

International Journal of Advanced Engineering Research and Science (IJAERS) Peer-Reviewed Journal ISSN: 2349-6495(P) | 2456-1908(O) Vol-9, Issue-6; Jun, 2022 Journal Home Page Available: <u>https://ijaers.com/</u> Article DOI: <u>https://dx.doi.org/10.22161/ijaers.96.19</u>

A Study of the Impact of Multiple drilling parameters on Surface Roughness, Tool wear and Material Removal Rate while Drilling Al6063 applying Taguchi Technique

Md Shahrukh Khan¹, Dr. Shahnawaz Alam²

¹Research Scholar, Department of Mechanical Engineering, Integral University, Lucknow, India ²Associate Professor, Department of Mechanical Engineering, Integral University, Lucknow, India Corresponding author's email – <u>shahrukhmustaque786@gmail.com</u>

Received: 11 May 2022,

Received in revised form: 09 Jun 2022,

Accepted: 15 Jun 2022,

Available online: 21 Jun 2022

I.

©2022 The Author(s). Published by AI Publication. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Keywords— *Drilling, Al* 6063, *Taguchi method, Regression analysis, ANOVA.*

Abstract— The goal of this project is to see how different drilling parameters like spindle speed (600, 900, 1400 revolution per minute), feed rate (0.10, 0.16, 0.22 mm per revolution) and drill tool diameter (6, 8 mm) affect surface roughness, material removal rate and tool wear while drilling Al 6063 alloy with an HSS spiral drill using Taguchi method. The impact of different drilling settings on the accuracy of the drilled hole is analyzed using S/N (signal-to-noise) ratio, orthogonal arrays of Taguchi, regression analysis, and analysis of variance (ANOVA). CNC Lathe Machineis used to perform a number of experiments with the help of L₁₈ orthogonal arrays of Taguchi. MINITAB 19, a commercial software tool, is used to collect and evaluate the results of the experiments. For establishing a correlation between the selected input parameters and the quality aspects of the holes made, linear regression equations are used. The experimental data are compared to the expected values, which are quite similar.

INTRODUCTION

In today's modern industries, the primary goal of engineers is to produce items at a lower cost while maintaining excellent quality in a short period of time. In a production process, engineers are encountering two very basic practical issues. The first one is to identify the best combination of input parameters which will result in the required quality of the product (fulfill essential requirements), and the other one is to increase production efficiency with the existing resources. Although advanced material cutting technologies have been developed in industrial sectors, but traditional drilling is still among the most practiced mechanical operations in the aerospace, aircraft, and automotive industries. L₁₈ orthogonal array of Taguchi is utilized to conduct the experiment. The significant drilling parameters are selected as rotation speed, rate of feeding and diameter of the drilling tool

www.ijaers.com

respectively. The best combination of all the input parameters is selected to reduce values of the performance attributes which are mentioned above. For the optimization of these parameters, Taguchi optimization method is used. ANOVA is also used to identify the extremely effective input parameter(s) which lead to a good quality product. Point angle and Helix angle are kept standard as 118 degree and 30 degree respectively.

II. DRILLING

Making holes is among the most essential requirements in the industrial procedure. Drilling is the most popular and important hole-making method, comprising almost one third of all metal cutting operations. Drilling is the process of removing a volume of metal from a workpiece by using an instrument called "a drill" to cut a cylindrical hole. Based on the material type, the hole's shape, the counting of samples, and the period of time it takes in finishing the work, several instruments and procedures are used for drilling. It is most commonly used in removal of material and as a pre-processing step for a variety of operations like spot facing, counter sinking, and reaming etc. A multipoint fluted end cutting tool is used to create or extend a hole at the time of cutting operation. Material is eliminated mostly in the chips shape which passes with drill's fluted shank as it rotates and penetrates into the work material. Figure 1 shows the drilling process on the job. Coolants are also used sometimes during the operation as per the requirement.

Fig.1: Drilling Operation

III. METHODS USED

TAGUCHI APPROACH

The Taguchi technique is a statistical approach for estimating the response independently with the minimum number of trials. The Taguchi method can also be used to improve product quality, It is a proven method for generating high-quality industry goods. The Taguchi technique is a powerful tool for creating processes that perform reliably and ideally across a wide range of circumstances. The utilization of carefully designed tests is required to establish the best design. Taguchi proposed a novel concept called as Orthogonal Array, which aims to minimize the number of trials by taking specific control characteristics in to consideration. The orthogonal array allows for the least number of testing. The variation from a design experiment was measured using the Taguchi method's S/N (signal-to-noise)ratio. When the mean (signal) is divided by the standard deviation (noise) then the value obtained is known as the S/N ratio. The procedure for determining the S/N ratio varies with each experiment performed. Three characteristics values are then changed into S/N (signal-to-noise) ratio using Taguchi technique. According to the problem's objective, these three values indicate various quality characteristics."Larger is better", "Smaller is better", and "Nominal is the best" are the characteristic values of the S/N ratio. S/N ratio is estimated for every level of input parameters based on S/N analysis, with smaller being preferable. The quality characteristic employed in this study is "smaller is better" for surface roughness and tool wear but in case of material removal rate "Larger is better" is used.

Case 1: S/N ratio larger is better $SN_L = -10 \log(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2})$ Case 2: S/N ratio smaller is better $SN_s = -10 \log(\frac{1}{n} \sum_{i=1}^{n} y_i^2)$ Case 3: S/N ratio nominal is best $SN_t = 10 \log(\frac{y^2}{s^2})$

DESIGN OF EXPERIMENT (DOE)

Design of Experiment is a useful method for enhancing design of the product or procedure performance, therefore it is applied for speeding up the development of new goods or processes. A design of experiment is a test or set of tests that examines the drilling parameters of the procedure in order to detect and identify equivalent changes in the system response. The output obtained from the procedure is examined in order to establish the ideal value or factors with the greatest influence.

ANALYSIS OF VARIANCE (ANOVA)

The Analysis of variance (or, ANOVA) is a strong and widely used statistical analysis tool that is based on the law of total variance. It's a programme that determines the impact of specific elements. ANOVA is a set of statistical concepts and methods used in statistics where the observed variance is divided into sections because of several independent variables. In the simplest form or sentence, Analysis of variance is a statistical analysis tool that determines if the means of several groups are just the same, and hence generalizes.

REGRESSION ANALYSIS

A series of statistical procedures utilized during mathematical modelling for evaluating the linkage among the dependent variables and one or more than one independent variables is called as Regression analysis. The very basic type of regression model is linear type model, in which we get a line (or, a more advanced linear combination) that perfectly represent the data according to a set of mathematical conditions. For prediction and forecasting, it is commonly used.

IV. EXPERIMENTAL SETUP

The current work used a CNC Lathe machine for drilling holes on Al 6063; the machine configuration is visualized in the picture below:

Fig.3: Experimental setup

WORK MATERIAL SPECIFICATION:

Work material	-	Al 6063
Work material dimension	-	$250 \times 20 \times 10$
mm ³		

Others	0.05
Aluminium (Al)	Remaining

WORK MATERIAL PREPARATION:

With the help of a power hacksaw, the material for the job has been cut to sizes (250x20x10 mm³)"that are required" from Aluminium alloys base stock in order to execute drilling operations on that. Table 1 shows the chemical components of the work material:

Table1: Aluminu	ım alloy	's chemical	l components in
	nerc	ontago	

percentage					
Al 6063 alloy	Weight %				
Magnesium (Mg)	0.45- 0.9				
Silicon (Si)	0.2 - 0.6				
Iron (Fe)	0.35 (Max)				
Copper(Cu)	0.10				
Zinc (Zn)	0.10 (Max)				
Titanium (Ti)	0.10 (Max)				
Manganese(Mn)	0.10 (Max)				
Chromium (Cr)	0.10				

www.ijaers.com

MEASUREMENT OF SURFACE ROUGHNESS :

The Surftest SJ-201P (Compact surface roughness testing machine) is a popular tool for determining component's shape and form. A tactile measurement principle is commonly used in profile measurement devices. On moving a stylus across the surface measures roughness, A transducer translates the movements of the stylus as it moves up and down along the surface into pulse, which is subsequently converted into a roughness value, which can be seen in a visible screen. A surface representation is often formed by combining many profiles. Figure 1 shows the Surftest SJ-201P.

Fig.4: Surftest SJ 201 P

EXPERIMENTAL DATA:

	Input variables						
Values	Tool diameter (mm) (X)	Rotation speed (rev per min) (Y)	Feed rate (mm per rev) (Z)				
1	6	600	0.10				
2	8	900	0.16				
3	-	1400	0.22				

Table 2: The values of input variables

Serial number	Rotation Speed(rev per min)	Feed rate (mm per rev)	Tool diameter (mm)	Roughness (Ra)µm	MRR (mm ³ /min)	Tool Wear (gm)
1	1	1	1	1.43	1235	0.235
2	1	2	1	1.46	1424.7	0.762
3	1	3	1	1.49	1556.2	1.011
4	2	1	1	1.42	1865.9	0.493
5	2	2	1	1.50	2078	0.922
6	2	3	1	1.52	2228	1.267
7	3	1	1	1.25	2864.4	0.715
8	3	2	1	1.24	3007.8	1.189
9	3	3	1	1.29	3231.5	1.458
10	1	1	2	1.26	1857.1	0.288
11	1	2	2	1.30	2026.3	0.797
12	1	3	2	1.34	2239.9	1.158
13	2	1	2	1.33	2455.7	0.612
14	2	2	2	1.47	2603.4	1.095
15	2	3	2	1.50	2819.2	1.414
16	3	1	2	1.22	3076.4	0.936
17	3	2	2	1.29	3398	1.345
18	3	3	2	1.35	3612	1.723

ANALYSISOFRESULTS

Serial Number	Rotation Speed (rev per min)	Feed rate (mm per rev)	Tool Diameter (mm)	S/N response values for Roughness (Ra) in decibel	S/N response values for MRR (mm ³ /min) in decibel	S/N response value for Tool Wear (gm) in decibel
1	1	1	1	-3.10672	61.8333	12.5786
2	1	2	1	-3.28706	63.0745	2.3609
3	1	3	1	-3.46373	63.8413	-0.0950
4	2	1	1	-3.04577	65.4178	6.1431
5	2	2	1	-3.52183	66.3529	0.7054
6	2	3	1	-3.63687	66.9583	-2.0555
7	3	1	1	-1.93820	69.1407	2.9139
8	3	2	1	-1.86843	69.5650	-1.5036
9	3	3	1	-2.21179	70.1881	-3.2752
10	1	1	2	-2.00741	65.3767	10.8122
11	1	2	2	-2.27887	66.1341	1.9708
12	1	3	2	-2.54210	67.0046	-1.2742
13	2	1	2	-2.47703	67.8035	4.2650
14	2	2	2	-3.34635	68.3108	-0.7883
15	2	3	2	-3.52183	69.0025	-3.0090
16	3	1	2	-1.72720	69.7609	0.5745
17	3	2	2	-2.21179	70.6245	-2.5744
18	3	3	2	-2.60668	71.1550	-4.7257

Table4:S/N ratio's values of each outputs from the testing of Al 6063

V.

Graph 1: Plot for surface roughness's main effect

Level	Tool Diameter (X)	Rotation Speed (Y)	Feed Rate (Z)
1	-2.898	-2.781	-2.384
2	-2.524	-3.258	-2.752
3		-2.094	-2.997
Delta	0.373	1.164	0.613
Rank	3	1	2

Table 5: Table containing responses for s/n ratios of surface roughness

Table 6: Table containing responses for means of surface roughness

Level	Tool Diameter(X)	Rotation Speed (Y)	Feed Rate (Z)
1	1.400	1.380	1.318
2	1.340	1.457	1.377
3		1.273	1.415
Delta	0.060	0.183	0.097
Rank	3	1	2

 Table 7: ANOVA outcome for s/n ratios of surface roughness (Ra)
 Image: Comparison of the second second

S		Sum of square	Variance	F-ratio	P-value	
Source	DF	(S)	(V)	(F)	(P)	Percentage(%)
Х	1	0.6276	0.6276	5.34	0.039	8.61 %
Y	2	4.1105	2.0552	17.49	0.000	56.36 %
Z	2	1.1443	0.5721	4.87	0.028	15.69 %
Residual Error	12	1.4098	0.1175			19.33 %
Total	17	7.2922				100%

Table 8: optimal level values for roughness of Al 6063 from "Graph 1"

Input variables	Levels	Roughness response values	S/N response values
Х	2	1.340	-2.524
Y	3	1.273	-2.094
Z	1	1.318	-2.384

Table 9: Validation of testing for Roughness of Al 6063 (10 mmthick plate)

	Optimal input variables		
	Estimated values	Experimented values	
Level	$X_2Y_3Z_1$	$X_2Y_3Z_1$	
Roughness	1.1916	1.22	
S/N ratio of Roughness	-1.5799	-1.7272	

Graph 2: Plot for Material removal rate's main effect

Table 10: Table containing responses for s/n ratios of MRR

Level	Tool Diameter (X)	Rotation Speed (Y)	Feed Rate (Z)
1	66.26	64.54	66.56
2	68.35	67.31	67.34
3		70.07	68.02
Delta	2.09	1.164	1.47
Rank	2	1	3

Table 11: Table containing responses for means of MRR

Level	Tool Diameter(X)	Rotation Speed (Y)	Feed Rate (Z)
1	2166	1723	2226
2	2676	2342	2423
3		3198	2614
Delta	511	1475	389
Rank	2	1	3

Table 12: ANOVA outcome for s/n ratios of Material removal rate

Source D		Sum of squares	Variance	F-ratio	P-value	Democrate co. (9/)
Source	Dr	(S)	(V)	(F)	(P)	Percentage (%)
Х	1	19.637	19.637	51.30	0.000	16.04 %
Y	2	91.685	45.842	119.76	0.000	74.90 %
Z	2	6.490	3.245	8.48	0.005	5.30 %
Residual Error	12	4.593	0.3828			3.75 %
Total	17	122.405				100%

Input variables	Levels	MRR response values	S/N response values
Х	1	2166	66.26
Y	1	1723	64.54
Z	1	2226	66.56

Table 13: optimal level values for MRR of Al 6063 from "Graph 2"

Table14: Validation of testing for MRR of Al 6063 (10 mmthick plate)

	Optimal input variables		
	Estimated values	Experimented values	
Level	$X_1Y_1Z_1$	$X_1Y_1Z_1$	
MRR	1272.51	1235	
S/N ratio for MRR	62.7471	61.83	

Graph 3: Plot for Tool wear's main effect

 Table 15: Table containing responses for s/n ratios of Tool Wear

Level	Tool Diameter (X)	Rotation Speed (Y)	Feed Rate (Z)
1	1.975	4.392	6.214
2	0.583	0.876	0.028
3		-1.432	-2.406
Delta	1.391	5.824	8.620
Rank	3	2	1

Table 16: Table containing responses for means of Tool Wear

Level	Tool Diameter(X)	Rotation Speed (Y)	Feed Rate (Z)
1	0.895	0.708	0.546
2	1.041	0.967	1.018
3		1.227	1.338
Delta	0.146	0.519	0.792
Rank	3	2	1

Common		Sum of squares	Variance	F-ratio	P-value	
Source	DF	(S)	(V)	(F)	(P)	Percentage(%)
X	1	8.711	8.711	3.61	0.082	2.3 %
Y	2	103.213	51.607	21.40	0.000	27.31 %
Z	2	237.005	118.502	49.15	0.000	62.72 %
Residual Error	12	28.932	2.411			7.65 %
Total	17	377.860				100%

Table 17: ANOVA outcome for s/n ratios of Tool Wear

Table 18: of	ptimal level	values for	Tool Wear d	of Al 6063 from	"Graph 3"

Input variables	Levels	Tool Wear Response values	S/N response values
Х	1	0.895	1.975
Y	1	0.708	4.392
Z	1	0.546	6.214

Table 19: Validation of testing for Tool Wear of Al 6063 (10 mmthick plate)

	Optimal input variables			
	Estimated values Experimented va			
Level	$X_1Y_1Z_1$	$X_1Y_1Z_1$		
Tool Wear	0.2141	0.235		
S/N ratio for Tool Wear	12.578	10.023		

Linear regression equations obtained from the above data for finding out the relationship among the specified input parameters for drilling circumstances on Al 6063. For multiple input parameters, linear type models have been generated by commercial Minitab 19 software and are presented here:

Surface Roughness(Ra) = 1.603 - 0.0300X - 0.000157Y + 0.806Z

Material removal rate = -1654 + 255.4X + 1.8306Y + 3239Z

Tool Wear = -1.215 + 0.0731X + 0.000636Y + 6.600Z

VI. CONCLUSION

In this project, Wear of the tool, Material removal rate from workpiece and Surface roughness of the sample at the entries and exits of the work material are measured using the rate of feeding, the rotation speed of the tool, and the diameter of the tool as input process parameters while drilling Al 6063 alloy with HSS spiral tool. Drilling conditions are adjusted with respect to a variety of performances in order to achieve better quality of the hole while the process of drilling of Al 6063 alloy. The Taguchi technique was employed to optimize the drilling settings. A tool dia. of 8mm, rotation speed of 1400 rev per min, and a feed rate of 0.10 mm per rev were found to be the optimal combination of drilling conditions for producing a high value of s/n ratios for the surface roughness of the hole. While A tool dia. of 6 mm, rotation speed of 600 rev per min, and a feed rate of 0.10 mm per rev were found to be the optimal combination of drilling conditions for producing a set of 0.10 mm per rev were found to be the optimal combination of drilling conditions for producing high value s/n ratios for Material removal rate as well as for Tool wear too.

Several factors [including angle of the drill point, angle of helix, no. of flutes in the drill, kind of drill tool etc.] can be included in future studies to investigate that how such factors influence the quality of the sample of other types of material or alloys.

ACKNOWLEDGEMENT

I am grateful to all the Professors, staff members of Mechanical department and Dr. P.K. Bharti Sir, Head of Mechanical department, Integral University for giving the essential assistance and guidance to complete this project.

REFERENCES

- J. Kopac, P. Krajnik, 2007, "Robust design of flank milling parameters based on grey- Taguchi method," journal paper in materials processing technology, 400-403.
- [2] M. M. Okasha and P. T. Mativenga, 2011, "Sequential Laser Mechanical Micro-drilling of Inconel 718 Alloy," journal paper in ASME, Vol. 133, 011008-8.
- [3] Chih-Hung Tsai, Ching- Liang Chang, and Lieh Chen, 2003, "Applying Grey Relational Analysis to the Vendor Evaluation Model," International Journal of The Computer, The Internet and Management, Vol. 11, No.3, 2003, pp. 45 – 53.
- [4] Ashish B. Chaudhari, Vijay Chaudhary, Piyush Gohil, Kundan Patel "Investigation of Delamination Factor in High Speed Drilling on Chopped GFRP using ANFIS" 3rd International Conference on Innovations in Automation and Mechatronics Engineering, ICIAME 2016.
- [5] Faramarz AshenaiGhasemi, Abbas Hyvadi, GholamhassanPayganeh, Nasrollah Bani Mostafa Arab "Effects of Drilling Parameters on Delamination of Glass Epoxy Composites" Australian Journal of Basic and Applied Sciences, 5(12): 1433-1440, 2011.
- [6] Anurag Gupta, Ajay Singh Verma, Sandeep Chhabra, Ranjeet Kumar "Optimization of delamination factor in drilling of carbon fiber filled compression molded GFRP composite" International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 249-253.
- [7] R. Vimal Sam Singh, B.Latha, and V.S.Senthilkumar, Modelling and analysis of Thrust force and Torque in drilling GFRP composites by multifaceted drill using fuzzy logic, International Journal of Recent Trends in Engineering, Vol. 1, No. 5, May 2009.
- [8] Yu Teng Liang et al.,(2009),Investigation into Micro Machining Cutting Parameters of PMMA Polymer Material Using Taguchi's Method, 2009, Key Engineering Materials, 419-420, 341.
- [9] Zhang, P.F., Churi, N.J., Pei, Z.J., and Treadwell C., 2008, "Mechanical drilling processes for titanium alloys: a literature review," Machining Science and Technology, Vol. 12, No. 4, pp. 417-444.
- [10] Yang.W.H. and Tarng.Y.S, 1998, "Design optimization of cutting parameters for turning operation based on the Taguchi method", Journal of material processing technology, 002E.
- [11] El Baradie, M.A., 1997, Surface roughness prediction in the turning of high strength steel by factorial design of experiments. Mater. Process. Technol., vol. 67, p. 55-61.
- [12] Abouelatta, O.B., Mádl, J., 2001, "Surface roughness prediction based on cutting parameters and vibrations in turning operations", Mater. Process. Technol., vol. 118, p. 269-277.
- [13] P. Pakiaraj, 2018, "Effect of drilling parameters on surface roughness, tool wear, Material removal rate and Hole diameter error in drilling of OHNS.
- [14] T. Karthikeya Sharma, 2013, A study of Taguchi method based optimization of drilling parameter in dry drilling of Al 2014 alloy at low speeds.