
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol -5, Issue-7, July- 2018]

https://dx.doi.org/10.22161/ijaers.5.7.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 143

A Case Study on Identifying Software

Development Lifecycle and Process Framework
N. Devadiga

Abstract—This paper analyzes and determines which

software development lifecycle and process framework

would be appropriate in the following case studies:

Microsoft office business unit, Denver Baggage, Avionics

development, and Department of Transportation. The

analysis for decision takes into consideration the

stakeholders involved, the targeted audience, technology,

business drivers, culture, time/schedule, resources, scope,

and quality.

Keywords—Software process, SDLC, Software

framework.

I. INTRODUCTION

Technology is taking over the world at a rapid pace. With

the exponential growth of technology across diverse

industries, software solutions have become essential in

every facet of the business. Because of the size and

complexity of current software, there is a need to have a

guiding process for development. However, with such

diverse applications of software, there is a need to

determine the appropriate process in the context of the

situation. This paper investigates the following four case

studies.

II. CASE STUDY: MICROSOFT OFFICE

BUSINESS UNIT (OBU)

Microsoft released Word for Windows word processor in

1989, after five years of development. The product

received significant acclaim, and the sales concluded

higher than Microsoft’s projections, however, the project

faced several project management issues in its execution

[1]. The project had issues ranging from ill-defined

requirements, lack of planning, inadequate project

management, and random role assignment [1]. Most of

Microsoft’s products at that time were among the best

available products on the market. Though the product was

built in Microsoft’s standard style, Office Business Unit

project needed a structure - a process framework to guide

the development.

Following points were noted before identifying the

software process and framework:

Microsoft work culture: The work culture at Microsoft at

that time was informal - software engineering staff

handled project execution decisions; roles were

interchangeable, and projects were carried out without

formal requirements documentation.

Microsoft’s release strategy: Microsoft’s preferred

strategy was to deliver the product in many small releases

with short durations.

Time constraint: The initial project was scheduled to be

delivered in one year.

Focus on programming: Microsoft’s projects at that time

relied heavily on programming aka build and demonstrate

model. It had always worked for them in the past.

Developers and managers were not very concerned with

the software architecture or process methodologies.

Small team sizes: Development team size was typically

limited to 10 people.

Unclear requirements: The requirements for the project

were not well defined. Microsoft wanted to add as many

innovative features in the word processor, without

defining the project scope.

Based on the above factors and as per [2] an agile process

like Extreme Programming (XP) [14] would be a better fit

for the OBU project. Below are potential reasons as to

why extreme programming would serve the project better:

Time criticality / Small releases: The primary focus of

Microsoft was to release the product to market as soon as

possible. With XP, it could be achieved by releasing an

early version of the software and then incrementally

adding functionalities to it with later releases. Such

incremental deployments are not feasible with traditional

software processes like Rational Unified Process (RUP)

[11], due to its monolithic development style. With Agile,

the product can be built incrementally; particularly with

Extreme Programming (XP) process, a simplistic model

of the system is released to production and newer versions

are released in short cycles.

Undefined requirements: Since the requirements were

unclear and volatile, it makes sense to choose an agile

process that could quickly respond to changes.

Code-centric development: The nature of the project

suggests that it was going to be code intensive (a word

processor with many innovative features). Also, at

Microsoft, significant emphasis was on programming,

rather than on system architecture documentation. In XP,

programming forms the core, and it allows programmers

to take decisions about the design. This would have

worked well with engineers like Hunt – one of the

https://dx.doi.org/10.22161/ijaers.5.7.21
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol -5, Issue-7, July- 2018]

https://dx.doi.org/10.22161/ijaers.5.7.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 144

programmers responsible for deciding on the features for

Word.

Informal work culture: Traditional methodologies are

rigid and do not work well in informal settings [13], but

XP can work very well in such configurations. For

example, pair programming, one of the tenets of XP, can

be beneficial when developers are comfortable working

closely with each other. Small team sizes at Microsoft

could support such practices. Furthermore, it is unrealistic

for them to use a cumbersome process such as RUP

which requires a highly structured and complex team with

many roles and requires tool support.

Focus on quality: Bill Gates wanted this to be the “best

word processor ever” and much time was to be spent on

getting every feature right. Characteristics of XP such as

refactoring (restructuring the program to improve quality)

and continuous testing (continuously writing unit tests,

which must run for the development to continue) would

serve this purpose greatly.

Having a working system at all times: Some Microsoft

managers were of the opinion that a “shippable” product

should be available at all times – after a piece of

development is complete, all error and boundary cases

should work, and it should successfully integrate with the

rest of the system. XP facilitates just that with continuous

integration. It says that the system should be built many

times a day, every time a task is completed.

User collaboration: Since the market focused on multiple

large business corporations and government agencies, the

way to elicit requirements should be through user

collaboration. An iterative process is required to elicit

user requirements and feedback. An agile process like XP

best does this.

Extrapolating the engineering culture and project

management structure at Microsoft an iterative and

incremental lifecycle with a light, agile process like XP

would be a good candidate for the MS Word project by

providing structure for new requirements, delivery under

time constraints, and code-intensive development.

III. CASE STUDY: DENVER BAGGAGE SYSTEM

Before determining what process and framework would

be useful for the Denver Baggage System (DBS) [10],

notes are taken on the nature of the project. There are

several stakeholders on the DBS project, and each has

their expectation for the system (see the table below).

Stakeholder Need

Airport The project must be completed on

time as delays cost money

Airlines Planes must be loaded as quickly

as possible

Passengers The system must be accurate, so

bags are not misplaced

Airport Staff The system must not break since

there is no backup in place

The needs of the stakeholder’s lead to the project’s

requirements. Based on the date the airport is scheduled

to open, the project must be completed within 22 months.

It has to be entirely accurate for bags to be delivered to

the right place. It cannot have any downtime. It also has

to move the bags physically faster than any other system

before, which allows planes to have a faster turnaround

time. However, the system is far too complex to design

and implement within the desired time window. As

Neufville pointed out [8], planning the people mover in

the Atlanta airport was the subject of two years of

research and a doctorate dissertation, and that system was

comparatively simple. As the development cannot

realistically be completed within the scheduled

timeframe, it is assumed the DBS is delivered in

increments to have a working system eventually.

By studying the system requirements, of the Denver

Baggage System, it seems the creation of the Denver

Baggage System would be best handled with a traditional

Rational Unified Process (RUP) framework [11]. RUP is

appropriate for a variety of reasons:

RUP puts a strong emphasis on the design of a system,

this is required as the complexity of the system requires

thorough planning.

RUP promotes component-based architecture which

enables modeling of real-world systems and integrates

well with the development of those systems [2]. This is

very important for the DBS project since the physical

design of the DBS is constrained by the architectural

design of the airport and the physical realities of the

conveyor system.

RUP process is designed for delivery in increments. As

explained before, it is not possible to deliver the entire

system in working condition by the deadline. Delivering

some sub-portion of the system should be possible.

RUP’s incremental delivery design allows the system to

expand as it is developed.

Delivering the system in increments forces the creation of

a manual backup system. Some bags would have to be

manually transported to the terminal until the entire

system is online. This helps maintain system reliability

because if the system fails, there is a process and

procedure for replacing the lost functionality.

Due to many investors in the DBS project, project

accountability is a requirement. The extensive

documentation and artifacts produced by RUP provide the

accountability mentioned above.

When comparing RUP to other process frameworks, it is

apparent why, in this case, it is the superior process. RUP

https://dx.doi.org/10.22161/ijaers.5.7.21
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol -5, Issue-7, July- 2018]

https://dx.doi.org/10.22161/ijaers.5.7.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 145

has advantages over more agile frameworks like XP in

that this project is very design heavy. Much planning is

needed to ensure that all the parts of the system integrate

together successfully.

RUP is better than waterfall-style processes since the

DBS project needs incremental deliveries not present in

those frameworks.

The DBS project does not need the risk management of a

spiral process since the risk is managed by the forced

development of a backup system.

IV. CASE STUDY: PENNDOT21

The goal of the PennDOT21 project is to provide on-line

vehicle registration services by making a web interface

for the PennDOT registration system [12]. This system

should be a secure and easily accessible service to all

licensed Pennsylvania drivers. The critical factors in

determining a lifecycle for this project are as follows:

Stakeholders: The significant stakeholders include the

Pennsylvania Department of Transportation, its

employees who work with the system, and all licensed

Pennsylvania drivers. Because the technical competence

of the end users varies, the web interface must provide a

highly accessible and intuitive GUI. It suggests an

iterative lifecycle with feedback to determine GUI

requirements.

Market: We assume that the PennDOT21 system is

mostly the first of its kind and therefore may serve as an

example system for other states in the future, this suggests

a process with clear indicators of progress.

Technology: PennDOT21 to provide an interface with the

older PennDOT vehicle registration system. Thus, there

must be proper testing to ensure that this integration is

secure and robust.

Business Drivers: The business goal of this project is to

reduce errors and work required in the existing manual

registration process. Because a manual process already

exists, this suggests a backup exists for PennDOT21 in

case of failure and also that continuous deployment is

possible.

Culture: End-users and employees are unaccustomed to

using the web interface. Thus, a gradual deployment with

training is required for a successful project.

Time/schedule: A time constraint is not a primary

requirement of this project because there is already a

manual process by which drivers can register their

vehicles. Since the interface is dependent on the manual

process, any changes in the manual process might affect

the schedule.

Scope: The scope listed in the project description only

covers an interface for vehicle registration. However, it is

feasible that the scope might be extended in future

projects by the DOT if the project is successful (since the

DOT covers many more functions than just vehicle

registration). Thus, PennDOT21 should be modular and

modifiable.

Quality: One of the main concerns for the PennDOT21 is

security, as transmitted data might include sensitive

information such as registration numbers. Furthermore,

the system must provide 24x7 access and thus must be

error-free and robust. Concurrency and scalability is an

issue, since there may be a large number of users

accessing the system at one time.

From the above factors, the most critical project

requirements are summarized as follows:

 Robust, secure, scalable, modular and modifiable

back-end communication with PennDOT.

 Intuitive and flexible, but secure front-end web

interface.

 Clear indicators of project progress.

 Extensive testing to ensure code integrity.

The points above show a dichotomy in the requirements

for this project. On the one hand, the robust back-end

suggests a traditional process with particular attention to

design and architecture. On the other hand, the easy-to-

use front-end suggests an iterative, agile process with

extensive feedback to make the interface as intuitive as

possible. Therefore, the best fit process is a merge of both

agile and traditional processes.

ACDM [7] with Rapid Prototyping [9] provides the best

fit for this project. ACDM's architecture-centric approach

gives the best chance of success in fulfilling the need for a

robust, secure, and scalable system. Furthermore, ACDM

provides a clear way to track progress by use of the

architecture [3], even though rapid prototyping itself may

not produce clear progress indicators. Rapid prototyping

is used in the production phase because its attitude

towards changing requirements and extensive feedback

allows it to provide an intuitive and easy-to-use interface.

ACDM guides the development, so there is no loss in

security or robustness. Furthermore, rapid prototyping's

code-centric attitude ensures a minimum of bugs, and this

is especially true for PennDOT21 which would be a small

or medium software size [2].

ACDM with Rapid Prototyping [9] is the best possible

process for this project. Security, scalability, robustness,

and modifiability are all attributes that are addressed

while examining the architecture of a project.

Furthermore, PennDOT21 is not a life-critical system,

and has a backup manual registration service (as

assumed), so heavyweight processes like Spiral or RUP

are not essential to its development. Next, ACDM should

be combined with an agile process for development since

the exact requirements for an intuitive web interface

cannot be well-defined early in the project. In this case,

Rapid prototyping is the best agile process to combine

https://dx.doi.org/10.22161/ijaers.5.7.21
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol -5, Issue-7, July- 2018]

https://dx.doi.org/10.22161/ijaers.5.7.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 146

with ACDM because of Rapid prototyping's code-centric

approach and attitude towards changing requirements.

Another approach like scrum might focus on the

management side, which may not be necessary for this

project (depending on the specifics of the development

team).

V. CASE STUDY: FLIGHT CONTROL SYSTEM

The aircraft flight control system (FCS) is a high-risk

flight system that controls every aspect of an airplane

operation to ensure safer, smoother flight; it consists of

the flight control surfaces, cockpit controls, and the

necessary mechanism to control the aircraft’s direction in

flight.

FCS requires:

 Good aircraft handling properties

 Low pilot workload

 Model simulation or prototyping is required to

analyze whether digital processing signals represent

the desired implementation, to avoid any mishap

during the ground or flight testing[4].

 Backup or failover plan in case of software or

hardware fault.

 The system developed should be comprehensively

tested for an extensive set of faults and have

thorough ground-based testing. The system and its

inherent functional design should be free from

errors.

Additionally, FCS requires adherence to the highest level

of quality standards. Any failure in the system can cause

loss of aircraft and human lives; the probability of success

should be very close to 100%. However, a test to prove

100 percent correctness is almost impossible. Thus, a

trade-off is done by deploying many reliable, redundant

artifacts, a thorough design and development process, and

test-cases under all possible combinations of inputs.

Redundant artifacts would be used as backup during any

software fault.

The project is high risk, safety-critical, and requires zero

defect deliverables along with continuous risk

assessment. Thus, a spiral model is proposed as the

software development process along with six sigma

business management strategy. This gives a combination

of prototyping, continuous refinement and near-zero

defects.

Here are all of the factors taken into consideration:

Stakeholders:

 Pilots, Passenger

 FAA (Federal Aviation Administration)

 Airlines

 Market:

 Private and military avionics industry

Technology:

 Real-time, Embedded

 Communication between each device has to be

near real-time

Business drivers:

 Early generations of FCS were mechanically

based, so pilots had to physically steer and

control the aircraft, which was limited by the

physical capabilities of the pilot [4].

 Development of digital FCS would automate the

process.

 Increase in safety as the pilot can concentrate on

high-level tasks rather than routine control tasks.

Culture(s):

The spiral model [5] along with Six Sigma strategy is a

good fit for the project. The project would consist of

interactions between software engineers, embedded

systems developers, six sigma black belt members (to aid

high quality and defect free deliverables), testers, change

management group (risk, impact analysis and versioning),

analysts and pilots (for live testing of the system).

Time/schedule, resources, scope, and quality:

This project, being safety critical, requires thorough

testing, simulation, high-quality standards, zero defects,

and adequate documentation. The spiral model

incorporates the above requirements with a fast-iterative

approach, and a team of six sigma competent members

would work on quality, risk management, cost, and

estimation in sync with spiral model phases. Hence, the

spiral model fits the project well.

Six Sigma:

Due to the lack of emphasis on documentation with the

spiral model, its weakness is strengthened by combining

it with Six Sigma strategy. Six Sigma [6] improves the

quality of process outputs by identifying and removing

the causes of defects and minimizing variability in

manufacturing [7]. In a Six Sigma process, 99.99966% of

the product is expected to be bug-free. The five phases of

six sigma process are defined, measure (identifying

critical to quality and risks), analyze (high-level design),

design (simulate and optimize) and verify (set up pilot

runs). This along with the spiral model would provide a

thoroughly tested, well documented, bug-free, high-

quality deliverable.

Considering that the key for developing aircraft flight

control is safety, we have concluded that the Spiral

process is the excellent fit for this project. Spiral model

encapsulates iterative development with prototyping,

verification and validation, and a waterfall approach in

https://dx.doi.org/10.22161/ijaers.5.7.21
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol -5, Issue-7, July- 2018]

https://dx.doi.org/10.22161/ijaers.5.7.21 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 147

incremental order. Finally, six sigma provides the

documentation that the spiral model lacks, as well as

ensure further quality control to the highest level.

VI. CONCLUSION

We have seen in the above four cases that different

circumstances can call for very different development

models. High-risk applications such as the Flight Control

System require traditional models with features such as

risk assessment and thorough testing or simulation. On

the other hand, products in a highly competitive market,

such as MS Word, might require a more agile process for

faster time to market. Many factors such as stakeholders,

business culture, technology, and risk must be considered

for selecting the most appropriate model, and a full

analysis of any project should be carried out before

selecting a process.

REFERENCES

[1] Gill, G., &Iansiti, M. (1994). Microsoft corporation:

Office business unit. Harvard Business School Case

Study, 691-033.

[2] Tsui, F., Karam, O., & Bernal, B. (2016). Essentials

of software engineering. Jones & Bartlett Learning.

[3] Lattanze, A. J. (2005). The architecture centric

development method. Carnegie Mellon University,

School of Computer Science [Institute for Software

Research International].

[4] Pratt, Roger W. "Flight Control Systems: Practical

Issues in Design and Implementation, 2000." The

Institution of Electrical Engineers.

[5] Boehm, Barry. "A spiral model of software

development and enhancement." ACM SIGSOFT

Software engineering notes11.4 (1986): 14-24.

[6] De Feo, Joseph A.; Barnard, William (2005). JURAN

Institute's Six Sigma Breakthrough and Beyond -

Quality Performance Breakthrough Methods. Tata

McGraw-Hill Publishing Company Limited.

[7] Antony, J. (2004). Some pros and cons of six sigma:

an academic perspective. The TQM magazine, 16(4),

303-306.

[8] De Neufville, R. (1994). The baggage system at

Denver: prospects and lessons. Journal of Air

Transport Management, 1(4), 229-236.

[9] Devadiga, N. M. (2017, October). Tailoring

architecture centric design method with rapid

prototyping. In Communication and Electronics

Systems (ICCES), 2017 2nd International Conference

on (pp. 924-930). IEEE.

[10] Montealegre, R., Nelson, H. J., Knoop, C. I., &

Applegate, L. M. (1996). BAE automated systems

(A): Denver International Airport baggage-handling

system. Harvard Business School Teaching Case, (9-

396), 311.

[11] Kruchten, P. (2004). The rational unified process: an

introduction. Addison-Wesley Professional.

[12] Poister, T. H., & Larson, T. D. (1988). The

Revitalization of PennDOT. Public Productivity

Review, 85-103.

[13] Devadiga, N. M. (2017, November). Software

Engineering Education: Converging with the Startup

Industry. In Software Engineering Education and

Training (CSEE&T), 2017 IEEE 30th Conference

on (pp. 192-196). IEEE.

[14] Ambler, S. (2002). Agile modeling: effective

practices for extreme programming and the unified

process. John Wiley & Sons.

https://dx.doi.org/10.22161/ijaers.5.7.21
http://www.ijaers.com/

