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Abstract—The literature analysis of propagation models has 

investigated different prediction methods to identify appropriate 

techniques for this purpose. The predictive algorithms of these models 

usually deal with large amounts of data, requires a sophisticated 

computer processing and knowledge, sometimes detailed of the 

topography of the terrain. For being based on measurements performed 

at specific locations, empirical models tend not to provide very reliable 

results when applied to regions that differ significantly from the original 

region This article proposes a method based on measured data that 

incorporates the effects of neighborhood on the calculation of received 

power (dBm) and uses the theory of geostatistics to estimate the extent of 

the spatial correlation between measurements of samples in the region 

of interest. The results show that it is possible to identify the vectors with 

better reception of the signal emitted by the base transceiver station by 

the spatial perspective of received power measurements (dBm) and to 

identify homogeneous zones and those zones where the service operator 

may or may not favor the user. 

 

I. INTRODUCTION 

Currently, a wide variety of communication channel models 

exist with theoretical and experimental foundations to 

predict path attenuation in mobile communications systems, 

and their development is one of the most important steps in 

mobile communication planning. A correct estimate enables 

the designer of mobile systems to predict the minimum 

power required to radiate from a transmitter to supply a 

predetermined area with acceptable coverage quality, which 

is of fundamental importance for the improvement of the 

frequency reuse technique and to implement projects with 

shared bandwidth (Liaskos et al., 2018) [1]. 

These models differ in their applicability in different types 

of terrain and different environmental conditions. 

Therefore, no model is appropriate for all situations. The 

land on which propagation occurs has varied topography, 

vegetation and buildings that are randomly distributed; 

however the propagation loss can be calculated. 

To determine which model is most appropriate for a given 

region, measurement campaigns can be performed in the 

area of interest to evaluate the performance of each model. 

This evaluation involves comparing the statistical errors of 

each model in relation to measured values quantitatively. 

Through these statistical parameters, a table comparing the 

models considered can be constructed, which allows a 

statistical analysis to determine which model best fits the 

aforementioned study region. Classic statistics is 

traditionally used to develop propagation models (Haneda 

et al., 2016; Salous, 2013; Shu Sun et al., 2014) [2-4]. Thus, 

it is assumed that realizations of random variables are 

mutually independent. However, there are several 

phenomena that involve scenarios that show spatial 

dependence.  
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The propagation models are generally based on 

deterministic models [1,2], and modified, based on the 

results obtained from measurement campaigns in one or 

more regions [1]. The models obtained are given through 

the abacus, as model of Okumura (A.Mawjoud, 2013) [5], 

for example, or expressions which provide the median 

attenuation, like the models of Okumura-Hata(Arthur et al., 

2019; Gao et al., 2020) [6,7], Ibrahim-Parsons (Rozal et al., 

2012) [8], Walfisch-Bertoni (Neto et al., 2003) [9], 

Ikegami-Walfisch (Alqudah, 2013; Cheerla et al., 2018) 

[10,11], Blomquist and Ladell (Loo et al., 2017) [12] and 

Lee (Wang et al., 2016) [13].  

The predictive algorithms of these models usually deal with 

large volume of data, requires a sophisticated computer 

processing and knowledge, sometimes detailed, the 

topography of the terrain. For being based on measurements 

taken at specific locations, the empirical models tend not to 

provide very reliable results when applied to regions that 

differ significantly from the original region [3]. 

Therefore, classical statistics is often used when 

disregarding the possible correlation between neighboring 

samples; thus the relationships that may exist between the 

sample units are not explored satisfactorily. One of the 

methods that incorporates neighborhood effects in the 

calculation of the received power (dBm) is the methodology 

proposed in this study, namely, received power mapping in 

wireless communications networks by spatial inference 

using the Kriging process developed by Matheron 

(Matheron et al., 2019) [14]. Based on this methodology the 

spatial plan of received power measures (dBm) can be 

identified and, the vectors of better signal reception emitted 

by the BTS (base transceiver station) can be identified by 

the gradient of lines of iso-values; moreover, homogeneous 

zones can be identified as well as those where users may or 

may not be favored by the service operator. Thus, estimates 

of statistics, graphs, dispersion and surface maps that 

spatially describe the behavior of the power variable of the 

received signal (dBm) were obtained. 

II. RELATED WORKS 

Currently, many researchers employ geostatistical 

interpolation techniques for coverage prediction, based 

mainly on Kriging techniques. This Module includes a set 

of procedures necessary for geostatistical techniques 

(exploratory analysis, semivariogram generation and 

modeling and interpolation by kriging), aiming at the 2D 

analysis of spatially distributed data regarding the 

interpolation of surfaces generated from the georeferenced 

samples obtained from the received power. In [15], Konak 

(Konak, 2010) estimated signal propagation losses in 

wireless LANs using Ordinary Kriging (OK). In [16], 

Phillips et al. (Phillips et al., 2012) used OK on a 2.5 GHz 

WiMax network to produce radio environment maps that 

are more accurate and informative than deterministic 

propagation models. Kolay et al.(Kolyaie et al., 2011; 

Kolyaie & Yaghooti, 2011)[17,18] used drive-tests to 

collect signal strength measurements and compared the 

performance of empirical and spatial interpolation 

techniques. Mezhoud et al.(Mezhoud et al., 2020) [19] 

proposed an approach for coverage prediction based on the 

hybridization of the interpolation technique by OK and a 

Neural Network with MLP-NN architecture, this 

methodology was motivated by the lack of quality of the 

MLP-NN test database, which satisfactorily enriched the 

network's training dataset. Faruk et al.(Faruk et al., 2019) 

[20] evaluated and analyzed the efficiencies of empirical, 

heuristic and geospatial methods for predicting signal 

fading in the very high frequency (VHF) and ultra-high 

frequency (UHF) bands in typically urban environments. 

Path loss models based on artificial neural network (ANN), 

adaptive neuro-fuzzy inference system (ANFIS) and 

Kriging techniques were developed. Sato et al.(Sato et al., 

2021) [21] proposed a technique that interpolates the 

representative map of the mobile radio signal in the spatial 

domain and in the frequency domain. 

 

III. AREA OF STUDY 

3.1.  Area of Study 

Belém, capital of the state of Pará, belonging to the 

metropolitan mesoregions of Belém. With an area of 

approximately 1064,918 km², located in northern Brazil, 

with a latitude of -01° 27' 21'' and longitude of -48° 30' 16'', 

altitude of 10 meters and distance of 2.146 miles of Brasília. 

The city is the capital of the Metropolitan Region of Belém, 

as with 2.100.319 inhabitants, is the 2nd most populous 

region, 12ª of the country 177ª of the world, well as being 

the largest urban agglomeration in the region. The city of 

Belém, considered the largest of the equator line, is also 

classified as a capital with the best quality of life in Northern 

Brazil. Fig. 1 shows an aerial view of the large urban center 

of the state capital bathed by the bay of Guajará. 
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Fig. 1: Partial view of the large urban center of Belém/PA 

(souce: 

https://cityofmangotrees.wordpress.com/2015/04/15/feliz-

lusitania/, september 2021). 

 

To observe the behavior of the received power (dBm), a 

measurement campaign involving 11 streets in the urban 

area of Belém - Pará, Brazil was performed. The acquisition 

of the verticalization and parcel measurements of buildings 

and residences, which resulted in a total of about 1800 

points (from houses and buildings), was made by 

AUTOCADMAP and ORTOFOTO provided by the 

Company Development and Administration of the 

Metropolitan Area of Belem – CODEM.  

The neighborhoods involved in the measurement campaign 

are located in the central region of Belém. The 

neighborhoods identified as Nazaré, Batista Campos and 

Umarizal present a high degree of vertical integration as a 

whole with more than 190 buildings and some that reach 70 

meters high. The Alcindo Cacela, Conselheiro Furtado, 

Governor José Malcher, Magalhães Barata and Nazaré 

Avenues show a predominance of buildings of all sizes. 

These avenues have the greatest concentration of 

commercial buildings. In addition, there are many mango 

trees along the Magalhães Barata and Nazaré avenues. 

 

3.2. Materials and Methods 

3.2.1. Measurement Setup 

The equipment used in the measurement setup included a 

transmission system and a receiving system. The 

transmission system consisted of a transmitting antenna 

positioned at a height of 35 m above the ground and 

operated by the local operator (Oi Celular). It was the 

739632model produced by KathereinTM with dual 

polarization (± 45⁰) and operates within the range from 825 

to 896 MHz with a gain of 15 dBi in vertical polarization. 

The receiving system is the E7474A TDMA model 

produced by Agilent. The receiving antenna used in the 

measurements was the TPM 8003A monopole model 

produced by PlusTM, which operates in the range from 825 

to 896 MHz with a gain of 3 dBi. It was mounted on a car 

and the received signal was collected by a laptop that had a 

PCMCIA card installed, which was the interface between 

the acquisition and storage system. In addition to the 

acquisition of the received power, the movement test system 

uses GPS coordination to determine the geographic position 

information of all measures. 

3.2.2. Geostatistics 

Geostatistics is used in spatial interpolation and 

quantification of uncertainty for variables that exhibit 

spatial continuity, i.e., that can be measured anywhere in the 

region of interest. It uses traditional statistical concepts such 

as random variables (RVs), cumulative distribution 

functions (CDFs), probability density functions (PDFs), 

expected value, and variance. In geostatistics, the RV 

represented by Z (u), where u is the vector of location 

coordinates, is related to a location in space. In this case, the 

main statistics are defined below (Gooverts, 1984; Isaaks, 

1990) [22, 23].   

The cumulative distribution function (CDF) provides the 

probability that the RV Z is less than or equal to a given z 

value, usually called the cut value. 

𝐹(𝑢: 𝑧) = 𝑃𝑟 𝑜 𝑏{𝑍(𝑢) ≤ 𝑧}                   (1) 

     The probability density function (PDF) is derived from 

the CDF, assuming it is differentiable, i.e.:  

𝑓(𝑢: 𝑧) = 𝐹′(𝑢: 𝑧) 𝑙𝑖𝑚
𝑑𝑧→0

𝐹(𝑢;𝑧+𝑑𝑧)−𝐹(𝑢;𝑧)

𝑑𝑧
     (2) 

When the CDF is performed for a specific set of 

information, for example, (n) consisting of n neighboring 

data values Z(u) = z (u), a = 1,..., n, the notation "conditional 

to n" refers to the conditional cumulative distribution 

function (CCDF), which is defined as follows: 

𝐹(𝑢: 𝑧|(𝑛)) = 𝑃𝑟 𝑜 𝑏{𝑍(𝑢) ≤ 𝑧|(𝑛)}       (3) 

The expected value, 𝐸{𝑍}, is the weighted average of n 

possible outcomes where each outcome is weighted by its 

probability of occurrence. In the continuous case and 

assumingthat the integrals exist, the expected value is 

defined as follows: 

𝐸{𝑍} = 𝑚 = ∫ 𝑧. 𝑑𝐹(𝑢; 𝑧)
+∞

−∞

 

= ∫ 𝑧. 𝑓(𝑢; 𝑧)𝑑𝑧
+∞

−∞

 

≈ ∑ 𝑧𝑘
′ [𝐹(𝑢; 𝑧𝑘+1) − 𝐹(𝑢; 𝑧𝑘)]

𝐾
𝑘=1    (4) 

With 𝑧𝑘
′ ∈]𝑧𝑘 , 𝑧𝑘+1] 

Where 𝐹(𝑢; 𝑧) and 𝑓(𝑢; 𝑧) are the CDF and PDF, 

respectively. The integral ∫ 𝑧. 𝑑𝐹(𝑢; 𝑧)
+∞

−∞
 was 

approximated by K classes with frequencies [𝐹(𝑢; 𝑧𝑘+1) −
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𝐹(𝑢; 𝑧𝑘)]and 𝑧𝑘
′  is a value in the k-thclass, for example, the 

center of the class. 

     The variance𝑉𝑎𝑟{𝑍}Var{Z}, defined as the squared 

expected deviation V.A. Z in relation to its average in the 

continuous case, is written as follows: 

𝑉𝑎𝑟{𝑍} = 𝜎2 = ∫ (𝑧 −𝑚)2𝑑𝐹(𝑢; 𝑧)
+∞

−∞

 

= ∫ (𝑧 − 𝑚)2𝑓(𝑢; 𝑧)𝑑𝑧
+∞

−∞
(𝑧 − 𝑚)2𝑓(𝑢; 𝑧)𝑑𝑧(5) 

     In many situations, it is desirable to know the pattern of 

dependence of one variable 𝑋 in relation to another 𝑌. The 

joint distribution of the results of a pair of random variables 

𝑋 and 𝑌is characterized by the joint CDF (or bivariate), 

which is defined as follows: 

𝐹𝑥𝑦(𝑥, 𝑦) = 𝑃𝑟𝑜𝑏{𝑋 ≤ 𝑥,  𝑎𝑛𝑑  𝑌 ≤ 𝑦}               (6) 

     Which is estimated, in practice, by the proportion of data 

pairs jointly below the respective values (cut value) x and 𝑦. 

This distribution can be shown in a scatter diagram where 

each pair of data (xi,,yi) is plotted as a point. The degree of 

dependence between two variables 𝑋 and 𝑌can be 

characterized by the dispersion around the 45⁰ line in the 

scatter diagram, as shown in Fig. 2. 

 

Fig. 2: Pair (xi ,yi) on a scattergram 

 

     The moment of inertia of the scatter diagram around the 

45⁰ line, called the “semivariogram” of the set of 

pairs (xi,,yi) , is defined as follows: 

𝛾𝑋𝑌 =
1

𝑁
∑ 𝑑𝑖

2 =
1

2𝑁
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1

𝑁
𝑖=1                  (7) 

     The higher the value of the semivariogram, the greater 

the dispersion and the less closely related are the two 

variables 𝑋 and 𝑌. 

     The centered covariance (on the average, m), or simply 

covariance, is given by the following: 

Cov{𝑋,𝑌} = XY =E{𝑋𝑌}= E{[𝑋– mx].[𝑌– my]} 

    = E{𝑋𝑌} – mx.my  (8) 

The standard covariance between two RVs X and Y is 

known as the correlation coefficient, i.e., 

𝜌𝑋𝑌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
=

𝐶𝑜𝑣{𝑋,𝑌}

√𝑉𝑎𝑟{𝑋}.𝑉𝑎𝑟{𝑌}
∈ [−1,+1]                (9) 

The experimental relationship between the semivariogram 

and the covariance can be obtained by developing equation 

(7), which gives the following: 

γX′Y′ = 1 − ρX′Y′  ∈ [0,2]𝛾𝑋′𝑌′ = 1 − 𝜌𝑋′𝑌′  ∈ [0,2]           

(10) 

Where 𝑋′and 𝑌′ are standardized variables𝑋′ = (𝑋 −

𝑚𝑋)/𝜎𝑋  and 𝑌′ = (𝑌 − 𝑚𝑌)/𝜎𝑌. 

     The RVs 𝑋 and 𝑌 can represent the same property 

measured in two different space locations, which are 

characteristic of regionalized variables at xand x + h that are 

separated by a vector h (called the lag or distance between 

locations), and 𝑋 = 𝑍(𝑥), 𝑌 =  𝑍(𝑥 + 𝒉). 

In this case, the 𝛾𝑋𝑌 semivariogram and the 𝜌𝑋𝑌 correlation 

measure the degree of variability or similarity between the 

two RVs 𝑋 and 𝑌. 

This case is of particular interest in problems of spatial 

interpolation where an area (map) with a particular 

property, Z(𝒖), 𝒖 ∈ 𝑨, 𝑨area, must be identified from n 

samples of  Z(𝒖). The combination of all n(h) data pairs of 

Z(𝒖)over the same area with such pairs separated by 

approximately the same vector h (in length and direction) 

allows the characteristic (or experimental) semivariogram 

of the spatial variability in A to be estimated: 

𝛾(ℎ) =
1

2𝑁(𝒉)
∑ [𝑧(𝒖𝛼) − 𝑧(𝒖𝛼 + 𝒉)]

2𝑁(𝒉)
𝛼=1             (11) 

The semivariogram characterizes the degree of spatial 

dependence between two random variables Z(𝒖) and Z(𝒖 +

𝒉) separated by vector 𝒉. 

     With a single sample, all that is known of a random 

function Z(𝒖)is a single point. Then, if the values for the 

non-sampled locations must be estimated, the restriction 

that the regionalized variable is statistically stationary must 

be introduced. To summarize, the hypothesis of stationarity 

establishes that the first two moments (mean and variance) 

of the difference [𝑍(𝒖)−𝑍(𝒖 + 𝒉)]are independent of the 𝒖 

location and are only a function of the vector𝒉. 

When the semivariogram graph is the same for any direction 

of 𝒉, it is called isotropic, and it represents a much simpler 

situation than when it is anisotropic. In the latter case, the 

semivariogram should be transformed before being used. 

Therefore, it is advisable to examine semivariograms 

forseveral directions to evaluate the existence of anisotropy. 
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The semivariogram is the preferred tool for statistical 

inference because it has some advantages over covariance 

(Matheron et al., 2019) [14]. For a continuous function to 

be chosen with semivariograms, it is necessary to satisfy the 

defined positive property.  In practice, linear combinations 

of basic models that are valid, i.e., permissible, are used. 

One of the most used basic models in geostatistics is the 

spherical model, which is given below: 

𝛾(𝒉)

{
 
 

 
 
0,                                               |ℎ| = 0                                       

𝐶 [
3

2
(
|ℎ|

𝑎
) −

1

2
(
|ℎ|

𝑎
)

3

]        0 < |ℎ| ≤ 𝑎            (12)

𝐶                                                 |ℎ| > 𝑎

 

The C and components are called level and range, 

respectively. The level, also known as the "sill", represents 

the variability of the semivariogram until its stabilization. 

The range (or variogram amplitude) is the observed distance 

to the level where the variability stabilizes. It indicates the 

distance at which samples are spatially correlated, as shown 

in Fig. 3. 

 

Fig. 3: Parameters of the semivariogram 

 

After the model of spatial dependence between two random 

variables Z(𝒖) and Z(𝒖 + 𝒉)is established, the problem of 

estimating an unknown value Z(𝒖)from the values available 

can be addressed. The goal is not only to find an 

estimate𝑍∗(𝒖) of the unknown value, but also model the 

uncertainty of this estimate. The uncertainty depends on the 

available information: the observed z(u)'s values and\the 

established model of spatial dependence. 

Kriging is a generic name adopted in geostatistics for a 

family of algorithms of least-squares regression based on 

the linear regression estimator 𝑍∗(𝒖), which is given by the 

following: 

𝑍∗(𝒖) − 𝑚(𝒖) = ∑ 𝜆𝛼(𝒖)[𝑍(𝒖𝛼) − 𝑚(𝒖𝛼)]
𝑛(𝑢)
𝛼=1                

(13) 

     Where 𝜆𝛼(𝒖)is the weight assigned to each observed 

value of Z(𝒖) located within a certain 

neighborhood W (𝒖) centered at 𝒖. The 𝑚(𝒖) weights are 

chosen to minimize the estimation or error variance 

𝜎𝐸
2(𝑢) = 𝑉𝑎𝑟[𝑍∗(𝒖) − 𝑍(𝒖)] under the non-biased 

condition of the estimator. 

The ordinary kriging (OK) considers the local variation of 

the average restricted to the domain of stationarity of the 

average to the local neighborhood W (𝒖)centered on the 

location u to be estimated. In this case, the common average 

(stationary) 𝑚(𝒖𝛼) in equation 13 is considered. The 

unknown average 𝑚(𝒖𝛼)can be eliminated by considering 

the sum of the weights (𝜆𝛼(𝒖)) of the Kriging equal to 1, 

i.e.,  

𝑍𝐾𝑂
∗ (𝑢) = ∑ 𝜆𝛼

𝐾𝑂(𝑢)𝑍(𝑢𝛼)
𝑛(𝑢)
𝛼=1    with   ∑ 𝜆𝛼

𝐾𝑂(𝑢) = 1
𝑛(𝑢)
𝛼=1        

(14) 

The minimization of error variance (𝑉𝑎𝑟[𝑍∗(𝒖) − 𝑍(𝒖)]) 

under the condition  ∑ 𝜆𝛼
𝐾𝑂(𝑢) = 1

𝑛(𝑢)
𝛼=1 , allows the 

weights to be determined from the following system of 

equations, called the ordinary Kriging system (normal 

equationsawithaconstraints):      

{
∑ 𝜆𝛽

𝐾𝑂(𝒖)𝐶(𝒖𝛽 − 𝒖𝛼) + 𝜇(𝒖) = 𝐶(𝒖 − 𝒖𝛼),
𝑛
𝛽=1

∑ 𝜆𝛽
𝐾𝑂(𝒖) = 1𝑛

𝛽=1

       (15) 

     Where 𝐶(𝒖𝛽 − 𝒖𝛼) and𝐶(𝒖 − 𝒖𝛼) are, respectively, the 

covariance among points 𝒖𝜷 and 𝒖𝜶 and 𝒖 and 𝒖𝜶 and (𝒖) 

is the Lagrange parameter associated with the restriction 

∑ 𝜆𝛽(𝑢) = 1
𝐾𝑂
𝛽=1  . 

Unlike more traditional linear estimators, Kriging uses a 

weighting system that considers a spatial correlation model 

specific to the variable in study area A. Kriging provides not 

only a least squares estimate of the variable under study but 

also the associated variance error. 

 

IV. ANALYSIS AND DISCUSSION OF RESULTS 

Fig. 4 shows the data distributed in the study area. There are 

eleven streets in which measurements of the received power 

(dBm) were taken by the mobile station over fairly short 

distances (under 5 m) between measurements. 
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Fig. 4: Sampling points for power measurement in the 

study area [8] 

 

Fig. 5 shows clearly that the distribution of the data 

evidences the slight asymmetry to the right, which indicates 

the presence of high values of received power (dBm). 

However, the values near the mean (-90.28) and median (-

94.28) indicate that the distribution approaches normal 

values.  

 

Fig. 5: Histogram for the received signal power (dBm) 

 

To conduct the analysis and diagnosis of the effects of 

spatial autocorrelation samples, was used ARCGIS 

geostatistical module program(Johnston et al., 2001) [24] 

called ArcMap which is the application that is used for 

handling / generation of digital maps.  

Fig. 6 presents a QQ-plot (quantil-quantil plot), which 

compares the received power distribution (dBm) with a 

standard normal distribution, note that there is a reasonable 

approximation of the distributions. 

 

Fig. 6: QQ-plot for the power of the received signal (dBm) 

 

The use of a geostatistical method requires that the data be 

spatially stationary (Pyrcz & Deutsch, 2014; Shiquan Sun et 

al., 2020; Tobler, 1989) [25-27]. It was observed that the 

distribution of the received power signal (dBm) shows 

higher peaks in certain directions, probably due to the short 

distance between the base station and the mobile 

station. This observation  clarifies the presence of a spatial 

trend in the data. In this case, this trend should be removed 

and used for the geostatistical analysis because it is free of 

trends and therefore stationary. After the geostatistical 

analysis, the trend should be added to the results so that the 

predictions yield more accurate results. A first-order surface 

was used in this case to remove the trend, as shown in Fig. 

7. 

 

Fig. 7: Spatial distribution of power data of the received 

signal (dBm) 

 

For the use of Kriging, foremost, an analysis is made by 

means of the spatial dependence of the semivariogram. Fig. 

8 shows that the experimental points in the isotropic case 

semivariogram, where the samples show a range of spatial 

dependence around 30 meters. The semivariographic model 

in this case is given by: 

𝛾(ℎ) = 12.63𝐶0 + 194.3𝑠𝑝ℎ(335.06)(16) 

Where: 𝐶0is the nugget effect and 𝑠𝑝ℎ(335.06) is a 

spherical model for ℎ = 335.06. 
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Fig. 8: Omnidirectional Semivariographic Model adjusted 

to the power of the received signal (dBm) 

 

The semivariographic analysis showed the presence of an 

anisotropy from the southwest (SW) direction towards the 

northeast (NE) (Chilès & Delfiner, 2012) [28]. Because the 

trend was removed, the directional components of the 

spatial autocorrelation occur on a small scale, which will be 

included in the semivariographic modeling. The received 

power variable (dBm) was an ellipse of anisotropy with a 

major axis in the 57° direction (angle relative to geographic 

north) and minor axis in the 145° direction. Figs. 9 and 10 

shows the semivariogram in both directions of 57° and 145°, 

respectively. The adjusted model, in this case, was 

represented by a spherical, 

𝛾(ℎ)57º = 29.19 + 189.06 ⥂ 𝑆𝑝ℎ [(
|ℎ|

749.17
) + (

|ℎ|

288.32
)
3
](17) 

𝛾(ℎ)145º = 28.76 + 189.06 ⥂ 𝑆𝑝ℎ [(
|ℎ|

283.93
) + (

|ℎ|

749.17
)
3
]   (18) 

 

 

Fig. 9 :Directional Semivariographic Model in the 57º 

direction adjusted for the power of the received signal 

(dBm) 

 

Fig. 10 : Directional Semivariographic Model in the 145º  

direction adjusted for the power of the received signal 

(dBm) 

 

The nugget effect indicates that, around 

13.38%=(29.195/(29.195+189.06))*100 of the total 

variability of the samples is due to the random component, 

and the remaining 86.62% is explained by the spatial 

autocorrelation component of the existing residues. The 

maximum and minimum ranges around 749.17 m and 

288.32 m, respectively, indicate that there is an ellipse of 

influence of spatial contagion with maximumand minimum 

rays equal to the ranges; if these effects become negligible, 

the small spatial scale is determined from these limits. Thus, 

there is evidence that users who receive a signal with similar 

quality tend to be located close to each other. 

Based on the framework defined by the variographic model, 

spatial inference was performed through the Kriging 

process to obtain a map of spatial distribution. The result of 

the mapping by Kriging for the received power (dBm) is 

shown in Fig. 11. 

about:blank


Edilberto Rozal et al.                                           International Journal of Advanced Engineering Research and Science, 8(9)-2021 

www.ijaers.com                                                                                                                                                                            Page | 195  

 

Fig. 11 : Spatial map of the received power (dBm) 

 

 

Fig. 12: Spatial map of the distance to the BTS 

 

The map in Fig. 11 shows the spatial distribution using color 

levels to provide information about the distribution pattern 

of received power (dBm). The distribution of values shows 

the regions with higher levels of received power (dBm) in 

brown and the areas with lower signal strength in yellow. 

The highest levels of power are observed mainly in three 

regions: on the Governor Jose Malcher Avenue corner with 

Trav. 14 de Março; a large region that starts near the 

Trav. 14 de Março corner with Antonio Barreto Avenue and 

extends toward the Visconde de Souza Franco Avenue and 

Boaventura da Silva street; and another small region near 

the Dr. Moraes street with Boaventura da Silva street. The 

BTS is located near this area. 

Using the same methodology adopted for the received 

power variable (dBm), a map of the spatial distribution of 

the color levels that provides information about the spatial 

distribution pattern of the distance from the mobile station 

to the transmitting antenna is shown Fig. 12. The potential 

of the applied methodology can be observed when 

comparing the maps showing the spatial distribution of the 

received power (dBm) by the receiving unit and the distance 

between the transmitter and receiver antennas. As 

anticipated, lower power levels are observed at greater 

distances from the base station. 

 

V. COMPARISON OF RESULTS 

Fig. 13 shows the variation of the received signal strength 

(simulated and measured) and theoretical models Okumura-

Hata [6] and Ibrahim-Parsons [8] as a function of distance 

from the transmitter antenna along the eleven paths studied. 

 

Fig. 13: The signal strength received by the mobile station 

and estimated by theoretical models and simulated 

 

Each type of propagating approached showed some random 

variations regarding the classification of the analyzed 

environment. In the case of region analysis, simulations of 

all models were performed considering the involved 

characteristics of urban environment, whereas this 

environment predominate residences and buildings with an 

average height ranging from 3m to 100m, respectively. The 

parameters used in the analysis of models had the following 

values: 

The receiving antenna height: hr = 1.5 m. 
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The receiving antenna height: ht = 35 m. 

Operating frequency: f = 877.44 MHz 

In order to perform a study more insightful for each model, 

were made for each data file, statistical analysis of the 

measures, aiming to measure the deviations between the 

simulated and measured values. This made it possible to 

obtain information to provide subsidy to state what the best 

model for characterizing the propagation environment for 

mobile cellular paths studied. Table 1 shows the average 

and standard deviation in dB for each model in relation to 

the values of received signal strength from the field. 

Table 1:Comparison between the three theoretical models 

and the measured value for the paths involved in the 

measurement campaign 

 

Through the analysis of graphs and the results shown in 

Table 1, one can deduce that the proposed model is resulting 

in lower average deviation compared with the field 

measurements. For this model, the mean square error with 

respect to the level of theoretical power is 0.37 dB Whereas 

the maximum acceptable deviation in the signal level 

received by the mobile in relation to the prediction, is 8 dB 

Note that the average and standard deviation calculated for 

the proposed model showed values very similar to those 

obtained for the data collected in the field (measured 

values). 

However, among the theoretical models, nearest measured 

values is the template of Ibrahim-Parsons, with a mean 

square error of 13.23 dB The model of Okumura-Hata, that 

had the worst outcome, one should go through their 

adjustment coefficients. Possibly the urban environment 

analyzed for obtaining this model does not show many 

similarities with that found in the region studied in this 

study. 

 

VI. CONCLUSIONS 

In view of the above, it can be concluded that the spatial 

inference allows the regions where the levels of received 

power (dBm) are either intense or not to be identified, which 

demonstrates the negative effects to the subscribers who are 

in regions with low signal levels. In addition, this 

methodology allows all parts of the region of interest to be 

assessed individually based on their geographical 

coordinates and not just a generic statement of values, as in 

traditional propagation models. From the spatial 

distribution map of the received power (dBm), it is possible 

to identify the areas that are over- or underestimated in 

terms of signal reception, which can result in increased 

investment by the local operator to those regions where the 

signal is weak. Moreover, the spatial mapping of the 

received power (dBm) can also help in planning and 

developing wireless communications networks because iso-

value maps can be used to identify neighborhoods that 

benefit from having high received power (dBm) in a given 

city. 

The model proposed showed an good result with mean 

square error in order of 0.37 dB in relation to the measured 

signal, considering the data of the eleven paths of measuring 

campaign; whereas for the models of Ibrahim Parsons and 

Okumura-Hata this error was on the order of 13.23 and 

16.54 dB, respectively. This performance is due to the fact 

that the geostatistical model considered the georeferenced 

data, enabling the identification of the interaction effects in 

this same space, using a kriging process.Therefore, the 

spatial estimation techniques used for wireless 

communications networks should be applied to other 

scenarios to estimate the signal strength along all avenues 

of a given city.   
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