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Abstract—Time domain characteristics of first and second 

order systems are well known. But the same simplicity and 

explicitness do not exist for low order fractional order 

systems (FOSs). Considering the step response, the 

templates are developed for designing the behavior of simple 

FOSs with a 2-term denominator polynomial (one is unity 

and the other involves fractional power). Although the 

explicit relations between design parameters and the 

performance parameters such as time constant, rise time, 

overshoot, settling time for fractional order control systems 

(FOCSs) do not exist and can’t be obtainable as in the 

ordinary integer order control systems, the obtained 

templates in this paper can be used for designing low order 

FOCSs. Hence, the drawback of non-existence of similar 

explicit formulas for FOCSs is eliminated by using these 

templates. 
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step response, time constant. 

 

I. INTRODUCTION 

FOSs have founded many applications in the last two 

decades and a great deal of literature has appeared for 

analyzing and designing these systems [1-7]. Especially 

fractional order proportional integral derivative (FOPID) 

controllers have appeared very frequently in control system 

design [8-10].  

Focusing on some very recent literature, for example [11] 

proposes an adaptive FOPI control method based on 

enhanced virtual reference feedback tuning to meet high 

precision and speed requirements for controlling flexible 

swing arm system in the light-emitting diode (LED) 

packaging industry. E. Cokmez et. all have obtained and 

visualized stability regions based on specified gain and 

phase margins for a FOPI controller to control integrating 

processes with time delay [12]. J. R. Nayak and B. Shaw 

have shown how to enhance the performance of the 

automatic generation control by adopting cascade 

proportional derivative (PD) - FOPID controller in a two-

area mutually connected thermal power plant with 

generation rate constraint; group hunting search algorithm is 

adopted to explore the gain parameters of the controllers 

[13].  In [14], PI controller design is performed by using 

optimization for FOSs; first, controller parameters for a 

stable control are calculated by using the stability boundary 

locus method and then optimization is used to provide the 

best control. In [15], a new robust FOPID controller to 

stabilize a perturbed nonlinear chaotic system on one of its 

unstable fixed points is proposed based on the PID actions 

using the bifurcation diagram. In [16], fractional-order 

discrete synchronization of a new fourth-order memristor 

chaotic oscillator and the dynamic properties of the 

fractional-order discrete system are investigated; a new 

method for synchronizing is proposed and validated. 

In spite of the existence of a great deal of publications about 

FOSs some of which have just been mentioned above, most 

of the present analysis and design techniques deal with 

sophisticated and rather special applications [17-24]. 

Although the step response characteristics such as rise time, 

settling time, delay time, overshoot and some others are well 

known by explicit formulas for simple integer order systems 

[25], such formulas are not available for FOSs. And a 

compact publication yielding the relations between the design 

parameters and the step response characteristics of even simple 

FOSs are not yet present. The purpose of this paper is to 

fulfill this vacancy and to supply some design tools for 

simple order FOSs. 

The paper is organized as follows; in Section 2, basic 

definitions of time domain characteristics of first and second 

integer order systems are given. Section 3 introduces the 

FOSs that is studied and the investigation of its step 

responses depending on the fractional power. Section 4 gives 

and discusses the templates that can be used for the design of 

low order FOSs. Finally, Section 5 finishes with conclusions . 
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→ 

II. FIRST AND SECOND INTEGER ORDER 

SYSTEMS 

Let the first order system transfer function H1 be 

𝐻1
(𝑠) =

1

𝑝1𝑠 + 1
.                              (1) 

It is assumed that 𝑝1 ≥ 0 for stability. Since the study is 

confined to step response characteristics, it is easily obtained 

by applying the unit step input 𝑢(𝑡) = 0 for   𝑡 < 0, 𝑢(𝑡) =

1 for  𝑡 ≥ 0, and compute the step response y(t) as 

𝑦(𝑡) = {
0, 𝑡 < 0

1 − 𝑒 −𝑡/𝑝1 , 𝑡 ≥ 0
.                     (2) 

The variation of the step response is shown in Fig. 1. It is an 

increasing exponential starting from 0 at 𝑡 = 0, and rising to 

the steady-state value of 1 as 𝑙𝑖𝑚 𝑡 → ∞. The following time 

domain characteristics are defined for a response of the type 

shown in Fig. 1. 

 
Fig.1: Step response of a first order system and some important characteristics. 

 

Time constant 𝜏: It is the time required for the 

response to reach 1 − (1/𝑒) = 0.632121 ≅ 63 % of its 

final value. For this exponential, from Eq. (2) it is true that 

𝜏 = 𝑝1 .                                   (3a) 

Rise time Tr: It is the time required for the response 

reach from 10 % to 90 % of its final value. 

𝑇𝑟 = 𝑡2 − 𝑡1 = 2.302585𝜏 − 0.105360𝜏 = 𝜏𝑙𝑛9  

= 2.197225𝜏 ≅ 2𝜏.                              (3b) 

Settling time TS: It is the time required for the 

response to stay around its final value with an error less than 

2 %. 

𝑇𝑠 = 𝜏𝑙𝑛50 = 3.912023𝜏 ≅ 4𝜏.             (3c) 

Note that all the time characteristics depend on only the 

coefficient 𝜏 = 𝑝1 in Eq. (1). So, 𝑝1  is chosen according to 

satisfy all the specifications on 𝜏, 𝑇𝑟 , 𝑇𝑠 . Note also that for 

𝑝1 = 0, the system is a unity gain system which yields 

𝑦(𝑡)  =  𝑢(𝑡); that is all the characteristic times 𝜏, 𝑇𝑟 , 𝑇𝑠  are 

zero and no delay occurs at the response. 

In summary, the following properties of time domain 

characteristics are valid: i) The response increases 

exponentially to its steady state value without any 

oscillations; ii) Rise time and settling time are some 

multiples of time constant  𝜏 = 𝑝1 . 

It is well known that a time domain normalization with 

respect to 𝜏𝑒  corresponds to replacing  𝑡 by 𝑡/𝜏𝑒  which also 

corresponds to frequency domain normalization by writing 𝑠 

instead of 𝑠𝜏𝑒 . In Eq. (1), if we replace 𝑠 by 𝑠/𝑝1  where 

𝜏𝑒 = 𝑝1  is the time constant, then we have  

𝐻1
(𝑠) =

1

𝑠 + 1
,                              (4) 

which has normalized time constant 𝜏 = 1. 

As the reference transfer function for a second order system 

𝐻2
(𝑠) =

𝜔𝑛
2

𝑠2 + 2𝜉 𝜔𝑛𝑠 + 𝜔𝑛
2

                     (5) 

is considered [25]; obviously dc gain is equal to 1; 𝜔𝑛  is 

undamped natural frequency and 𝜉 ≥ 0 is the damping ratio.  

For  𝜉 > 1 which corresponds to overdamped case, Eq. (5) 

yields the step response  

𝑦(𝑡) = 1 −
1

𝜏2 − 𝜏1

(𝜏2𝑒
−

𝑡

𝜏2 − 𝜏1𝑒
−

𝑡

𝜏1 ),       (6a) 

which starts from 0 and rises to 1 monotonically as shown in 

Fig. 2 (zeta=2.0). In this expression, there are two time 

constants 𝜏1 and 𝜏2 so that 
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𝜏1 = −
1

𝑠1

=
1

𝜔𝑛(𝜉 + √𝜉2 − 1)
, 𝜏2 = −

1

𝑠2

 

=
1

𝜔𝑛(𝜉 − √𝜉2 − 1)
,                      (6b) 

where s1 and s2 are the poles of transfer function. It can be 

shown by using (6b) that 

𝜏𝑒 = 𝜏1 + 𝜏2 = 2𝜉√𝜏1𝜏2 =
𝜉

𝜋
𝑇𝑛 =

2𝜉

𝜔𝑛

,         (6c) 

where 𝑇𝑛 = 2𝜁/𝜔𝑛  is the period of sustained oscillations of 

the undamped (𝜉 = 0) system. 

 

Fig.2: Step response of the second order system in Eqs. (6a), (6b) for values 2, 1, 0.2, 0 of damping ratio 𝜉; 𝜔𝑛 = 1. 

 

For ξ = 1, the system in Eq. (5) is said to be critically 

damped; in this case there is only one time constant which is  

𝜏 = 1/𝜔𝑛 = 𝑇𝑛/2𝜋. The step response is found as  

𝑦(𝑡) = ℒ −1 {
𝜔𝑛

2

𝑠2 + 2𝜔𝑛𝑠 + 𝜔𝑛
2

1

𝑠
. } 

= 1 − 𝑒−𝜔𝑛 𝑡(𝜔𝑛 + 1),                              (7) 

which increases monotonically from 0 to the steady-state 

value 1 as shown in Fig. 2 (zeta=1.0). 

For 0 < 𝜉 < 1, the system is said to be underdamped; for 

𝜉 = 0.2 the step response is shown in Fig. 2 (zeta=0.2). It is 

seen that the response is stable and approaches to the 

reference value 1 in a damped oscillatory manner. It is a 

routine process to show that the response is given by 

 𝑦(𝑡) = 1 −
𝑒−𝜉𝜔𝑛 𝑡

√1 − 𝜉2
𝑠𝑖𝑛 (√1 − 𝜉2𝜔𝑛𝑡

+ 𝑠𝑖𝑛−1√1 − 𝜉2) .                                     (8) 

Finally, for 𝜉 = 0, the system is undamped and the step 

response is 

𝑦(𝑡) = ℒ −1 {
1

𝑠

𝜔𝑛
2

𝑠2 + 𝜔𝑛
2

} = 1 − 𝑐𝑜𝑠𝜔𝑛𝑡,          (9) 

which represents sustained oscillations as shown in Fig. 2 

(zeta=0) with undamped natural frequency 𝜔𝑛 = 1 and 

undamped oscillation period 𝑇𝑛 = 2𝜋 . 

For the step responses corresponding to underdamped case 

two new time characteristics are defined. The oscillation 

period from Eq. (8) is 

𝑇𝑜 =
2𝜋

√1 − 𝜉2𝜔𝑛

=
𝜋

𝜉√1 − 𝜉2
𝜏𝑒 .             (10a) 

The settling time is approximately obtained from Eq. (8) as 

by equating the coefficient of sin function to 1 −  0.98 =

 0.02. The result is 

𝑇𝑠 =
1

𝜉𝜔𝑛

𝑙𝑛
50

√1 − 𝜉2
=

𝜏𝑒

2𝜉2
𝑙𝑛

50

√1 − 𝜉2
.       (10b) 

Another time which is important is 𝑇𝑚𝑎𝑥  when the first peak 

occurs in the response. From Eq. (8) 𝑇𝑚𝑎𝑥  and  𝑦(𝑇𝑚𝑎𝑥 ) =

𝑦𝑚𝑎𝑥  are found to be 

𝑇𝑚𝑎𝑥 =
𝜋

𝜔𝑛√1 − 𝜉2
=

𝜋

2𝜉√1 − 𝜉2
𝜏𝑒 ,         (11a) 

𝑦𝑚𝑎𝑥 = 1 +
𝑒

−
𝜉𝜋

√1−𝜉2

√1 − 𝜉2
.                        (11b) 

The overshoot 𝑦𝑜𝑠ℎ  and percent overshoot (𝑃𝑂𝑆𝐻 ) are 

defined by 

𝑃𝑂𝑆𝐻 =
𝑦𝑜𝑠ℎ = 𝑦𝑚𝑎𝑥 − 1

𝑦𝑟𝑒𝑓

100 =
100 𝑒

−
𝜉𝜋

√1−𝜉2

√1 − 𝜉2
.   (11c) 
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For the succeeding peaks, Eqs. (12a), (12b), (12c) are 

modified by replacing 𝜋  by (2𝑘 − 1) 𝜋 where 𝑘 represents 

the peak numbers; for the first peak 𝑘 = 1. 

The reduction ratio (𝑅𝑅) is defined as the ratio of successive 

overshoots, and from Eq. (11c) 

𝑅𝑅 = 𝑒

−
2𝜉𝜋

√1−𝜉2
.                              (11d) 

For the undamped system (𝜉 = 0), Eq. (9) yields the 

following time domain characteristics:  

𝜏 = 1 +
𝑐𝑜𝑠−1 (

1

𝑒
)

𝜔𝑛

,                        (12a) 

𝑇𝑟 =
𝑐𝑜𝑠−1(0.1) − 𝑐𝑜𝑠−1(0.9)

𝜔𝑛

,             (12b) 

𝑇𝑚𝑎𝑥 =
𝜋

𝜔𝑛

, 𝑇𝑠 = ∞, 𝑇𝑜 =
2𝜋

𝜔𝑛

,      (12c, d, e) 

𝑦𝑚𝑎𝑥 = 2, 𝑦𝑜𝑠ℎ = 1,                    (12f, g) 

 𝑃𝑂𝑆𝐻 = 100, 𝑅𝑅 = 1.                 (12h, i) 

For 0 ≤ 𝜉 < ∞, time domain characteristics 

𝜏, 𝑇𝑟 , 𝑇𝑚𝑎𝑥 , 𝑇𝑜 ,𝑇𝑠  and the overshoot 𝑦𝑜𝑠ℎ  are plotted against 

𝜉 = 𝜏𝑒/2.; The results are shown in Fig. 3. 

 

Fig.3: Variation of time domain characteristics against the damping ratio for 𝜉 ∈ [0,4]. 

 

III. INVESTIGATION OF 2-TERM FRACTIONAL 

DENOMINATOR CHARACTERISTICS 

Consider the following fractional order transfer function 

with a constant numerator and 2-term fractional 

denominator: 

𝐻(𝑠) =
𝑎

𝑏𝑠𝛼 + 𝑐
.                           (13a ) 

Assuming 𝑑𝑐 gain (𝑎/𝑐) to be 1, letting 𝑏/𝑐 = 𝑝1 , and 

normalizing with 𝜏𝑒 = 𝑝
1

1

𝛼 = 1 we result with 

𝐻(𝑠) =
1

𝑠𝛼 + 1
.                            (13b) 

We have the following observations on the step response of 

the fractional transfer function in Eq. (13b); see Fig. 4 for 

these observations: 
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Fig.4: Step response of FOS in Eq. (14b) for different values of  𝛼.

1) It is obvious that dc gain of this system is 1, which 

results from Eq. (13b) by inserting 𝑠 = 0 and 

assuming 𝛼 ≠ 0. Therefore, all the step responses for 

stable cases will tend to 1 as 𝑙𝑖𝑚 𝑡 → ∞;  (𝛼 =

0.5,1.2, 1.7). 

2) For 𝛼 = 0, the transfer function will be equal to a 

constant gain of 1/2, hence the step response is  0.5 

(𝛼 = 0). 

3) For 𝛼 = 1, the transfer function is equal to a first 

order integer type transfer function, hence, the step 

response is an increasing exponential with a time 

constant 𝜏 = 1 (𝛼 = 1, see als o  Fig. 1). 

4) For 𝛼 = 2, the fractional system in Eq. (13b) is 

equivalent to the second order integer type system in 

(5) with 𝜔𝑛 = 1, 𝜉 = 0; hence, the step response is 

sustained oscillation (𝛼 = 2, see also Fig. 2). 

5) For 𝛼 > 2, the system is not stable, and the step 

response increases exponentially (and oscillatory)-like 

manner (𝛼 = 2.018). 

6) For 1 < 𝛼 < 2, the system is stable, and it has step 

responses (𝛼 = 1.2, 𝛼 = 1.7). The first of these 

responses (𝛼 = 1.2) is a decaying curve after an 

overshoot; and the second (𝛼 = 1.7) is an oscillatory-

like motion with exponentially-like decaying. 

7) For 0 < 𝛼 < 1, step response is a stable 

exponentially-like increasing behavior (𝛼 = 0.5). 

We note that those responses for 𝛼 = 2.018, 1.7, 0.5, 

resemble to those of a second order (for 𝛼 = 2.018,1.7) and 

of a first order (𝛼 = 0.5) integer order systems. But the 

explicit formulas as in Eqs. (3,10,11,12) between the system 

parameter 𝛼 and the step response characteristics do not 

exist for the considered FOSs. So, in the following section, 

instead of using explicit formulas, some templates are 

obtained to be used for designing FOSs. 

 

IV. DEPENDENCE OF STEP RESPONSE 

CHARACTERISTICS ON 𝜶 

In this section the dependence curves (templates) of step 

response characteristics, namely, duration of first oscillation 

period (𝑇𝑜), time constant 𝜏, rise time 𝑇𝑟 , and settling time 𝑇𝑠 

vs 𝛼 ∈ [0.01, 1.99], percent overshoot (𝑃𝑂𝑆𝐻) vs 𝛽 = 2 −

𝛼 ∈ [0.01, 1.99] are obtained by simulations. Simulations 

are carried for 30 𝑠in steps of ∆𝛼 = 0.01 by subprograms of 

FOMCON toolbox [7] integrated with MATLAB R2017 [7]. 

 

Fig. 5 shows the variation of the duration of the first 

oscillation against 𝛼. Numerical data show that the first peak 

occurs for 𝛼 =  1.01 and it is equal to 1. 0014. Then, until 

𝛼 =  1.34 second peak does not appear; more elaborate 

numerical analysis show that, the second maximum starts 

exhibiting for the first time for 𝛼 = 1.3396 for which the 

first and second overshoots are 0.63695221 , 0.011386081, 

respectively; but for 𝛼 = 1.34 following the first peak of 

value 1.1640, the second peak of value 1.0114  occurs. This 

means period of the first oscillation is defined for 𝛼 ≥

1.3396 . Since there are no peaks (maximums) until 𝛼 =

1.01, the graph is started from 𝛼 = 0.8, though numerical 

data is obtained for all 𝛼 ∈ [0.01, 1.99]. 
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Fig.5: Duration of first oscillation against𝛼. 

 

Fig. 6 shows plots of time constant 𝜏 (𝑇𝑎𝑢 ), rise time 𝑇𝑟 , 

and settling time 𝑇𝑠. Time constant plot 𝑇𝑎𝑢 starts from 𝛼 =

0.14, because, for smaller values of 𝛼,𝜏 is larger than 30 𝑠 

so that the response can’t reach the critical value 0.632121 

until 30 𝑠; similar arguments are true for the rise time 𝑇𝑟  

which starts at 𝛼 = 0.51, and for settling time 𝑇𝑠 which 

starts at 𝛼 = 0.78. 𝑇𝑎𝑢 is obviously decreasing with 

increasing 𝛼, and it becomes 1.1915 for 𝛼 = 1.99. 𝑇𝑟  also 

decreases with increasing 𝛼and it changes from 28.0350 at 

𝛼 = 1.51 to 1.0220  at 𝛼 = 1.99. For   𝛼 = 1.70, 𝜏 is almost 

equal to 𝑇𝑟  (𝜏 = 1.0965, 𝑇𝑟 = 1.0970); for 𝛼 ∈ [0.01, 1.70], 

𝜏 < 𝑇𝑟 ; and for 𝛼 ∈ (1.70, 1.99], 𝜏 > 𝑇𝑟 . Settling time plot 

starts from 𝑇𝑠 = 27.33 for 𝛼 = 0.78 and ends at 𝑇𝑠 = 29.82  

for 𝛼 = 1.99. 𝑇𝑠 decreases until 𝛼 = 1.07 and reaches to its 

minimum value  𝑇𝑠 = 2.8345  at 𝛼 = 1.07, then it jumps up 

to 𝑇𝑠 = 5.1525 at 𝛼 = 1.08. The plot terminates at 𝛼 =

1.99 with  𝑇𝑠 = 29.8215 . The irregular shape of increase of 

𝑇𝑠 for 𝛼 ∈ [1.07, 1.99] is due to the dependence of 𝑇𝑠 on 

discrete change of oscillations remaining in the 

limit[1, ∓ 0.02]. Contrary to monotonic decrease of 𝜏 and 

𝑇𝑠, it is true that (disregarding the irregular changes 

mentioned) 𝑇𝑠 decreases monotonically for 𝛼 ∈ [0.01, 1.07] 

and it increases for 𝛼 ∈ [1.07, 1.99]. 

 

Fig.6: Time constant 𝜏, rise time 𝑇𝑟 , and settling time 𝑇𝑠 vs 𝛼. 

 

Fig. 7 shows the comparison of the variation of overshoots 

with 𝛼 ∈ [1.01, 1.99] (𝛽 = 2 − 𝛼,𝛽 ∈ [0.01, 0.99]) and 

with the damping ratio 𝜉 of a second order system. This plot 

is useful for finding the fractional order 𝛼 and damping ratio 
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𝜉 for a given overshoot. For example, to achieve an 

overshoot of 60 %; 2 − 𝛼 = 0.24 → 𝛼 = 1.76 and 𝜉 = 0.16 

are appropriate for FOS and for a second order system, 

respectively. 

 

Fig.7: Overshoots versus 𝛽 = 2 − 𝛼  (for fractional) and 𝜉 (for 2nd order) systems. 

 

Fig. 8 better illustrates the relations between the overshoot 

and directly 𝛼 (not 𝛽 = 2 − 𝛼) for fractional system, and 𝜉  

for a second order system. 

 
Fig.8: Variation of α for fractional order, and ξ for second order systems with the overshoot. 

 

Fig. 9 shows the values 𝛽 = 2 − 𝛼  and 𝜉 against the rise 

time. It is obvious that for a rise time of 4.371, β  and 𝜉 have 

the same values of 1.2. This means for 𝜉 = 1.2 and for 𝛼 =

2 − 𝛽 = 2 − 1.2 = 0.8 the rise times are equal to 4.371.  
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Fig. 9: 𝛽 = 2 − 𝛼  versus rise time and ξ versus rise time. 

 

V. CONCLUSIONS 

Time domain characteristics of the FOS with a 2-term 

denominator polynomial involving a single fractional power 

is investigated in this presentation. Dependence of important 

step response characteristics, namely rise time, settling time, 

delay time, overshoot, and oscillation period on the 

fractional order 𝛼 are derived, and the results are presented 

in graphical forms that can be used as templates for design 

purposes. The study is conducted comparatively by 

considering integer order systems of 1st and 2nd order types. 

It is shown that the same simplicity and explicitness present 

for second order systems do not exist between the transfer 

function parameters and the step response characteristics for low 

order fractional systems. The results bring light for 

designing s imple FOCSs , thus a vacancy has been fulfilled 

by this work. 

 

REFERENCES 

[1] A. Radwan, and K. Salama, “Fractional-order RC and 

RL circuits”, Circuits, Systems and Signal Processing, 

vol. 31, pp. 1901-1915, 2012. 

[2] A. Radwan, “Resonance and quality factor of the 

RLaCa fractional circuit", IEEE Journal on Emerging in 

Circuits and Systems, vol. 3, pp. 377-385, 2013. 

[3] M. Tripathy, D. Mondal, K. Biswas, and S. Sen, 

“Experimental studies on realization of fractional 

inductors and fractional-order bandpass filters”, 

International Journal of Circuit Theory and 

Applications, DOI: 10.1002/cta.200, 2014. 

[4] G. Tsirimokou and C. Psychalinos, “Ultra-low voltage 

fractional-order circuits using current-mirrors”, 

International Journal of Circuit Theory and 

Applications, DOI: 10.1002/cta.2066, 2015. 

[5] A.G. Radwan, A.M. Soliman and A.S. Elwakil, “First-

order filters generalized to the fractional domain”, 

Journal of Circuits, Systems, and Computers, vol. 17, 

no. 1 pp. 55-66, 2008. 

[6] M.K. Bhole, M.D. Patil and V.A. Vyawhare, “Time and 

frequency domain analysis of linear fractional-order 

systems”, International Journal of Advanced Computer 

Science and Applications, pp. 1-11, 2012. 

[7] A. Tepljakov, “FOMCON: Fractional-order modeling 

and control toolbox for MATLAB”, Proc. of the 18th 

International Conference “Mized Design of Integrated 

Circuits and Systems”, Poland, pp. 684-689, 2011. 

[8] C. Zhao, D. Xue, and Y.Q. Chen, “A fractional order 

PID tuning algorithm for a class of fractional order 

plants”, Proc. of IEEE International Conference on 

Mechatronics and Automation, Canada, pp. 216-221, 

2005. 

[9] S.E. Hamamci and M. Koksal, “Calculation of all 

stabilizing fractional order PD controllers for integrating 

time delay systems”, Computers and Mathematics with 

Applications, vol. 59, no. 5, pp. 1621-1629, 2010. 

[10] S.S. Bhase and B.M. Patre, “Robust FOPI con troller 

design for power control of PHWR under step-back 

https://dx.doi.org/10.22161/ijaers.5.9.21
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                       [Vol-5, Issue-9, Sept- 2018] 
https://dx.doi.org/10.22161/ijaers.5.9.21                                                                                         ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                                    Page | 182 

condition”, Nuclear Engineering and Design, vol. 274, 

pp. 20-29, 2014. 

[11] Y. Xie, X. Tang, S. Zheng , W. Qiao , B. Song, 

“Adaptive fractional order PI controller design for a 

flexible swing arm system via enhanced virtual 

reference feedback tuning”, Asian Journal of Control, 

vol. 20, no. 3, DOI: 10.1002/asjc.1633, 2018 

[12] E. Cokmez, S. Atiç, F. Peker, I. Kaya, “Fractional-order 

PI controller design for integrating processes based on 

gain and phase margin specifications”, IFAC Papers-

OnLine, vol. 51, no. 4, pp. 751–756, 2018 

[13] J.R. Nayak, B. Shaw, “Application of group hunting 

search optimized cascade pd-fractional order PID 

controller in interconnected thermal power system”,  

Proc. of the 1st International Conference on Trends in 

Renewable Energy Recent Innovations in Electrical, 

Electronics and Communication Systems, vol. 4, pp. 1-

12, 2018. 

[14] T. Dogruer, N. Tan, “Design of PI controller using 

optimization method in fractional order control 

systems”, IFAC-PapersOnLine, vol. 51, no. 4, pp. 841–

846, 2018. 

[15] K. Rabah, S. Ladaci, M. Lashab, “Bifurcation-based 

fractional-order PI λ D μ controller design approach for 

nonlinear chaotic systems”, Frontiers of Information 

Technology & Electronic Engineering, vol. 19, no. 

2, pp. 180–191, 2018. 

[16] A Karthikeyan, K Rajagopal, “FPGA implementation 

of fractional-order discrete memristor chaotic system 

and its commensurate and incommensurate 

synchronisations”, Pramana, Springer, 2018.  

[17] S.M. Shah, R. Samar, M.A.Z. Raja, “Fractional-

order algorithms for tracking Rayleigh fading 

channels”, Nonlinear Dynamics, vol. 92, no. 3, pp. 

1243-1259, 2018. 

[18] M.V. Thuan, D.C. Huong, “New results on stabilization 

of fractional order nonlinear systems via an lmi 

approach”, Asian Journal of Control, 

DOI:10.1002/asjc.1644, 2018.  

[19] L. Zhang, Y. Yang, F. Wang, “Synchronization analysis 

of fractional-order neural networks with time-varying 

delays via discontinuous neuron 

activations”, Neurocomputing, vol. 275, no. 31, pp. 40-

49, 2018. 

[20] P.V. Ramkumar, M.S. Kalavathi, “Fractional Order PID 

Controlled Interleaved Boost converter Fed Shunt 

Active Filter System”, International Journal of Power 

Electronics and Drive System, vol. 9, no. 1, pp. 126-

138, 2018. 

[21] S. Kapoulea, C. Psychalinos, A.S. Elwakil, 

“Minimization of spread of time-constants and scaling 

factors in fractional-order differentiator and integrator 

realizations”, Circuits, Systems, and Signal Processing, 

pp. 1-17, 2018.  

[22] B.K. Lenka, S. Banerjee, “Sufficient conditions for 

asymptotic stability and stabilization of 

autonomous fractionalorder systems”,Communications 

in Nonlinear Science and Numerical Simulation, vol. 

56, pp. 365-379, 2018. 

[23] S. Etedali, A.A. Zamani, S. Tavakoli, “A. GBMO-based 

PIλDμ controller for vibration mitigation of seismic-

excited structures”, Automation in Construction, vol. 

87, pp. 1-12, 2018. 

[24] X. Wang, “Mittag-Leffler stabilization of fractional-

order nonlinear systems with unknown control 

coefficients”, Advances in Difference Equations, vol. 

2018, pp. 1-16, 2018. 

[25] F. Golnaraghi, B.C. Kuo, Automatic Control Systems, 

9th Edition, Wiley John Wiley & Sons, Inc., ISBN-13 

978-0470-04896-2, 2010. 

 

https://dx.doi.org/10.22161/ijaers.5.9.21
http://www.ijaers.com/
https://link.springer.com/journal/11714
https://link.springer.com/journal/11714
https://link.springer.com/journal/11714/19/2/page/1

