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Abstract— In this research, weighted total acceleration for a function 𝑓(𝑥, 𝑧, 𝑡)was formulated. This total 

acceleration equation was done at the Euler momentum equation. Then, the Euler momentum equation was done 

together with free surface boundary condition equation to formulate water wave constant at the solution of 

Laplace equation. The velocity potential of the solution of Laplace equation actually consists of two components 

that were used in this research.  

Keywords— weighted total acceleration,convective acceleration, complete velocity potential. 

 

I. INTRODUCTION 

Momentum equation is an important basic equation in 

mathematic modeling of hydrodynamics, including water 

wave modeling. Momentum equation commonly used in 

water wave modeling is Euler momentum equation. There 

is a constraint in this equation, i.e. Euler momentum 

equation has no hydrodynamic force in the horizontal 

direction or convective acceleration has a value of zero 

when velocity potential is substituted to the term. To 

overcome this problem, weighted total acceleration 

equation was formulated where there are two weighted 

coefficients, i.e. at the time𝑡 differential term and at the 

differential term of vertical-𝑧direction.  

Laplace equation solution consists of two velocity 

potential components (Dean (1991)). However, only one 

component that has been used. Equations from water 

wave constant, i.e.  wave number 𝑘and wave constant 𝐺 

can be formulated using only one velocity potential 

component, but the value is determined by both the two 

velocity components. In this research, the water wave 

surface equation is formulated using the two velocity 

potential components, then the condition of the water 

wave surface that has been produced is studied.  

 

II. WEIGHTED TOTAL ACCELERATION  

Hutahaean (2019a) formulated weighted total acceleration 

in a function 𝑓 = 𝑓(𝑥, 𝑡), 𝑥is horizontal axis and 𝑡 is 

time,  using Taylor series. The formulation of weighted 

total acceleration in a function𝑓 = 𝑓(𝑥, 𝑧, 𝑡),𝑧is vertical 

axis, is done using similar method, therefore the 

formulation of weighting total acceleration in 𝑓 =

𝑓(𝑥, 𝑧, 𝑡)will be preceded by reviewing the formulation of 

weighting total acceleration in 𝑓 = 𝑓(𝑥, 𝑡)to obtain a 

clearer description.  

 

2.1. Weighted Total Acceleration for the function of𝑓 =

𝑓(𝑥, 𝑡) 

The changes in the value of a function in a function 𝑓 =

𝑓(𝑥, 𝑡)for a very small𝛿𝑥and𝛿𝑡using Taylor series only 

until the second derivative is, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ Ƌ𝑡

Ƌ𝑓

Ƌ𝑡
 

+
𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
+ 𝛿𝑡𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2
 

By working on the argument of Courant (1928) that in 

order to obtain a good result on horizontal velocity 𝑢 =
𝑑𝑥

𝛾𝑑𝑡
, then weighting coefficient 𝛾, is done which is a 

positive number, in time differential in Taylor series.  

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛾𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾Ƌ𝑡

Ƌ𝑓

Ƌ𝑡
 

+
𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2 + 𝛾𝛿𝑡𝛿𝑥
Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛾2𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2.......(1) 

At the limit 𝛿𝑥, 𝛿𝑡close to zero the following equation is 

obtained, 
𝐷𝑓

𝑑𝑡
= 𝑢

Ƌ𝑓

Ƌ𝑥
+ 𝛾

Ƌ𝑓

Ƌ𝑡
or

𝐷𝑓

𝑑𝑡
= 𝛾

Ƌ𝑓

Ƌ𝑡
+ 𝑢

Ƌ𝑓

Ƌ𝑥
       ......(2) 

This equation is weighted total derivative equation or 

weighted total acceleration for the functionof𝑓 =

𝑓(𝑥, 𝑡)where 𝛾is weighting coefficient. 

 

The method of calculating weighting coeffecient 𝛾will be 

formulated using Taylor series (1). The second derivative 

term can be omitted if,  

|
𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2+𝛾𝛿𝑡𝛿𝑥
Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛾2𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2

𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+𝛾Ƌ𝑡

Ƌ𝑓

Ƌ𝑡

| ≤ ɛ ........(3) 
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Then it was defined  𝛿𝑥 = 𝐶𝛿𝑡 =
𝐿

𝑇
𝛿𝑡 =

2𝜋

𝑘𝑇
𝛿𝑡 =

𝜎

𝑘
𝛿𝑡, 

where𝐶is wave celerity, 𝑘 is wave number 𝑇 is wave 

period, 𝜎 =
2𝜋

𝑇
 is angular frequency. 𝛿𝑥in (3) is 

substituted with 
𝜎

𝑘
𝛿𝑡, and the following equation is 

obtained,  

|
𝜎2𝛿𝑡

2𝑘2
Ƌ2𝑓

Ƌ𝑥2+
𝛾𝜎𝛿𝑡

𝑘

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛾2𝛿𝑡

2

Ƌ2𝑓

Ƌ𝑡2

𝜎

𝑘

Ƌ𝑓

Ƌ𝑥
+𝛾

Ƌ𝑓

Ƌ𝑡

| ≤ ɛ   .......(4) 

The completions of this equation requires a function form 

of 𝑓 = 𝑓(𝑥, 𝑡). And the following sinusoidal function 

form will be used, 

𝑓(𝑥, 𝑡) = cos 𝑘𝑥 cos 𝜎𝑡     ....(5) 

This equation is water wave surface equation of the linear 

wave theory. The derivative  of the function is as follows 

 

Table.1: Derivative Equation of (5) 

Ƌ𝑓

Ƌ𝑥
= −𝑘 sin 𝑘𝑥 cos 𝜎𝑡 

Ƌ2𝑓

Ƌ𝑥2

= −𝑘2 cos 𝑘𝑥 cos 𝜎𝑡 

Ƌ𝑓

Ƌ𝑡
= −𝜎 cos 𝑘𝑥 sin 𝜎𝑡 

 

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
= 𝑘𝜎 sin 𝑘𝑥 sin 𝜎𝑡 

 Ƌ2𝑓

Ƌ𝑡2

= −𝜎2 cos 𝑘𝑥 cos 𝜎𝑡 

Using the condition of 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥 = 𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡, 

the elements of sinusoidal function will cancel out each 

other  as a result of a division. Substitute the derivative 

equations to (4), the following equation is obtained  

|

1

2
− 𝛾 +

1

2
𝛾2

1 + 𝛾
| ≤

ɛ

𝜎𝛿𝑡
 

The numerator(1 + 𝛾)is a positive number, then the 

equation can be written as,  

|
1

2
− 𝛾 +

1

2
𝛾2| ≤

ɛ

𝜎𝛿𝑡
(1 + 𝛾) 

If equals (=) relation is used, then  
1

2
− 𝛾 +

1

2
𝛾2 =

ɛ

𝜎𝛿𝑡
(1 + 𝛾) ......(5) 

Considering that 𝛾is a positive number, the right side of 

the equation is a positive number. Therefore, the left side 

of the equation is also a positive number. The calculation 

of the value 𝛾can be done by releasing the sign | |in the 

left side of the equation, i.e. using equation (5). 

 

The calculation of the value𝛾with (5) requires an input 𝛿𝑡. 

The value of 𝛿𝑡, is obtained from the function 𝑓 = 𝑓(𝑡). 

The approximation of Taylor series for the function is,   

𝑓(𝑡 + 𝛿𝑡) = 𝑓(𝑡) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+

𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2
 

In order to be able to be used only until the first 

derivative, then |
𝛿𝑡2

2

Ƌ2𝑓

Ƌ𝑡2

𝛿𝑡
Ƌ𝑓

Ƌ𝑡

| ≤ ɛor|
𝛿𝑡

2

Ƌ2𝑓

Ƌ𝑡2

Ƌ𝑓

Ƌ𝑡

| ≤ ɛ  .  For the 

function, 𝑓(𝑡) = cos 𝜎𝑡;  
Ƌ𝑓

Ƌ𝑡
= −𝜎 sin 𝜎𝑡; 

Ƌ2𝑓

Ƌ𝑡2 =

−𝜎2 cos 𝜎𝑡and it is done in a 𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡 condition, 

and 
𝛿𝑡

2
(−𝜎2)

−𝜎
≤ ɛ or,𝛿𝑡 =

2ɛ

𝜎
 ......(6) 

is obtained .  Substitution of (6) to (5) obtains 

𝛾 = 3   ...(7)    

It is obtained that 𝛾has a constant value, i.e. independent 

of wave period or the level of accuracy ɛ. 

 

2.2. Weighted Total Acceleration for the function 𝑓 =

𝑓(𝑥, 𝑧, 𝑡) 

To obtain weighted total acceleration equation in a 

function 𝑓 = 𝑓(𝑥, 𝑧, 𝑡), the similar method will be done as 

in the function 𝑓 = 𝑓(𝑥, 𝑡), where,  

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛾𝑧𝛿𝑧, 𝑡 + 𝛾𝛿𝑡) = 

𝑓(𝑥, 𝑡) + 𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑧
+ 𝛾Ƌ𝑡

Ƌ𝑓

Ƌ𝑡
 

+
𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
+ 𝛾𝑧𝛿𝑧𝛿𝑥

Ƌ2𝑓

Ƌ𝑧Ƌ𝑥
+ 

(𝛾𝑧𝛿𝑧)2

2

Ƌ2𝑓

Ƌ𝑧2
 

+𝛾𝛿𝑡𝛿𝑥
Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+ 𝛾𝛾𝑧𝛿𝑡𝛿𝑧

Ƌ2𝑓

Ƌ𝑡Ƌ𝑧
+

(𝛾Ƌ𝑡)2

2

Ƌ2𝑓

Ƌ𝑡2     ... .....(8) 

In (8), for𝛿𝑧 = 𝛿𝑥, it is meant that 𝛾𝑧𝛿𝑧
Ƌ𝑓

Ƌ𝑧
= 𝛿𝑧 (𝛾𝑧

Ƌ𝑓

Ƌ𝑧
), 

therefore in a change of 𝑧for𝛿𝑧 = 𝛿𝑥, the value of the 

first derivative function against 𝑧is (𝛾𝑧
Ƌ𝑓

Ƌ𝑧
),  and so also 

𝛾𝑧𝛿𝑧𝛿𝑥
Ƌ2𝑓

Ƌ𝑧Ƌ𝑥
is meant𝛿𝑧𝛿𝑥 (𝛾𝑧

Ƌ2𝑓

Ƌ𝑧Ƌ𝑥
)and

(𝛾𝑧𝛿𝑧)2

2

Ƌ2𝑓

Ƌ𝑧2which 

means as 
𝛿𝑧2

2
(𝛾𝑧

2 Ƌ2𝑓

Ƌ𝑧2). As in the previous section, the 

value of𝛿𝑥and𝛿𝑧is𝛿𝑥 = 𝛿𝑧 = 𝐶𝛿𝑡 =
𝐿

𝑇
𝛿𝑡 =

2𝜋𝛿𝑡

𝑘𝑇
=

𝜎𝛿𝑡

𝑘
. 

Then, a function 𝑓(𝑥, 𝑧, 𝑡)is reviewed with the following 

form. 

𝑓(𝑥, 𝑧, 𝑡) = 𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) 𝑐𝑜𝑠𝜎𝑡....(9) 

At𝑧 = 0,  𝑐1 = 𝑐𝑜𝑠ℎ(𝑘ℎ)and𝑐2 = 𝑠𝑖𝑛ℎ(𝑘ℎ)are defined 

and done in the deep water where 𝑡𝑎𝑛𝑘ℎ = 1with the 

value of 𝑘ℎ = 2.0𝜋.  Then𝑐1 = 𝑐𝑜𝑠ℎ(2.0𝜋) = 𝑐2 =

sinh (2𝜋),and (8) is done in a condition of𝑐𝑜𝑠𝑘𝑥 =

𝑠𝑖𝑛𝑘𝑥 = 𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡, then the sinusoidal function 

cancelled out each other. The derivative equations (9) can 

be written in the forms shown in Table (2). 

Table.2: Differential of (9). 

Ƌ𝑓

Ƌ𝑥
= −𝑘𝑐1 

 

Ƌ2𝑓

Ƌ𝑥2
= −𝑘2𝑐1 

 

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
= 𝜎𝑘𝑐1 
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Ƌ𝑓

Ƌ𝑧
= 𝑘𝑐2 

 

Ƌ2𝑓

Ƌ𝑥Ƌ𝑧
= −𝑘2𝑐2 

Ƌ2𝑓

Ƌ𝑡Ƌ𝑧
= −𝜎𝑘𝑐2 

 

Ƌ𝑓

Ƌ𝑡
= −𝜎𝑐1 

Ƌ2𝑓

Ƌ𝑧2
= 𝑘2𝑐1 

 

Ƌ2𝑓

Ƌ𝑡2
= −𝜎2𝑐1 

 

To simplify the writing, the followings are defined  

𝐴 =
𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2
+ 𝛾𝑧𝛿𝑧𝛿𝑥

Ƌ2𝑓

Ƌ𝑧Ƌ𝑥
+ 

(𝛾𝑧𝛿𝑧)2

2

Ƌ2𝑓

Ƌ𝑧2
 

+𝛾𝛿𝑡𝛿𝑥
Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+ 𝛾𝛾𝑧𝛿𝑡𝛿𝑧

Ƌ2𝑓

Ƌ𝑡Ƌ𝑧
+

(𝛾Ƌ𝑡)2

2

Ƌ2𝑓

Ƌ𝑡2
 

𝐵 = 𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑧
+ 𝛾Ƌ𝑡

Ƌ𝑓

Ƌ𝑡
 

In order for (8) to be able to be used with only the first 

derivate, then  

|
𝐴

𝐵
| ≤ ɛ  ...............(9) 

The substitution of differential equations in Table (2) to 

(9) will obtain, 

−
𝛾2

2
𝑐1 + 𝛾 −

𝑐1

2
−

ɛ

𝜎𝛿𝑡
(−𝛾𝑐1 − 𝑐1) 

− (𝛾 + 1 +
ɛ

𝜎𝛿𝑡
) 𝑐2𝛾𝑧 +

𝑐1

2
𝛾𝑧

2 = 0 

Substitute𝛿𝑡from (6), 𝛿𝑡 =
2ɛ

𝜎
 

−
𝛾2

2
𝑐1 + 𝛾 −

𝑐1

2
−

1

2
(−𝛾𝑐1 − 𝑐1) 

− (𝛾 + 1 +
1

2
) 𝑐2𝛾𝑧 +

𝑐1

2
𝛾𝑧

2 = 0 ........(10) 

With (10), 𝛾𝑧can be calculated where𝛾is a known  

from(7). With an input 𝛾 = 3,   𝛾𝑧 = 1,630 is obtained for 

𝑐1 = cosh (2.0𝜋)and𝑐2 = 𝑠𝑖𝑛ℎ(2.0𝜋) where 𝑐1 = 𝑐2. 

As a result the second derivative in (8) can be omitted and 

the total derivative equation for function 𝑓 = 𝑓(𝑥, 𝑧, 𝑡)is 
𝐷𝑓

𝑑𝑡
= 𝛾

Ƌ𝑓

Ƌ𝑡
+  𝑢

Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝑤

Ƌ𝑓

Ƌ𝑧
   ......(11) 

 

III. A Complete Velocity Potential Equation  

By completing the Laplace equation with separation 

variable method and after doing the time periodic 

boundary condition and lateral periodic boundary 

condition, Dean (1991) obtained velocity potential 

equation that consisted of two potential velocities, i.e.  

𝜑(𝑥, 𝑧, 𝑡) = 𝐴 𝑐𝑜𝑠 𝑘 𝑥(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

+𝐵 𝑠𝑖𝑛 𝑘 𝑥(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡...(12) 

𝜑(𝑥, 𝑧, 𝑡) = 𝜑𝐴(𝑥, 𝑧, 𝑡) + 𝜑𝐵(𝑥, 𝑧, 𝑡)...(13) 

𝜑𝐴(𝑥, 𝑧, 𝑡) = 𝐴 𝑐𝑜𝑠 𝑘 𝑥(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

...(14) 

𝜑𝐵(𝑥, 𝑧, 𝑡) = 𝐵 𝑠𝑖𝑛 𝑘 𝑥(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

...(15) 

There are four constants that should be determined, i.e. 

𝐴, 𝐵, 𝐶and𝐷. Hutahaean (2019b) has shown that the two 

equations have similar constant value, or in other words 

there is only one constant value in velocity potential total 

(12). However, in the next section it will be proven again 

with another method that (12) has one constant value.  

 

Equation (12) can be written as, 

𝜑(𝑥, 𝑧, 𝑡) = (𝐴 𝑐𝑜𝑠 𝑘 𝑥 + 𝐵 𝑠𝑖𝑛 𝑘 𝑥) 

(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 ........(13) 

At a condition of𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥, (13) can be written as 

𝜑(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵) 𝑐𝑜𝑠 𝑘 𝑥 

(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡.....(14) 

or 

𝜑(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵) 𝑠𝑖𝑛 𝑘 𝑥 

(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 .......(15) 

The constants of 𝐴, 𝐵, 𝐶and𝐷will be formulated using 

(14) and (15), where it will be proven that either using 

(14) or (15) similar constant will be obtained. The 

formulation is done by doing kinematic bottom boundary 

condition on flat bottom, as was done by Dean (1991). 

 

a. Alternative I 

The constants𝐴, 𝐵, 𝐶and𝐷 will be determined using (14) 

where water particle velocity at the vertical-𝑧direction is  

𝑤 = −
𝜕𝜑

𝜕𝑧
= −(𝐴 + 𝐵)𝑘 𝑐𝑜𝑠 𝑘 𝑥 

(𝐶𝑒𝑘𝑧 − 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

Substitute equation for 𝑤 to the kinematic bottom 

boundary condition equation𝑤−ℎ = −𝑢−ℎ
𝜕ℎ

𝜕𝑥
, where at flat 

bottom  
Ƌℎ

Ƌ𝑥
= 0,  

−(𝐴 + 𝐵)𝑘 𝑐𝑜𝑠 𝑘 𝑥(𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ) 𝑠𝑖𝑛 𝜎 𝑡 = 0 

The equation is divided by −(𝐴 + 𝐵)𝑘𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡for 

𝑐𝑜𝑠𝑘𝑥 ≠ 0and𝑠𝑖𝑛𝜎𝑡 ≠ 0 

𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ = 0or𝐶 = 𝐷𝑒2𝑘ℎ. Substitute 𝐶 (14) 

𝛷(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵) 𝑐𝑜𝑠 𝑘 𝑥 

(𝐷𝑒2𝑘ℎ𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

or 

𝛷(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵)𝐷𝑒𝑘ℎ 𝑐𝑜𝑠 𝑘 𝑥 

(𝑒𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)) 𝑠𝑖𝑛 𝜎 𝑡 

A new constant is defined  

𝐺𝐴 = (𝐴 + 𝐵)𝐷𝑒𝑘ℎ     .....(16) 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺𝐴 𝑐𝑜𝑠 𝑘 𝑥(𝑒𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)) 𝑠𝑖𝑛 𝜎 𝑡 

      ...................(17) 

a. Alternative II 

The constants 𝐴, 𝐵, 𝐶and𝐷will be determined using (15), 

𝑤 = −
𝜕𝜑

𝜕𝑧
= −(𝐴 + 𝐵)𝑘 𝑠𝑖𝑛 𝑘 𝑥 

(𝐶𝑒𝑘𝑧 − 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

Substitute equations for 𝑢 and 𝑤 to the kinematic bottom 

boundary condition equation 

𝑤−ℎ = −𝑢−ℎ
𝜕ℎ

𝜕𝑥
, where 

Ƌℎ

Ƌ𝑥
= 0 
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−(𝐴 + 𝐵)𝑘 𝑠𝑖𝑛 𝑘 𝑥(𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ) 𝑠𝑖𝑛 𝜎 𝑡 = 0 

The equation is divided by −(𝐴 +

𝐵)𝑘𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡for𝑠𝑖𝑛𝑘𝑥 ≠ 0and𝑠𝑖𝑛𝜎𝑡 ≠ 0 

𝐶𝑒−𝑘ℎ − 𝐷𝑒𝑘ℎ = 0or𝐶 = 𝐷𝑒2𝑘ℎ.  Substitute 𝐶to (15) 

𝛷(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵) 𝑠𝑖𝑛 𝑘 𝑥 

(𝐷𝑒2𝑘ℎ𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

or 

𝛷(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵)𝐷𝑒𝑘ℎ 𝑠𝑖𝑛 𝑘 𝑥(𝑒𝑘(ℎ+𝑧)

+ 𝑒−𝑘(ℎ+𝑧)) 𝑠𝑖𝑛 𝜎 𝑡 

A new constant is defined  

𝐺𝐵 = (𝐴 + 𝐵)𝐷𝑒𝑘ℎ       .....(18) 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺𝐵 𝑐𝑜𝑠 𝑘 𝑥 

(𝑒𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)) 𝑠𝑖𝑛 𝜎 𝑡 ....19) 

From(16) and (18) obtained that 𝐺𝐴 = 𝐺𝐵 = 𝐺, so it is 

proven that in (1) there is only one wave constant 

value𝐺,then  (7) becomes 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺(𝑐𝑜𝑠 𝑘 𝑥 + 𝑠𝑖𝑛𝑘𝑥) 

(𝑒𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)) 𝑠𝑖𝑛 𝜎 𝑡....( 20) 

The hyperbolic function equation is, 𝑒𝑘(ℎ+𝑧) +

𝑒−𝑘(ℎ+𝑧) = 2𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧), (13) becomes 

𝛷(𝑥, 𝑧, 𝑡) = 2𝐺(𝑐𝑜𝑠 𝑘𝑥 + 𝑠𝑖𝑛𝑘𝑥)𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

Defined 𝐺 = 2𝐺 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺(𝑐𝑜𝑠 𝑘𝑥 + 𝑠𝑖𝑛𝑘𝑥)𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

....(21) 

A complete velocity potential equation is obtained with 

the form as in (21). In that equation, there are still two 

wave constants where the form should be known, i.e. 

wave number 𝑘and wave constant 𝐺.  Considering that 

the values of wave number 𝑘and wave constant 𝐺is 

similar along the wave curve, then the calculation of the 

two parameters will be done at the point of characteristic 

where 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥, at this condition,(21) becomes, 

𝛷(𝑥, 𝑧, 𝑡) = 2𝐺𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) 𝑠𝑖𝑛 𝜎 𝑡....(26) 

 

The particle velocity in horizontal-𝑥direction is, 

𝑢 = −
Ƌ𝛷

Ƌ𝑥
= 2𝐺𝑘𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡    ....(27) 

The particle velocity in vertical-𝑧direction is, 

𝑤 = −
Ƌ𝛷

Ƌ𝑧
= −2𝐺𝑘𝑐𝑜𝑠 𝑘𝑥 sinh 𝑘(ℎ + 𝑧) sin 𝜎𝑡  .....(28)  

 

IV. Application of Weighted Total Acceleration on 

Euler Momentum Equation 

From (28), the total derivative for horizontal 𝑥direction 

velocity is,  

𝐷𝑢

𝑑𝑡
= 𝛾

Ƌ𝑢

Ƌ𝑡
+  𝑢

Ƌ𝑢

Ƌ𝑥
+ 𝛾𝑧𝑤

Ƌ𝑢

Ƌ𝑧
 

With this total derivative equation, the Euler momentum 

equation in horizontal-𝑥direction becomes, 

𝛾
Ƌ𝑢

Ƌ𝑡
+  𝑢

Ƌ𝑢

Ƌ𝑥
+ 𝛾𝑧𝑤

Ƌ𝑢

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑥
 

By doing the characteristic of  irrotational flow, 
Ƌ𝑢

Ƌ𝑧
=

Ƌ𝑤

Ƌ𝑥
obtained, 

𝛾
Ƌ𝑢

Ƌ𝑡
+  

1

2

Ƌ

Ƌ𝑥
(𝑢2 +  𝛾𝑧𝑤2) = −

1

𝜌

Ƌ𝑝

Ƌ𝑥
 .......(29) 

Total derivative equation for vertical velocity in axis-𝑧 

direction.  

𝐷𝑤

𝑑𝑡
= 𝛾

Ƌ𝑤

Ƌ𝑡
+  𝑢

Ƌ𝑤

Ƌ𝑥
+  𝛾𝑧𝑤

Ƌ𝑤

Ƌ𝑧
 

The Euler momentum equation in vertical-𝑧direction 

becomes,  

𝛾
Ƌ𝑤

Ƌ𝑡
+  𝑢

Ƌ𝑤

Ƌ𝑥
+ 𝛾𝑧𝑤

Ƌ𝑤

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑧
− 𝑔 

The execution of irrotational flow characteristic, 
Ƌ𝑤

Ƌ𝑥
=

Ƌ𝑢

Ƌ𝑧
 

𝛾
Ƌ𝑤

Ƌ𝑡
+ 

1

2

Ƌ

Ƌ𝑧
(𝑢2 + 𝛾𝑧𝑤2) = −

1

𝜌

Ƌ𝑝

Ƌ𝑧
− 𝑔.....(30) 

(29) and (30) are modified Euler momentum equations, 

where there are time weighting coefficient 𝛾and  

weighting coefficient vertical 𝑧direction of weighting 

coefficient, i.e.𝛾𝑧. Using (30) pressure𝑝 equation will be 

formulated where (30) is written as an equation for 

pressure𝑝. 

−
1

𝜌

Ƌ𝑝

Ƌ𝑧
= 𝛾

Ƌ𝑤

Ƌ𝑡
+  

1

2

Ƌ

Ƌ𝑧
(𝑢2 +  𝛾𝑧𝑤2) + 𝑔 

This equation is multiplied by 𝑑𝑧and integrated against 

vertical-𝑧 axis. 

𝑝

𝜌
= 𝛾 ∫

Ƌ𝑤

Ƌ𝑡

𝜂

𝑧

𝑑𝑧 +
1

2
(𝑢𝜂

2 + 𝛾𝑧𝑤𝜂
2) 

− 
1

2
(𝑢2 +  𝛾𝑧𝑤2) + 𝑔(𝜂 − 𝑧) 

Differentiated against horizontal-𝑥axis 

1

𝜌

Ƌ𝑝

Ƌ𝑥
= 𝛾

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

+
1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 +  𝛾𝑧𝑤𝜂
2) 

− 
1

2

Ƌ

Ƌ𝑥
(𝑢2 +  𝛾𝑧𝑤2) + 𝑔

Ƌ𝜂

Ƌ𝑥
 

Substituted to (29)  

𝛾
Ƌ𝑢

Ƌ𝑡
+ 𝛾

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

 

+ 
1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 +  𝛾𝑧𝑤𝜂
2) = −𝑔

Ƌ𝜂

Ƌ𝑥
  ....(31) 

The completion of 
Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧
is done using velocity 

potential  (21), where the particle velocity in horizontal 

direction is in equation (27), and the particle velocity in 

vertical-𝑧direction (28). From (28) the following is 

obtained, 

Ƌ𝑤

Ƌ𝑡
= −2𝐺𝑘𝜎𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)𝑐𝑜𝑠𝜎𝑡 

This equation is integrated against time 𝑡, 

∫
Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

= −2𝐺𝜎𝑐𝑜𝑠𝑘𝑥 

(𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) − 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧))𝑐𝑜𝑠𝜎𝑡 

Then, it is differentiated against horizontal-𝑥 axis 
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Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

= 𝐺𝑘𝜎𝑠𝑖𝑛𝑘𝑥 

(𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) − 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧))𝑐𝑜𝑠𝜎𝑡 

Equation (27) is differentiated against time 𝑡,  
Ƌ𝑢

Ƌ𝑡
=

2𝐺𝑘𝜎𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑐𝑜𝑠𝜎𝑡, and it is seen that this 

form is in 
Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧
, so the following relation is 

obtained  

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

= (
Ƌ𝑢𝜂

Ƌ𝑡
−

Ƌ𝑢

Ƌ𝑡
) 

Substitute this equation to (31)  

𝛾
Ƌ𝑢𝜂

Ƌ𝑡
+ 

1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 + 𝛾𝑧𝑤𝜂
2) = −𝑔

Ƌ𝜂

Ƌ𝑥
.....(32) 

This equation is a surface momentum equation that will 

be used in the calculation of 𝐺and𝑘. 

 

V. THE FORMULATION OF AN EQUATION 

FOR THE CALCULATION OF 𝐺 AND 𝑘 

As has been mentioned in the previous section that the 

calculation of 𝐺and 𝑘is done in the point of characteristic 

where 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥. Therefore, (27) is used as the 

particle velocity in horizontal 𝑥direction and (28) is 

particle velocity equation in vertical 𝑧 direction.  

 

5.1 Wave number conservation equation  

In the formulation of an equation for the calculation of 

𝐺and𝑘in the following sub-chapter, the wave number 

conservation equation will be done. The equation come 

from the principle of variable separation at the completion 

of Laplace equation, i.e. that velocity potential is 

considered as a multiplication of three functions, i.e. 

𝛷(𝑥, 𝑧, 𝑡) = 𝑋(𝑥)𝑍(𝑧)𝑇(𝑡)where𝑋(𝑥)is just a function-𝑥, 

𝑍(𝑧)is just a function-𝑧and𝑇(𝑡) is just a function-𝑡. In 

this case 𝑍(𝑧) = 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧). As just function-𝑧then, 
Ƌ𝑍(𝑧)

Ƌ𝑥
= 0. 

Ƌ𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)

Ƌ𝑥
= 𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)

Ƌ𝑘(ℎ + 𝑧)

Ƌ𝑥
= 0 

For 𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)is not equal to zero, then  
Ƌ𝑘(ℎ+𝑧)

Ƌ𝑥
= 0    ....(33) 

This equation (33) is called wave number conservation 

equation. This means that all area of calculation has 

similar values for the function 𝑡𝑎𝑛ℎ𝑘(ℎ + 𝑧), 𝑐𝑜𝑠ℎ𝑘(ℎ +

𝑧) dan 𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧). As deep water, it can be defined as 

water depth where𝑡𝑎𝑛ℎ𝑘(ℎ + 𝜂) = 1, where𝜂 = 𝜂(𝑥. 𝑡)is 

the water surface elevation against still water level.  

Bearing in mind that the wave number conservation 

equation or law, in the entire domain applies 

𝑡𝑎𝑛ℎ𝑘(ℎ + 𝜂) = 1    ....(34) 

In this research, the following is used  

𝑘(ℎ + 𝜂) = 2.0 𝜋     ....(35) 

Where𝑡𝑎𝑛ℎ(2.0𝜋) = 0.999993.  

𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂) = 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) = 𝑠𝑖𝑛ℎ(2.0𝜋) =

𝑐𝑜𝑠ℎ(2.0𝜋) ......(36) 

Bearing in mind this wave number conservation law, then 

even though the weighting coefficient is formulated in 

deep water condition, it will also apply in other depths.  

5.2. Substitute Velocity Potential to Momentum Equation  

From (27), 

𝑢 = 2𝐺𝑘𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡 

Ƌ𝑢

Ƌ𝑥
= 2𝐺𝑘2𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡 

𝑢
Ƌ𝑢

Ƌ𝑥
= 4𝐺2𝑘3𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ2𝑘(ℎ + 𝑧)𝑠𝑖𝑛2𝜎𝑡 

At 𝑧 = 𝜂 

𝑢
Ƌ𝑢

Ƌ𝑥
= 4𝐺2𝑘3𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ2𝑘(ℎ + 𝜂)𝑠𝑖𝑛2𝜎𝑡.....(37) 

From (28) 

𝑤 = −2𝐺𝑘𝑐𝑜𝑠 𝑘𝑥 sinh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 

Ƌ𝑤

Ƌ𝑥
= 2𝐺𝑘2𝑠𝑖𝑛 𝑘𝑥 sinh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 

𝑤
Ƌ𝑤

Ƌ𝑥
= −4𝐺2𝑘3𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛ℎ2𝑘(ℎ + 𝑧)𝑠𝑖𝑛2𝜎𝑡 

At 𝑧 = 𝜂 

𝑤
Ƌ𝑤

Ƌ𝑥
= −4𝐺2𝑘3𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛ℎ2𝑘(ℎ + 𝜂)𝑠𝑖𝑛2𝜎𝑡) 

                                                                                   ..(38) 

In deep water where𝑡𝑎𝑛ℎ𝑘(ℎ + 𝜂) = 1, then𝑠𝑖𝑛ℎ𝑘(ℎ +

𝜂) = 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂). Substitute (37) and (38) to the 

convective velocity, 

(𝑢
Ƌ𝑢

Ƌ𝑥
+ 𝛾𝑧𝑤

Ƌ𝑤

Ƌ𝑥
)

𝑧=𝜂
= 

(1 − 𝛾𝑧)𝐺2𝑘3𝑠𝑖𝑛 𝑘𝑥𝑐𝑜𝑠𝑘𝑥 cosh2 𝑘(ℎ + 𝜂) sin2 𝜎𝑡 

At the characteristic point, i.e. a point where 𝑐𝑜𝑠𝑘𝑥 =

𝑠𝑖𝑛𝑘𝑥 = 𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡, where𝜂 =
𝐴

2
, 

(𝑢
Ƌ𝑢

Ƌ𝑥
+ 𝑤𝛾𝑧

Ƌ𝑤

Ƌ𝑥
)

𝑧=𝜂
= 

1

4
(1 − 𝛾𝑧)𝐺2𝑘3 cosh2 𝑘 (ℎ +

𝐴

2
)  .....(39) 

If in (39) 𝛾𝑧 = 1 is used, then (𝑢
Ƌ𝑢

Ƌ𝑥
+ 𝑤𝛾𝑧

Ƌ𝑤

Ƌ𝑥
)

𝑧=𝜂
= 0 

will be obtained. So, it is found that if at the term 

𝑤
Ƌ𝑤

Ƌ𝑥
and𝛾𝑧 = 1is used or without weighting coefficient 𝛾𝑧 

,  hydroynamic force of the surface in  horizontal 

direction has a value of zero or there is no 

hydrodynamicforce. From (27), at the characteristic point, 
Ƌ𝑢

Ƌ𝑡
= 𝐺𝑘𝜎 cosh 𝑘 (ℎ +

𝐴

2
)  .....(40) 

Substitute (39) and (40) to (32), 

𝛾𝜎𝐺𝑘 cosh 𝑘 (ℎ +
𝐴

2
) 

+
1

2
(1 − 𝛾𝑧)𝐺2𝑘3 cosh2 𝑘 (ℎ +

𝐴

2
) = −𝑔

Ƌ𝜂

Ƌ𝑥
 ....(41) 

Where 𝑔
Ƌ𝜂

Ƌ𝑥
is worked at the characteristic point. This 

equation is a relation between 𝐺and𝑘where wave 

amplitude 𝐴is the input. 
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5.2 The formulation of wave amplitude function  

The weighted total acceleration equation (2), done at the 

water wave surface equation 𝜂 = 𝜂(𝑥, 𝑡), obtained
𝐷𝜂

𝑑𝑡
=

𝛾
Ƌ𝜂

Ƌ𝑡
+ 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
.  The original kinematic free surface 

boundary condition (KFSBC) equation is, 𝑤𝜂 =
Ƌ𝜂

Ƌ𝑡
+

𝑢𝜂
Ƌ𝜂

Ƌ𝑥
. By comparing the two equations, then the KFSBC 

equation should be in the form of 𝑤𝜂 = 𝛾
Ƌ𝜂

Ƌ𝑡
+ 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 , or 

𝛾
Ƌ𝜂

Ƌ𝑡
= 𝑤𝜂 − 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
    ...(42)      

Substitute𝑢from (27) and𝑤from (28) and done at 𝑧 = 𝜂, 

𝛾
Ƌ𝜂

Ƌ𝑡
= −2𝐺𝑘𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡 

−2𝐺𝑘𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡 
Ƌ𝜂

Ƌ𝑥
   ......(43) 

Water wave surface equation was obtained by integrating 

(43) against time 𝑡. The right side of the equation is a 

non-linear function against time 𝑡of which the integration 

completion is difficult. However, there is an argument 

that can simplify the integration (43) completion. First 

bearing in mind (36), i.e. 𝑐𝑜𝑠𝑘ℎ(ℎ + 𝜂) = cosh(2.0𝜋) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Then, (43) is written as, 

𝛾
Ƌ𝜂

Ƌ𝑡
= −2𝐺𝑘 

(𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂) + 𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)
Ƌ𝜂

Ƌ𝑥
) 𝑠𝑖𝑛𝜎𝑡 

 ...(44)      

In (44) the one that is the function of time 𝑡is only the 

element of𝑠𝑖𝑛𝜎𝑡. In addition, as a periodical function 

against time 𝑡, the element  −2𝐺𝑘 (𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛ℎ𝑘(ℎ +

𝜂) + 2𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)
Ƌ𝜂

Ƌ𝑥
)  should be a constant 

number against time 𝑡. Thus, the integration (44) against 

time 𝑡, is sufficient by integrating only the 𝑠𝑖𝑛𝜎𝑡element,  

obtained 

𝜂(𝑥, 𝑡) =
2𝐺𝑘

𝛾𝜎
 

(𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂) + 𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)
Ƌ𝜂

Ƌ𝑥
) 𝑐𝑜𝑠𝜎𝑡 

.......(45) 

At the characteristics point,  (45) can be written as 

𝜂(𝑥, 𝑡) =
2𝐺𝑘

𝛾𝜎
 

(𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂) + 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)
Ƌ𝜂

Ƌ𝑥
) 𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 

......(46) 

The form 𝑐𝑜𝑠𝑘𝑥 was selected becauseit has been 

determined that the velocity potential component that was 

used is 𝑐𝑜𝑠𝑘𝑥 componentIt is defined 

𝐴 =
2𝐺𝑘

𝛾𝜎
(𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂) + 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)

Ƌ𝜂

Ƌ𝑥
) 

Then (46) becomes  

𝜂(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡                       ..........(47) 

At the characteristic point, then𝜂 =
𝐴

2
, wave amplitude 

function equation, 

𝐴 =
2𝐺𝑘

𝛾𝜎
(𝑠𝑖𝑛ℎ𝑘 (ℎ +

𝐴

2
) − 𝑐𝑜𝑠ℎ𝑘 (ℎ +

𝐴

2
)

𝑘𝐴

2
) 

From (36) where𝑠𝑖𝑛ℎ𝑘 (ℎ +
𝐴

2
) = 𝑐𝑜𝑠ℎ𝑘 (ℎ +

𝐴

2
) the 

wave amplitude function equation becomes, 

𝐴 =
2𝐺𝑘

𝛾𝜎
𝑐𝑜𝑠ℎ𝑘 (ℎ +

𝐴

2
) (1 − 

𝑘𝐴

2
).......(48) 

 

5.3 Equation for the calculation of 𝑘and 𝐺 

Substitute (47) to (41) at the characteristic point 

𝛾𝜎𝐺𝑘 cosh 𝑘 (ℎ +
𝐴

2
) 

+
1

2
(1 − 𝛾𝑧)𝐺2𝑘3 cosh2 𝑘 (ℎ +

𝐴

2
) = 𝑔

𝑘𝐴

2
 

Substitute wave amplitude function, 

𝐺𝛾𝜎 cosh 𝑘 (ℎ +
𝐴

2
) +

1

2
(1 − 𝛾𝑧)𝐺2𝑘2 

cosh2 𝑘 (ℎ +
𝐴

2
) = 𝑔

𝐺𝑘

𝛾𝜎
cosh 𝑘 (ℎ +

𝐴

2
) (1 −

𝑘𝐴

2
) 

The equation is divided by 
𝐺𝑘

𝛾𝜎
cosh 𝑘 (ℎ +

𝐴

2
), 

𝛾2𝜎2 +
𝛾𝜎

2
(1 − 𝛾𝑧)𝐺𝑘2 cosh 𝑘 (ℎ +

𝐴

2
) = 𝑔𝑘 (1 −

𝑘𝐴

2
) 

Wave amplitude equation is written as an equation for 𝐺, 

i.e. 

𝐺 =
𝐴𝛾𝜎

2kcosh 𝑘(ℎ+
𝐴

2
)(1−

𝑘𝐴

2
)
  .......(49) 

and substitute it to the last equation,  

𝛾2𝜎2 (1 −
𝑘𝐴

2
) +

𝛾2𝜎2

4
(1 − 𝛾𝑧)𝑘𝐴 = 𝑔𝑘 (1 −

𝑘𝐴

2
)

2

 

   .....(50) 

The calculation of the value 𝑘with this equation using 

Newton-Rhapson method requires initial estimation 

of𝑘for the initial value of the iteration. The initial value of 

𝑘can be obtainedby ignoring convective acceleration, then 

(50) becomes 

𝛾2𝜎2 = 𝑔𝑘 (1 −
𝑘𝐴

2
)  ....(51) 

This equation is the quadratic equation of wave number  

𝑘that can be easily completed. The use of (51)  maximum 

value of wave amplitude A in a wave period in deep water 

is obtained, i.e. if the determinant D from (51) has a value 

of zero.  

𝐴𝑚𝑎𝑥 =
𝑔

2𝛾2𝜎2  ....(52) 

The value of𝐺can be calculated using (49). 

 

VI. THE FORMULATION OF WATER WAVE 

SURFACE EQUATION. 

Water wave surface equation is formulated using a 

complete velocity potential equation, i.e. equation (21). 
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By using (21), particle velocity in horizontal-𝑥direction 

and particle velocity in vertical-𝑧direction are 

consecutively, 

𝑢 = 𝐺𝑘(𝑠𝑖𝑛 𝑘𝑥 − 𝑐𝑜𝑠𝑘𝑥)𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

𝑤 = −𝐺𝑘(𝑐𝑜𝑠 𝑘𝑥 + 𝑠𝑖𝑛𝑘𝑥)𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧) 𝑠𝑖𝑛 𝜎 𝑡 

The two particle velocity equations are done at 𝑧 = 𝜂and 

substituted to equation KFSBC (42), 

𝛾
Ƌ𝜂

Ƌ𝑡
= −𝐺𝑘(𝑐𝑜𝑠 𝑘𝑥 + 𝑠𝑖𝑛𝑘𝑥)𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂) 𝑠𝑖𝑛 𝜎 𝑡 

−𝐺𝑘(𝑠𝑖𝑛 𝑘𝑥 − 𝑐𝑜𝑠𝑘𝑥)𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) 𝑠𝑖𝑛 𝜎 𝑡
Ƌ𝜂

Ƌ𝑥
 

....(53) 

As in the previous section, the water wave surface 

equation is obtained by integrating (53) against time𝑡, 

where the integration is sufficient to be done only at the 

𝑠𝑖𝑛 𝜎 𝑡element, 

𝜂(𝑥, 𝑡) = 

𝐺𝑘

𝛾𝜎
(𝑐𝑜𝑠 𝑘𝑥 + 𝑠𝑖𝑛𝑘𝑥)𝑠𝑖𝑛ℎ𝑘(ℎ + 𝜂) 𝑐𝑜𝑠 𝜎 𝑡 

+
𝐺𝑘

𝛾𝜎
(𝑠𝑖𝑛 𝑘𝑥 − 𝑐𝑜𝑠𝑘𝑥)𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) 𝑐𝑜𝑠 𝜎 𝑡

Ƌ𝜂

Ƌ𝑥
 

In the deep water the equation can be written as, 

𝜂(𝑥, 𝑡) = 𝑐0 ((𝑐2 + 𝑐1) + (𝑐1 − 𝑐2)
Ƌ𝜂

Ƌ𝑥
) 𝑐3......(54) 

where,to simplify the writing 𝑐0 =
𝐺𝑘

𝛾𝜎
𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂), 𝑐1 =

𝑠𝑖𝑛𝑘𝑥, 𝑐2 = 𝑐𝑜𝑠𝑘𝑥 dan 𝑐3 = 𝑐𝑜𝑠𝜎𝑡are defined. Equation 

(54) is differentiated against horizontal-𝑥 axis 

Ƌ𝜂

Ƌ𝑥
= 𝑐0𝑘 ((−𝑐1 + 𝑐2) + (𝑐2 + 𝑐1)

Ƌ𝜂

Ƌ𝑥
) 𝑐3  ........(55) 

Equation (54) is water wave surface equation that is used 

to calculate water surface elevation where 
Ƌ𝜂

Ƌ𝑥
in (54) is 

calculated using (55). 𝜂in 𝑐0 =
𝐺𝑘

𝛾𝜎
𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)is 

calculated using the equation, 

𝜂(𝑥, 𝑡) = 𝐴(𝑐𝑜𝑠𝑘𝑥 + 𝑠𝑖𝑛𝑘𝑥)𝑐𝑜𝑠𝜎𝑡 ....(56) 

Whereas 
Ƌ𝜂

Ƌ𝑥
in (55) it is calculated with, 

Ƌ𝜂

Ƌ𝑥
= 𝐴𝑘(−𝑠𝑖𝑛𝑘𝑥 + 𝑐𝑜𝑠𝑘𝑥)𝑐𝑜𝑠𝜎𝑡  ....(57) 

 

VII. THE RESULTS OF THE EQUATION. 

7.1 The characteristic of water wave surface. 

In the calculations that will be done in this section, the 

value of 𝛾 = 3.0and𝛾𝑧 = 1.630are used and the 

calculation is done in the deep water. Deep water depth 

ℎ0is obtained with the following equation  

ℎ0 =
1

𝑘
(2.0𝜋 −

𝑘𝐴

2
)    ....(58) 

Where𝐴is calculated using (52). 

 

 

 

Table.3: The result of calculation of wave parameter and 

other characteristic 

𝑇 

(sec) 

𝐻 

(m) 

𝐿 

(m) 

𝐻

𝐿
 

𝐻

𝐴
 

𝜂𝑚𝑎𝑥

𝐻
 

6 1,409 5,026 0,28 2,865 0,851 

7 1,918 6,842 0,28 2,865 0,851 

8 2,506 8,936 0,28 2,865 0,851 

9 3,171 11,309 0,28 2,865 0,851 

10 3,915 13,962 0,28 2,865 0,851 

11 4,737 16,894 0,28 2,865 0,851 

12 5,638 20,105 0,28 2,865 0,851 

13 6,617 23,595 0,28 2,865 0,851 

14 7,674 27,365 0,28 2,865 0,851 

15 8,81 31,413 0,28 2,865 0,851 

 

Using water wave surface equation, the elevation of wave 

crest 𝜂𝑚𝑎𝑥and the elevation of wave trough 𝜂𝑚𝑖𝑛are 

calculated. The wave height is 𝐻 = 𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛, 

whereas Wilson (1963) criteria is
𝜂𝑚𝑎𝑥

𝐻
.Table (3) presented 

the result of the calculations of wave height,  wavelength, 

wave steepness, and the comparison of wave height  𝐻and 

wave amplitude 𝐴.    

 

Wave-steepness 
𝐻

𝐿
= 0.280, where considering the 

calculation used maximum wave Amplitude A that was 

calculated using (52), then wave steepness is critical wave 

steepness.  

Table.4: Types of wave, according to Wilson criteria 

(1963) 

Wave Type  𝜂𝑚𝑎𝑥

𝐻
 

Airy waves < 0.505 

Stoke’s waves < 635 

Cnoidal waves  0.635 <
𝜂𝑚𝑎𝑥

𝐻
< 1 

Solitary waves = 1 

 

The critical wave steepness is bigger than the criteria 

ofMichell (1893) i.e.
𝐻

𝐿
= 0.142.  The comparison 

between wave height and wave amplitude is
𝐻

𝐴
=

2.865which is bigger than 2. Therefore, therelation 

between wave height and wave amplitude is𝐻 = 2𝐴 

cannot be used. The obtained Wilson parameter is 
𝜂𝑚𝑎𝑥

𝐻
=

0.851. Based on Wilson criteria (1963), Table (4), the 

value of the parameter shows that the wave profile has a 

cnoidal wave type, with wave profile presented 

inFig.1.and Fig.2.for wave period 𝑇 = 8 sec. 
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Fig.1. Wave profile with wave period of 8 sec., in one 

wave length 

 

 
Fig.2. Wave profile with wave period of 8 sec., in3 wave 

lengths. 

 

7.2. Comparison with Wiegel equation 

Using data from an observation, Wiegel (1949-1964) 

formulated relation between wave period 𝑇and maximum 

wave height  𝐻𝑚𝑎𝑥in a wave period,  i.e. 

𝑇𝑊𝑖𝑒𝑔 = 15.6√
𝐻𝑚𝑎𝑥

𝑔
 ..........(58) 

Table.5: Comparison with Wiegel equation 

𝑇 

 

(sec) 

𝛾 = 3.0 

𝛾𝑧 = 1.63164 

𝛾 = 2.97102 

𝛾𝑧 = 1.60095 

𝐻𝑚𝑎𝑥 

(m) 

𝑇𝑊𝑖𝑒𝑔 

(sec) 

𝐻𝑚𝑎𝑥 

(m) 

𝑇𝑊𝑖𝑒𝑔 

(sec) 

6 1,40943 5,91305 1,45118 6 

7 1,9184 6,89858 1,97523 7,00002 

8 2,50569 7,88412 2,57992 8,00007 

9 3,1713 8,86969 3,26522 9,00007 

10 3,91518 9,85522 4,03119 10,0002 

11 4,73746 10,8408 4,87774 11,0002 

12 5,63796 11,8264 5,80504 12,0003 

13 6,61695 12,8121 6,81286 13,0004 

14 7,67409 13,7976 7,90155 14,0006 

15 8,80954 14,7831 9,07066 15,0006 

 

The comparison was done by calculating 𝑇𝑊𝑖𝑒𝑔in (58) 

usingthe wave height which is the result of a calculation 

using the model, where the input in the model is  wave 

period 𝑇and wave amplitude calculated using (52), so that 

the wave height that is obtained is the wave height 

maximum𝐻𝑚𝑎𝑥in the related wave period.  

Table (5) shows that for𝛾 = 3,  the obtained 𝑇𝑊𝑖𝑒𝑔is 

almost similar with the  𝑇that is a wave period to 

calculate 𝐻𝑚𝑎𝑥with the model. Whereas in 𝛾 = 2.97102, 

it can be said that the obtained 𝑇𝑊𝑖𝑒𝑔is equal with 𝑇.   The 

result of this calculation concludes that the values of 𝛾, 

𝛾𝑧and equations formulated in this research are in line 

with the result of Wiegel research (1949-1964) which is 

the result of an observation. 

 

VIII. CONCLUSION 

If the characteristic of ideal fluid i.e. irrotational flow is 

done at Euler momentum equation, and the velocity 

potential as the product of Laplace equation solution is 

substituted, the hydrodynamic force or convective 

equation in the horizontal direction becomes zero. This 

problem can be solved using weighted total acceleration 

where there is weighting coefficient at the differential 

term against vertical-𝑧 axis and the resulted model 

producewave height that corresponds to Wiegel equation. 

Another finding that should be noticed is that the value of 

wave height is not twice the value of wave amplitude.  

A further research needed is formulating shoaling and 

breaking model by doing the weighted total acceleration 

equation, because  there are many researches result in the 

laboratory on breaker height that are stated in the form of 

Breaker Height Index equation, so that the shoaling-

breaking model and its various basic theories can easily 

be calibrated. 
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