoir and, thus,
allowing to represent the flow characteristics ade-
quately. However, it is necessary to carefully deter-
mine the total number of cells in the mesh, because
the higher the number of them, the higher the num-
ber of unknowns in the algebraic system that must be
solved, implying an increase in computational effort.

In Fig. 1, a three-dimensional reservoir is dis-
cretized into nx blocks (or cells) in the x-direction,
ny blocks in the y-direction, and nz blocks in the z-
direction, considering that nx=ny=nz=3, for this partic-
ular case. In more general situations, the dimensions
of the blocks need not be the same, and:
ny∑
j=1

∆yj = Ly, (36)

nz∑
k=1

∆zk = Lz, (37)
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where the j and k indexes indicate the blocks in the
y- and z- directions, respectively. In this system, we
number the border blocks by adding the fraction ±1/2

to one of the i, j, and k indexes, depending on the
border that we want to represent. For example, we in-
dicate the boundary between cells i, j, k and i+ 1, j, k

by i+ 1/2, j, k.

i-1,j,k

i,j,k

i+1,j,k

i,j-1,k

i,j+1,k

i,j,k-1

i,j,k+1

Lx

Ly

L
z

∆x∆y

∆
z

x
y

z

Fig. 1: Discretized domain.

3.2. Numerical approximation of derivatives
Considering the partitioning illustrated in Fig. 1

and a totally implicit numerical scheme, the first term
containing the spatial derivatives of Eq. (22) can be
discretized by a central difference approximation of
second-order,[
∂

∂x

(
Tx
∂p

∂x

)
dx

]n+1

i,j,k

≈
(
Tx
∂p

∂x

)n+1

i+1/2,j,k

−
(
Tx
∂p

∂x

)n+1

i−1/2,j,k

, (38)

where

Tx =
Axkx
µB

, (39)

with similar equations for y- and z- directions. Still,
in Eq. (38), we do not know the pressures at time
n + 1, ∆xi,j,k is the spacing of the cell i in the x-
direction, and the subscript i ± 1/2 indicates that the
variables must be evaluated at the cell boundary in the

x-direction. We can also obtain similar forms for the y-
and z- directions, considering that ∆yi,j,k and ∆zi,j,k
are the spacing in these respective directions and that
we represent these boundaries by the indexes j±1/2

and k ± 1/2.
Before proceeding, we introduce transmissibilities

as being represented by Tx, Ty and Tz:

Tn+1
x
i± 1

2
,j,k
≡
(
Axkx
µB∆x

)n+1

i± 1
2 ,j,k

=

(
Tx
∆x

)n+1

i± 1
2 ,j,k

, (40)

Tn+1
y
i,j± 1

2
,k
≡
(
Ayky
µB∆y

)n+1

i,j± 1
2 ,k

=

(
Ty
∆y

)n+1

i,j± 1
2 ,k

, (41)

Tn+1
z
i,j,k± 1

2

≡
(
Azkz
µB∆z

)n+1

i,j,k± 1
2

=

(
Tz
∆z

)n+1

i,j,k± 1
2

, (42)

and we calculate the properties at the cell interface
using harmonic averages for rock and geometric prop-
erties, and arithmetic means for fluid properties.

Again, employing central difference approxima-
tions,(
∂p

∂x

)n+1

i+ 1
2 ,j,k

≈
pn+1
i+1,j,k − p

n+1
i,j,k

xi+1,j,k − xi,j,k
=
pn+1
i+1,j,k − p

n+1
i,j,k

4xi+ 1
2 ,j,k

(43)

(
∂p

∂x

)n+1

i− 1
2 ,j,k

≈
pn+1
i,j,k − p

n+1
i−1,j,k

xi,j,k − xi−1,j,k
=
pn+1
i,j,k − p

n+1
i−1,j,k

4xi− 1
2 ,j,k

(44)

and we can proceed similarly to the y- and z- direc-
tions.

Now, we apply conservative expansions to the
terms of accumulation to preserve the mass balance.
It is worth mentioning that the use of non-conservative
schemes in the finite difference equations does not
necessarily produce results that are not correct [17].
Therefore, the final discretized form is given by:

(Γp)
n+1
i,j,k = Vb,i,j,k

[
φocφ
Bn+1

+
φnco
B0

]
i,j,k

, (45)

where Vb,i,j,k = ∆xi∆yj∆zk.
We approximate the time derivative by a backward

Euler scheme(
∂p

∂t

)n+1

i,j,k

≈
pn+1
i,j,k − pni,j,k

∆t
. (46)
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Finally, considering the use of an iterative resolu-
tion aiming to linearize the system of equations we
obtain

Tn+1,v
x
i+1

2
,j,k

(
pn+1,v+1
i+1,j,k − p

n+1,v+1
i,j,k

)
+ Tn+1,v

x
i− 1

2
,j,k

(
pn+1,v+1
i−1,j,k − p

n+1,v+1
i,j,k

)
+ Tn+1,v

y
i,j+1

2
,k

(
pn+1,v+1
i,j+1,k − p

n+1,v+1
i,j,k

)
+ Tn+1,v

y
i,j− 1

2
,k

(
pn+1,v+1
i,j−1,k − p

n+1,v+1
i,j,k

)
+ Tn+1,v

z
i,j,k+1

2

(
pn+1,v+1
i,j,k+1 − pn+1,v+1

i,j,k

)
+ Tn+1,v

z
i,j,k− 1

2

(
pn+1,v+1
i,j,k−1 − p

n+1,v+1
i,j,k

)
= − (qsc)

n+1,v+1
i,j,k − (ΓG)

n+1,v
i,j,k

+ (Γp)
n+1,v
i,j,k

(
pn+1,v+1
i,j,k − pni,j,k

∆t

)
(47)

where the level v indicates the known values while the
level v + 1 the values to be determined.

Next, we move on to the discretization stage of the
well-reservoir coupling,

(qsc)
n+1,v+1
i,j,k = − (Jw)

n+1,v
i,j,k

[
pn+1,v+1
i,j,k − (pwf )

n+1,v+1
i,j,k

]
.

(48)

Through the term (Jw)n+1,v
i,j,k the well-reservoir cou-

pling occurs, following the methodologies based on
the work of Peaceman [26], which is still the most
used to date in numerical reservoir simulation studies.

We note that we use the term qsc to represent a
source term for the computational mesh cell. In gen-
eral, the well passes through a set of cells in the com-
putational mesh. Therefore, the expression to the total
flow of the producing well is given by:

Qsc = −
Wf∑
k=Wi

(Jw)
n+1,v
i,j,k

[
pn+1,v+1
i,j,k − (pwf )

n+1,v+1
i,j,k

]
(49)

if we assume a vertical well that contains the cells Wi

up to Wf (Fig. 2) and we do not consider the frictional
and convective effects inside the well.

Wf

Wi

x
y

z

Fig. 2: Vertical well in the computational domain.

We adopted as a reference level k = W for calcu-
lating the pressure in the well. Considering only the
gravitational effects inside the well, we can write:

(pwf )
n+1,v+1
i,j,W =

∑
k

(Jw)
n+1,v
i,j,k pn+1,v+1

i,j,k∑
k

(Jw)
n+1,v
i,j,k

+

∑
k

(Jw)
n+1,v
i,j,k Λi,j,k +Qsc∑
k

(Jw)
n+1,v
i,j,k

(50)

where

Λi,j,k = − (ρg)
n+1,v
i,j,k+1/2 (Di,j,k −Di,j,W ) (51)

and we find the pressure in the well, in each layer, in
the computational cell in terms of wellbore pressure in
the reference level layer:

(pwf )
n+1,v+1
i,j,k = (pwf )

n+1,v+1
i,j,W

+ (ρg)
n+1,v
i,j,k+1/2 (Di,j,k −Di,j,W ) , (52)

and ρn+1,v
i,j,k+1/2 is the arithmetic mean between ρn+1,v

i,j,k

and ρn+1,v
i,j,W .

www.ijaers.com Page | 133

https://dx.doi.org/10.22161/ijaers.79.16
www.ijaers.com


International Journal of Advanced Engineering Research and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers.79.16

[Vol-7, Issue-9, Sep-2020]

ISSN: 2349-6495(P) | 2456-1908(O)

3.3. Numerical solution of the algebraic equation
system

The set composed of Eqs. (47) and (50) forms
a linear system of equations whose dependent vari-
ables are the pressures in the reservoir and the pro-
duction well.

We choose the Conjugate Gradient Method [19]
to solve the resulting algebraic equation system. Ini-
tially, it was a direct method [19]. However, it became
known for its properties as an iterative method, espe-
cially after the development of sophisticated precon-
ditioning techniques [32].

We can increase the rate of convergence in the it-
erative process by using preconditioning techniques
to reduce the conditioning number of the matrix by
changing the original system of equations and, thus,
their eigenvalues. Thus, the method used here is the
Preconditioned Conjugate Gradient (PCG), using a di-
agonal preconditioning technique [7, 17, 32]. If we
consider an iterative procedure, we attain the numeri-
cal convergence when

max
∣∣χn+1,v+1 − χn+1,v

∣∣ < tol (53)

where χ represents the pressure in the reservoir, and
well and tol is a numerical tolerance. We use a two-
step iteration procedure [17]:

1. in a set of internal iterations, we apply the PCG
method to obtain the pressures, and

2. in a set of external iterations, we update the co-
efficients, such as the transmissibilities.

IV. WELL-RESERVOIR COUPLING
The modeling of wells in the numerical simula-

tion of reservoirs presents some difficulties as, for
example, the discrepancies in spatial scales when
comparing the wellbore radius with the dimensions
of the oil reservoir, the geometry of complex wells,
the flow transition from the porous medium to a duct,
among other factors. In this section, we investigate
the treatment of the term source, review some well-
reservoir coupling models, focusing on the Peace-
man [26] model and its extensions, and discuss the
methodology that incorporates the transient effects,
both in the productivity index and in the equivalent ra-
dius.

4.1. Some well-reservoir coupling models
One of the difficulties in modeling wells in field-

scale simulations is the fact that the region where the
highest pressure gradients typically occur is close to
the well, which is much smaller than the usual di-
mensions of a cell in a computational mesh [13]. Ex-
cept for simulations that somehow make use of Cylin-
drical coordinates, source/sink terms are, in general,
used for the implementation of internal boundary con-
ditions involving wells [3, 17]. Well-reservoir coupling
techniques aim to relate the pressure in the reservoir
cells to the pressure in the well, by using, for exam-
ple, equations that contain source/sink terms and the
productivity index [35].

Among the first works to related the pressures in
the cell and the well, we found that of Van et al. [39].
They stated that the pressure of the cell containing the
well (for a wellbore centered in it) must be equal to the
average volumetric pressure of the cell. Thus, for the
hypotheses of steady-state flow, the average pressure
p (or the pressure in the cell), located in the reservoir
between the radii rw and rb (rb � rw) is given by:

p = pwf +
2πqscBµ

kh

[
ln

(
rb
rw

)
− 1

2

]
, (54)

where rb is called the block radius and determined, for
a vertical well, as

rb =

√
∆x∆y

π
. (55)

We observe, then, that a methodology to deal with
the problem of the representation of wells in Cartesian
coordinates consists of initially considering the one-
dimensional and radial mass flow around the well [3].
The idea is to reconcile the analytical solutions, which
we can obtain for the one-dimensional flow in Cylindri-
cal coordinates, with the discretized equations, written
in Cartesian coordinates.

4.2. Peaceman’s equivalent radius
We can obtain the first models for well-reservoir

coupling by considering a two-dimensional flow gov-
erned by the Darcy equation written in Cartesian co-
ordinates and a one-dimensional flow in a cylindrical
reservoir. Peaceman [26], to obtain its well-reservoir
coupling model, used the discrete equation for the
pressure p(x, y) in the two-dimensional flow together
with the analytical solution for the pressure p(r) in the
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one-dimensional flow, both for a porous medium of the
same length ∆z.

From the hypotheses of steady-state flow, homo-
geneous and isotropic porous medium (kx = ky =

kH ), assuming that ∆x = ∆y, and symmetry, we ob-
tain from the discrete form of HDE [17]

pi+1,j = pi,j −
Bµqsc
4kH∆z

. (56)

On the other hand, we know that the analytical
solution of the one-dimensional flow in the radial di-
rection, in a reservoir described in Cylindrical coordi-
nates, for a steady-state flow, is given by [12]

p (r) = pwf −
qscBµ

2πkH∆z
ln

(
r

rw

)
. (57)

Peaceman [26] considered the pressure p(r) coin-
ciding with the pressure pi+1,j . So, for r = ∆x, we
obtain

p (∆x) = pi+1,j = pwf −
qscBµ

2πk∆z
ln

(
∆x

rw

)
. (58)

Combining Eqs. (56) and (58), that is, consider-
ing the discrete form in Cartesian coordinates and
the analytical expression for the Cylindrical geometry
around the well, we can arrive in an equation for the
flow in the well, written using the productivity index,

qsc = −2πkH∆z (pi,j − pwf )

Bµ ln
(
req
rw

)
= −Gw

Bµ
(pi,j − pwf )

= −Jw (pi,j − pwf ) , (59)

where req is Peaceman’s equivalent radius, req ≈
0.198∆x [17].

Since then, researchers have created several
extensions assuming a steady-state flow, from
the Peaceman model for the equivalent radius [26],
to improve the numerical approximation considering
other hypotheses. For example, the concept of the
equivalent radius was investigated for the case of
kx 6= ky and ∆x 6= ∆y, thus allowing us to address
more comprehensive situations in numerical simula-
tions [27]. Using coordinate transformations, Peace-
man [27] obtained the following expression for the
equivalent radius

req = 0.28


√√

ky
kx

(∆x)
2

+
√

kx
ky

(∆y)
2

4

√
ky
kx

+ 4

√
kx
ky

 (60)

which we must use in conjunction with the equation

qsc = −
2π
√
kxky∆z

Bµ ln
(
req
rw

) (pi,j − pwf ) . (61)

It is worth mentioning that this derivation for the equiv-
alent radius, for an anisotropic medium, considers that
∆x 6= ∆y but that the mesh is uniform and that the
well is far from the reservoir borders.

Other extensions have been developed, such as
the one used by Al-Mohannadi et al. [2]

Jw =
2π
√
kykz∆x

Bµ

∆x[
1−

(
r2w
r2eq

)]
ln
(
req
rw

) (62)

where

req =

√
∆z∆y

π
e−0.5 (63)

for a horizontal well parallel to the x-axis.

Another well-coupling model, also for a horizontal
well, is given by [4, 5]

Jw = −
2π
√
kykz∆x

Bµ ln
(
req
rw

) (64)

where

req = 0.14 (kykx)
1/4

(
∆y2

ky
+

∆z2

ky

)1/2

·

1 + exp
[
2.215− 3.88

(
nyny

αH

)]
1 + 0.533

(
αH

nz

)
 (65)

for a well parallel to the x-axis, where αH =

(∆y/∆x)
√
kz/ky. As examples of other methodolo-

gies we can quote Peaceman [28], Peaceman [29],
and Babu et al. [6]. Researchers have even studied
inclined wells [22].

So that we can apply these well-reservoir cou-
pling models, some restrictions must be considered,
such as, for example, the existence of a minimum dis-
tance between the wells and the reservoir borders,
and between the wells themselves. Despite its limi-
tations [23], we extensively use the technique intro-
duced by Peaceman [26] in the numerical simulation
of reservoirs.
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4.3. Extensions for the transient productivity index
As already said, the results obtained with the tech-

nique suggested by Peaceman [26] are subject to a
numerical artifact, which is not related to the phe-
nomenon of physical wellbore storage. Fundamen-
tally, this happens due to the use of the hypothe-
sis of steady-state flow near the well. In reality, we
should have considered the fluid flow as being tran-
sient. Therefore, other models have been developed,
including the well-reservoir coupling for the transient
regime. For flow in the transient and pseudo-steady
state regime, in the vicinity of the well, Peaceman [26]
suggested that we can obtain the equivalent radius
from the following equation:

req = [4tD exp(−λ− 4πpD)]∆L (66)

where

tD =

(
k

φµct∆L2

)
t (67)

is the dimensionless time and ∆L (∆L = ∆x = ∆y) is
the spatial increment of the computational mesh, and

pD = −
(

kh

qscBµ

)
(pini − pi,j,k) (68)

is the dimensionless pressure, and pi,j,k is the pres-
sure in the cell that contains the well. Blanc et al. [9]
also concluded that when tD > 1, the equivalent ra-
dius calculated using Eq. (66) is close enough to its
value determined by Peaceman’s model for steady-
state flow.

Over time, we have been using analytical solu-
tions capturing the transient regime, in the porous
medium, to interpret the results of pressure tests in
wells. Theis [37], for example, offered one of the first
solutions to the problem of pressure drop in a well.

Blanc et al. [9] presented a correction to the orig-
inal Peaceman model and introduced the Transient
Well Index:

JTWI =
4πkh

µB

[
E1

(
−φctµr

2
w

4kt

)
− E1

(
φµctr

2
eq

4kt

)]
(69)

where E1(u) = −Ei(−u) and req = 0.198 ∆L (steady-
state flow hypothesis). This model offers better so-
lutions than those obtained with the conventional

Peaceman technique for the initial times, but it can
present deviations when the transient regime appears
in the porous medium [9].

Therefore, instead of using the equivalent radius
as req = 0.198 ∆x, it is possible to calculate its tran-
sient version. The pressure variation, for radial flow in
the transient regime and a vertical well, is given by [2]:

∆p = − qscBµ

LH
√
kxky

E1

(
φctµr

2
eq

t
√
kxky

)
. (70)

From Eq. (70), we can use the Newton-Raphson
method to determine the req as a function of time,

reqn+1
= reqn −

f(reqn)

f ′(reqn)
, (71)

where the subscripts n and n + 1 represent the itera-
tions in the Newton-Raphson method and

f(reqn) = − qscBµ

4π∆z
√
kxky

E1

 r2
eqn

4

(√
kxky

φµct

)
t

−∆p,

(72)

while its derivative is given by

f ′(reqn) =
qscBµ

2πreqn∆z
√
kxky

exp

− r2
eqn

4

(√
kxky

φµct

)
t

 .
(73)

In Eq. (72), ∆p = pini − pi,j,k, where pini is the initial
pressure of the reservoir, and pi,j,k is the pressure in
the cell containing the well.

From these equations, we can obtain the expres-
sion for the determination of the equivalent transient
radius

reqn+1 = reqn

{
1−

[
qscBµE1(σ) + 4∆pπ∆z

√
kxky

2qBµ exp(−σ)

]}
(74)

where

σ =
r2
eqi

4

(√
kxky

φctµ

)
t

(75)
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and

∆p = pini − pi,j,k. (76)

In this work, pi,j,k is evaluated at time tn+1.
When the boundary effects start to affect the well-

bore pressure behavior, req(t) becomes too large to
represent the flow dynamics. In this case, we calcu-
late req(t) from Eqs. (70), (71) and (72) while t ≤ t∗,
where t∗ is the characteristic time associated with
the boundary effects [2]. For t > t∗, we must use
req = req(t

∗), and we keep the transient equivalent ra-
dius, calculated at t∗, frozen until the end of the simu-
lations.

Here, a criterion to shift the equivalent transient ra-
dius calculation is considered, based on the time re-
quired to reach the pseudo-steady regime. Therefore,
we use the concept of dimensionless time considering
A (the area normal to the z-axis) as a reference [30]
so that

tDA =
kt

φµctA
, (77)

and we assume that the producing well is in the center
of the reservoir and that it has a square drainage area.
For tDA < 0.09, the reservoir still behaves as being in-
finite (transient regime). On the other hand, for tDA=
0.1, we reach the pseudo-steady flow regime [30].

V. NUMERICAL RESULTS
In the study carried out in this work, the well-

reservoir coupling models, including transient effects,
were incorporated into our simulator, developed in C
programming language.

We calculate the well pressure values considering
a constant production flow rate under standard condi-
tions. We use two types of graphs in the analysis of
the results:

1. specialized plot: well pressure curve as a func-
tion of time;

2. diagnostic plot: pressure drop curves in the well,
∆pwf , and the Bourdet derivative [11]

∆p′wf =
d∆pwf
d ln ∆t

= ∆t
d

dt
(∆pwf ) . (78)

as a function of time.

Our approach is in the context of reservoir simula-
tion and the transient analysis of pressure tests. We

know that from the pressure values, it is possible to
determine some reservoir properties, useful for plan-
ning the completion of the well or the reservoir de-
pletion plan. In addition to the well-reservoir coupling
model of Peaceman [26], considering a steady-state
flow, three extensions were implemented, assuming a
transient flow regime. In all simulations, we stipulate
that ∆x = ∆y and kx = ky = kz = k.

5.1. Model 1

It is the conventional model of Peaceman [26],
where we assume a steady-state flow and whose pro-
ductivity index and the equivalent radius considered
are, respectively, given by

Jw =
2πk∆z

Bµ ln
(
req
rw

) (79)

and

req = 0.198∆x. (80)

5.2. Model 2

Peaceman [26] also proposed this model. How-
ever, it considers that the flow is transient in the cells
containing the well. The productivity index is the same
as for Model 1, although the equivalent radius incor-
porates the transient effects:

Jw =
2πk∆z

Bµ ln
(
req
rw

) (81)

where

req = [4tD exp(−λ− 4πpD)]1/2∆x, (82)

λ = exp(0.57722), 0.57722 is Euler’s constant,

tD =

(
k

φµct∆x2

)
t, (83)

pD = −
(
k∆z

qscBµ

)
(pini − pi,j,k) , (84)

and we use here the criterion provided, based on tDA,
to shift the calculation of the equivalent radius (we do
not update req when border effects occur).
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5.3. Model 3
Blanc et al. [9] originally proposed this model,

and it employs a transient productivity index. Nev-
ertheless, the equivalent radius proposed by Peace-
man [26], for the steady-state flow (Model 1), is ap-
plied

JTWI =
4πk∆z

µB
[
E1

(
φµctr2w

4kt

)
− E1

(
φctµr2eq

4kt

)] (85)

where

req = 0.198∆x. (86)

5.4. Model 4
In this well-reservoir coupling model, we consider

the incorporation of transient effects in the productivity
index and the equivalent radius [2, 9]. The productiv-
ity index is the same as that defined in Model 3, and
we calculate the equivalent transient radius using the
Newton-Raphson method. Thus, we have:

JTWI =
4πk∆z

µB

[
E1

(
φµctr

2
w

4kt

)
− E1

(
φctµr

2
eq

4kt

)] (87)

knowing that

reqn+1
= reqn −

f(reqn)

f ′(reqn)
, (88)

and

f(reqn) = − qscBµ

4π∆zk
E1

 r2
eqn

4
(

k
φµct

)
t

−∆p. (89)

The criterion based on Eq. (77) is also applied to in-
terrupt the update of the transient equivalent radius.

Many analytical approaches to evaluate E1(u)

have appeared in the literature. Tseng and Lee [38]
provide an excellent survey on the subject. Note that
there is no single analytical approximation that is valid
for the entire range for u > 0. Tseng and Lee [38]
claim that different methods are suitable for approxi-
mating E1(u) for a wide range of u values. Neverthe-
less, in practical applications, we often do not have
only a single calculation method that covers the entire
range of interest [8].

In this work, as we are interested in the short-
est times and flows that may have low permeabilities

and high viscosities, using power series to approxi-
mate the exponential integrals Ei is not suitable for
us. Therefore, we chose the approximation of the ex-
ponential integral E1(x) suggested by Segletes [34],
based on a polynomial fit [31]. It is not our knowledge
that others have done this previously.

5.5. Analytical solution and mesh refinement

Now, we compare the results obtained with the
different models of well-reservoir coupling. Table 1
contains the parameters used in the construction of
the standard simulation case. Unless when explicitly
mentioned, the data in this table are those used in all
simulations performed.

Table 1: Parameters for standard simulation.

Parameter Value Unit
B0 1.3 RB/STB
co 4×10−6 psi−1

cµ 2×10−6 psi−1

cφ 3×10−6 psi−1

kx, ky and kz 1×10−2 Darcy
Lx 10,000 ft
Ly 10,000 ft
Lz 80 ft
Lwf 80 ft
nx 81 –
ny 81 –
nz 5 –
pini 8,000 psi
p0 8,000 psi
Qsc -400 STB/day
rw 0.2 ft
tol 1×10−6 psi
tmax 730 day
δ∆t 1.2 –
∆tini 1×10−5 day
∆tmax 10 day
µ 1.1 cp
ρ 52.4 lb/ft 3

φ 0.2 –
φ0 0.2 –

In this table, Lwf is the length of the producing
well, tmax represents the maximum production time,
δ∆t is the factor used to vary the time increment
(∆tn+1 = δ∆t∆t

n), and ∆tini and ∆tmax are the initial
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and maximum values of the time increment, respec-
tively.

Here, the results show the pressure curves in
the well, the pressure drop, and the Bourdet deriva-
tive [11, 10] as a function of the elapsed production
time.

The first test performed was done to compare re-
sults from well-reservoir coupling models with an an-
alytical solution for the particular case of constant vis-
cosity and formation volume factor. Figures 3 and 4
show comparisons of the results obtained with Mod-
els 1 and 4, using the standard set of parameters for
the simulations, with the results obtained with the an-
alytical solution given by Ozkan [25].

It should be made clear that the analytical solu-
tion, as already said, makes use of simplifying as-
sumptions, such as B and µ constants. Besides, we
must apply a numerical procedure to obtain the ana-
lytical solution, which depends on the evaluation of
functions of Bessel [24] and numerical inversion of
Laplace transform [25], performed using the Stehfest
algorithm [36]. Therefore, the results for the analytical
solution are not available in the entire range of nu-
merical results. Even so, it is possible to observe that
the results are in good agreement with the numerical
results obtained using Model 4. On the other hand,
we note a deviation when there is a comparison with
Model 1 (Fig. 3). When the border effects are present,
the three solutions have very similar behaviors (about
250 days of production). Figure 4 corroborates the
discussions about Fig. 3, and we see that the Bour-
det derivative highlights the difference in the behavior
of the numerical solution and the effect of the numer-
ical artifact due to the use of a constant equivalent
radius (req).

Also noteworthy is the qualitative similarity of the
result obtained with the original technique of Peace-
man [26] (Model 1) with the behavior of the pres-
sure when there is physical storage in the well. Also,
there is a discontinuity in the derivative curves corre-
sponding to the transient and the pseudo-permanent
regimes. It is due to the strategy employed to change
the calculation of the equivalent radius. From these
results, it is possible to conclude that the results of
Model 4 present a behavior compatible with that ex-
pected for the real problem.

Aiming to compare the four well-reservoir coupling
models that we implemented in this work, in Fig. 5,

we show the set of results for the pressure in the well.
We can note the existence of a plateau in the curve
obtained with Model 1 for the initial production times.
For the standard case, this plateau (numerical stor-
age) lasts approximately one day of production, inter-
fering in the pressure response, reaching a difference
of about 33 psi for the same time when compared to
the Model 4 (in principle, the most correct). Regarding
the models that incorporate the transient effects in the
equivalent radius, Models 2 [26] and 4, we observe
that we obtained better results with these models (su-
perimposed in Fig. 5) in comparison with those based
on the steady-state flow assumption. Besides that,
in the initial instants of production, the numerical arti-
fact no longer appears, and we correctly capture the
expected flow regimes. However, according to Blanc
et al. [9], the results of Model 2 are not always as fa-
vorable as those obtained here. For example, it can
happen if we vary the reservoir and fluid properties.

Given the results obtained with Model 3 (Fig. 5),
it is possible to observe the numerical artifact occur-
ring. However, with less intensity than that of Model 1,
and we do not perceive it when the production begins.
It appears approximately 15 minutes after the begin-
ning of the production. Nevertheless, after about one
day, the results show behavior consistent with those
of Models 2 and 4. We should remark that the re-
sults of Model 3 are in line with that reported by Blanc
et al. [9]. On the other hand, in Model 4, when we
incorporate transient effects in both productivity index
and equivalent radius, the numerical artifact does not
exist anymore, and the results are physically correct
for the entire production duration. For the four mod-
els, we capture the border effect when we reach a
time of approximately 250 days of production. Among
the four models, we can say that Models 2 and 4 were
the ones that presented the best results considering
the transient flow regime. Finally, we should stress
that the behavior of Model 4 results is also in line with
those reported by Blanc et al. [9].

Furthermore, we also carried out a mesh refine-
ment study using Models 1 and 4 that take into ac-
count the transient effects of flow. Table 2 shows the
number of cells that we used in the generation of the
different meshes that we employed in the mesh refine-
ment study. Here, nx, ny, and nz are the number of
cells used to discretize the oil reservoir in the x-, y-
and z- directions, respectively.
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Fig. 3: Comparison of the results of Models 1 and 4 with the analytical solution. Specialized plot.

Fig. 4: Comparison of the results of Models 1 and 4 with the analytical solution. Diagnostic plot.
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Fig. 5: Comparison of the results of the four well-reservoir coupling models.

We can see the results, well pressure as a function
of time, in Figs. 6 and 7.

Table 2: Meshes.

Mesh nx ny nz

1 11 11 5
2 21 21 5
3 41 41 5
4 81 81 5
5 161 161 5

For Model 1, it was possible to observe a numeri-
cal convergence as we refine the mesh. Except for the
initial moments, where the solutions are quite differ-
ent. We can also realize that the mesh refinement in-
fluences the magnitude of the numerical artifact, since
the more refined the mesh, the smaller the storage
phenomenon. For example, for Mesh 1 (nx=ny=11),
we noted that the numerical artifact lasted approxi-
mately 30 days, while for Mesh 5 (nx=ny=161) the
duration was about 0.1 days.

On the other hand, we did not observe the same
behavior when we used Model 4 (Fig. 7), which incor-

porates the transient effects. In this case, the pres-
sure variation presents a behavior compatible with
that of real fluid flow in an oil reservoir. Although the
results are practically overlapping, for all meshes and
time, including the border effects, numerical conver-
gence did not occur in a similar way to that of Model 1.
However, the difference between the values is small,
and we cannot see it in the graph. It is worth point-
ing out that the same issue was reported in the lit-
erature [1, 2], indicating a possible loss of accuracy
when we utilize very refined meshes. However, this
is still an open problem. Another important conclu-
sion that we can draw is the fact that we can use less
refined meshes, because the difference between the
pressure values, obtained with more refined meshes,
is almost imperceptible. Therefore, this fact implies
less computational effort.

We also analyzed the influence, on well pressure
variation, of the growth rate of the time step in the
well-reservoir coupling for Model 4. We obtained the
results considering three different values of the growth
rate of the time step, δ∆t=1.15, 1.20, and 1.25. We
show the results in Figs. 8 and 9, for the pressure in
the well, the pressure drop, and the derivative of the
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Fig. 6: Result of mesh refinement for Model 1.

Fig. 7: Result of mesh refinement for Model 4.
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pressure drop. For all the values, we noticed that the
results are practically the same. Furthermore, they
coincide throughout all simulation time and present
the behavior expected for this type of flow. That is, for
the single-phase flow of oil in a reservoir containing a
vertical producer well.

5.6. Low permeability and high viscosity

We also performed other simulations varying the
permeability and viscosity. However, we employed
lower values for permeability and higher for viscos-
ity. In this study, we only considered Models 1 and 4
and specialized plots. We did a more detailed analy-
sis to compare the two well-reservoir coupling models,
for these permeability and viscosity values, to under-
stand how the choice of the model may impact the
results when the numerical artifact is more significant.
We considered a total production time of 80 days and
a prescribed flow (qsc) of -100 STB/day. This ap-
proach aims to deal with situations closer to those of
unconventional reservoirs. This type of study has be-
come a trend more recently, and, in general, the effect
of numerical storage tends to be more pronounced.

For the model of Peaceman [26] (Model 1), it is
possible to observe that the permeability value di-
rectly influences the magnitude of the numerical ar-
tifact in the initial moments. The higher the perme-
ability, the smaller the size of the artifact (Fig. 10). It is
physically consistent because when the permeability
is higher, the lower the flow resistance in the porous
medium. Therefore, it reaches the transient regime in
the porous medium more quickly, as well as for border
effects. It is worth noting that since permeability has a
value considered low for this model of a well-reservoir
system, the numerical artifact has a longer duration.
Thus, if we intend to study the phenomena that occur
in the initial moments (or even for longer times) with
this model, the results will not be accurate.

As an illustration, in Fig. 10, for the lowest per-
meability (k=0.25×10−3 Darcy), the numerical arti-
fact impacted almost all results. The pressure differ-
ence, comparing the two models, was 376 psi at t=2
days of production and 54.6 psi at t=70 days. For
k=1.00×10−3 Darcy, the magnitude of the numerical
artifact was smaller, but not negligible since, after 0.6
and 19 days of production, there was a pressure dif-
ference of about 94 and 10 psi, respectively.

It was also possible to observe that for these low

values of permeability, besides the duration of the nu-
merical artifact being longer, in some cases, it was
not possible to capture the border effects. It is rele-
vant in the context of the analysis of pressure tests,
as it indicates the real need for long-duration tests
when it is necessary to determine boundary effects.
We know that it is due to the great difficulty of the fluid
to flow through the porous medium and, therefore, it
will take longer to perceive the reservoir boundary ef-
fects (Fig. 10). Therefore, we can conclude that the
transient well-reservoir coupling model presented the
best results since we were able to prevent the appear-
ance of the numerical artifact. Besides that, the use of
the expression of Segletes [34] to calculate E1 allows
us to obtain results in a range in which other formulas
failed.

Contrary to what happens for the permeability vari-
ation, for the conventional model [26] (Model 1), the
numerical artifact has a longer duration and magni-
tude as the viscosity increases (Fig. 11). Therefore,
the time of occurrence and the magnitude of the ar-
tifact vary depending on the viscosity. Outside the
region associated with the numerical artifact, the be-
havior of the results of the conventional model quali-
tatively tends to be physically correct. Also, we know
that border effects occur more quickly for lower viscos-
ity values. Regardless, we did not detect the bound-
ary effects for any of the viscosity values proposed in
our test.

VI. CONCLUSION
The objective of this work was to implement a

model for the transient well-reservoir coupling in a
reservoir simulator to correctly describe the pressure
behavior in the well in the initial production times. We
also investigated the effects of the mesh refinement
and the size of the time step on the results.

As well known, the traditional well-reservoir cou-
pling model of Peaceman [26] is still widely used
nowadays. However, we saw that it has a flaw that
leads to numerical storage at the beginning of the
simulation. Nevertheless, it is simple, and we can cor-
rectly determine the wellbore pressure in a wide range
of applications except for the initial instants of produc-
tion. We must also emphasize that we were able to
detect the border effects with this technique, without
the need for a specific criterion to change the calcula-
tion of the equivalent radius.
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Fig. 8: Results for different δ∆t growth ratios. Specialized plot.

Fig. 9: Results for different δ∆t growth ratios. Diagnostic plot.
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Fig. 10: Results for different low permeabilities. Specialized plot.

Fig. 11: Results for different high viscosities. Specialized plot.
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In addition to physical properties, the numerical ar-
tifact is also affected by mesh refinement. The refine-
ment can be used, in some cases, to mitigate the non-
physical storage, but it leads to an increase in compu-
tational cost. On the other hand, despite the quali-
tatively and quantitatively correct results that we ob-
tained with Model 4, its numerical convergence must
be better understood, as already pointed out by other
authors. However, this is not a big problem, because
we have not to use refined computational meshes
when considering Model 4, as we could see in this
work. Nevertheless, this issue deserves further stud-
ies.

We must also stress that the use of the expression
proposed by Segletes [34] to calculate the exponential
integral, allowed us to consider flows with low perme-
abilities, high viscosities, and short production time.
Sometimes, this is not possible when we apply other
expressions available in the literature.
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principes à suivre et des formules à employer dans
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