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Abstract— In this research, weighted total acceleration for a function f(x,z, t)was formulated. This total
acceleration equation was done at the Euler momentum equation. Then, the Euler momentum equation was done
together with free surface boundary condition equation to formulate water wave constant at the solution of
Laplace equation. The velocity potential of the solution of Laplace equation actually consists of two components

that were used in this research.
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l. INTRODUCTION

Momentum equation is an important basic equation in
mathematic modeling of hydrodynamics, including water
wave modeling. Momentum equation commonly used in
water wave modeling is Euler momentum equation. There
is a constraint in this equation, i.e. Euler momentum
equation has no hydrodynamic force in the horizontal
direction or convective acceleration has a value of zero
when velocity potential is substituted to the term. To
overcome this problem, weighted total acceleration
equation was formulated where there are two weighted
coefficients, i.e. at the timet differential term and at the
differential term of vertical-zdirection.

Laplace equation solution consists of two velocity
potential components (Dean (1991)). However, only one
component that has been used. Equations from water
wave constant, i.e. wave number kand wave constant G
can be formulated using only one velocity potential
component, but the value is determined by both the two
velocity components. In this research, the water wave
surface equation is formulated using the two velocity
potential components, then the condition of the water
wave surface that has been produced is studied.

1. WEIGHTED TOTAL ACCELERATION
Hutahaean (2019a) formulated weighted total acceleration
in a function f = f(x,t), xis horizontal axis and t is
time, using Taylor series. The formulation of weighted
total acceleration in a functionf = f(x, z, t),zis vertical
axis, is done using similar method, therefore the
formulation of weighting total acceleration in f =
f(x, z, t)will be preceded by reviewing the formulation of
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weighting total acceleration in f = f(x,t)to obtain a
clearer description.

2.1. Weighted Total Acceleration for the function of f =
f(x,t)

The changes in the value of a function in a function f =
f(x,t)for a very smallsxandstusing Taylor series only
until the second derivative is,

+ 6x,t + 6t) = t)+4 af+E[taf
fOr+8x,t 486 = f(x ) + v+ At
Sx?d*f azf  stracrf

T e Va7 e
By working on the argument of Courant (1928) that in

order to obtain a good result on horizontal velocity u =

%, then weighting coefficient y, is done which is a

positive number, in time differential in Taylor series.

(x+6x,t +y8t) = f(x,t)+ 8 E[f+ ataf
et ox,t4yot) = flx. Yax TV
8§x? a*f azf  y?st? axf
+T@+y5t5xﬁ+ PRy LIRS (D)
At the limit &x, dtclose to zero the following equation is
obtained,
D—f=ug+yg0rD—f= Yru (2)
dt dx dt dt dt dx

This equation is weighted total derivative equation or
weighted total acceleration for the functionoff =
f (x, t)where yis weighting coefficient.

The method of calculating weighting coeffecient ywill be
formulated using Taylor series (1). The second derivative
term can be omitted if,

Sx2a%f a’f  y?st2ais

S+y8tdx + >
2 ax drdx 2 at?| - o

<€ 3
6x§—£+yat% ( )
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Then it was defined 6x = C6t = %& = i—:ét = %&,
whereCis wave celerity, k is wave number T is wave

- 2T . . R
period, ¢ = - s angular frequency. &xin (3) is
substituted with %St, and the following equation is

obtained,

azstazfiycré’tazf Eyzétazf

2k2 dx? ikf atg_}c 2 at? <e . (4)

kdx

The completions of this equation requires a function form
of f=f(xt). And the following sinusoidal function
form will be used,
f(x,t) = coskxcosat ...(5)
This equation is water wave surface equation of the linear

wave theory. The derivative of the function is as follows

Table.1: Derivative Equation of (5)

ar azf

dx dx?

= —ksinkx cos ot = —k? cos kx cos ot
df dzf

at dtdx

= —ocoskxsinot = ko sin kx sinot

E[Zf
dt?
= —o?2 cos kx cos ot

Using the condition of coskx = sinkx = cosat = sinat,
the elements of sinusoidal function will cancel out each
other as a result of a division. Substitute the derivative
equations to (4), the following equation is obtained
1_ y + 1]/2
2 2
1+y
The numerator(1 + y)is a positive number, then the
equation can be written as,

If equals ( ) relation is used, then

1 €
——)/+ y —E(1+y) ...... (5)

Con5|der|ng that yis a positive number, the right side of
the equation is a positive number. Therefore, the left side
of the equation is also a positive number. The calculation
of the value ycan be done by releasing the sign | [in the
left side of the equation, i.e. using equation (5).

£
~obt

€
<—q
0&( +7)

The calculation of the valueywith (5) requires an input 6t.
The value of é6t, is obtained from the function f = f(¢t).
The approximation of Taylor series for the function is,

df 6&t2d3f
f(t+6t) = f(t)+6t—+ CRET
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In order to be able to be used only until the first

st2a’f sta2f
derivative, then [ S} <ceor[Zf<e . For the
Stgg atc
; _ i ¥ _ . &
function, f(t) = cosat; o, = —osinot; o=

—a?cosotand it is done in a cosat = sinat condition,
and

5t
7(—02)

o
is obtained . Substitution of (6) to (5) obtains
(7)
It is obtained that yhas a constant value, i.e. independent
of wave period or the level of accuracy «.

2.2. Weighted Total Acceleration for the function f =
f(x,z,t)

To obtain weighted total acceleration equation in a

function f = f(x, z,t), the similar method will be done as

in the function f = f(x, t), where,

flx+6x,z+y,0z,t +ydt) =

d
flxe,t)+ 6x df + yz6z df +yata—]:
Sx? Elzf a*f  (y,62)? d*f
+Ta—+ Oyt T 2 Az
(ydt)? E[Zf
+ydtdx ﬁ + yyzé'té'zﬁ +— S @z (8)

In (8), fordz = 6x, it is meant that VZ6Z— = 62( af)

Y23
therefore in a change of zfordz = §x, the value of the
first derivative function against zis (yz g), and so also

azs . azs (z82)* 3f . .
y,028x e meantdzdx (yz E)andT EWhICh
23

means as —(yz - ) As in the previous section, the

value ofsxandsziséx = 8z = C6t = —5t 2:;% = ”Ift.

Then, a function f(x, z, t)is reviewed Wlth the following
form.
f(x,z,t) = coskxcoshk(h + z) cosat....(9)
Atz =0, ¢; = cosh(kh)andc, = sinh(kh)are defined
and done in the deep water where tankh = 1with the
value of kh = 2.0m. Thenc; = cosh(2.0m) = ¢, =
sinh(2m),and (8) is done in a condition ofcoskx =
sinkx = cosat = sinat, then the sinusoidal function
cancelled out each other. The derivative equations (9) can
be written in the forms shown in Table (2).
Table.2: Differential of (9).
2 2
g ﬂ — —k2C1 d f
dx dx?
= —kc,
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as azf dzf
—_— = kCZ
dz dxdz dtdz
= —k’c, = —okc,
d d? d?
—f —f = k¢, —f = —0?¢,
dt dz2 dt?
= _O_Cl
To simplify the writing, the followings are defined
6x*a*f af  (y,62)* @f
A=——= 826 —_—
2 @z V% ax 2 dz?
af af  (yde)* &f

Otdx —— otz —+———
TV OOX gy Y VO g Y T e
df df df
B = 6xa+ y2525+ yata
In order for (8) to be able to be used with only the first

derivate, then
A
HIET— 9)

The substitution of differential equations in Table (2) to
(9) will obtain,

2

Y + C1 € ( )
2 1 Y 2 oot Y1 Cq1
—( +1+i)c +822 -9
14 abt 2Vz 2 Yz
Substitutestfrom (6), 8t = ?
2
Y g 1
o aty —?—E(—Vcl —¢1)

—(y+1+%)c2yz+%yzz=0 ........ (10)

With (10), y,can be calculated whereyis a known
from(7). With an inputy = 3, y, = 1,630 is obtained for
¢; = cosh(2.0m)andc, = sinh(2.0m) where ¢; = c;.

As a result the second derivative in (8) can be omitted and

the total derivative equation for function f = f(x, z, t)is
%=y%+ u%+y2w% ...... (11)
I11. A Complete Velocity Potential Equation
By completing the Laplace equation with separation
variable method and after doing the time periodic
boundary condition and lateral periodic boundary
condition, Dean (1991) obtained velocity potential
equation that consisted of two potential velocities, i.e.
o(x,z,t) = Acos kx(Ce** + De™**) sino t
+B sink x(Ce*? + De ") sino t...(12)
o(x,z,t) = @ (x,z,t) + pp(x,2t)...(13)
©a(x,z,t) = Acoskx(Ce*” + De **)sinat
..(14)
p(x,z,t) = Bsink x(Ce* + De™**)sinot
...(15)
There are four constants that should be determined, i.e.
A, B,CandD. Hutahaean (2019b) has shown that the two
equations have similar constant value, or in other words
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there is only one constant value in velocity potential total
(12). However, in the next section it will be proven again
with another method that (12) has one constant value.

Equation (12) can be written as,
o, z,t) =(Acoskx + Bsinkx)

(Ce*2 + De™*®)sinct ... (13)
At a condition ofcoskx = sinkx, (13) can be written as

@(x,z,t) = (A+B)coskx
(Ce*2 + De™**)sinot....(14)
or

o(x,z,t) = (A+ B)sinkx
(Ce*” + De™**)sincot ......(15)
The constants of A, B,CandDwill be formulated using
(14) and (15), where it will be proven that either using
(14) or (15) similar constant will be obtained. The
formulation is done by doing kinematic bottom boundary
condition on flat bottom, as was done by Dean (1991).

a. Alternative |

The constants4, B, CandD will be determined using (14)

where water particle velocity at the vertical-zdirection is
do

w=——=—(A+B)kcoskx
0z

(Ce** —De *)sinot
Substitute equation for w to the kinematic bottom
boundary condition equationw_, = —u_, Z—Z, where at flat

bottom £ — 0,
dx

—(A+ B)kcoskx(Ce ™™ — De*)sinat =0
The equation is divided by —(A + B)kcoskxsinatfor
coskx # Oandsinagt # 0
Ce ™ — pe*" = 0orC = De?*". Substitute C (14)
®(x,z,t) =(A+B)coskx
(De?*hek? + De %) sinot
or
&(x,z,t) = (A+ B)De*" cos k x
(ek(h+z) + e—k(h+z)) sinogt
A new constant is defined
Gy = (A+ B)Dekt ... (16)
®(x,2,t) = Gy cos kx(e**D 4 e kD) gin g ¢

................... 17)
a. Alternative 11
The constants A, B, CandDwill be determined using (15),
d
w = P —(A+ B)ksinkx
0z

(Ce** —De *)singt
Substitute equations for u and w to the kinematic bottom

boundary condition equation

_ oh h dh _
W_p = —U_p -, Where — = 0
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—(A+ B)ksinkx(Ce™ —De*) sinat =0
The equation is divided by —(A+
B)ksinkxsinotforsinkx # Oandsinot # 0
Ce ™™ — De*" = 0orC = De?*". Substitute Cto (15)
®(x,z,t) = (A+ B)sinkx
(De?khekz + De k%) sinot
or
®(x,z,t) = (A + B)De*" sin k x(ekn+2)
+e KD singt
A new constant is defined
Gy = (A+ B)De** ... (18)
®(x,z,t) = Ggcoskx
(e*h+2) 4 e=k(42)) sin gt ....19)
From(16) and (18) obtained that G, = Gg = G, SO it is
proven that in (1) there is only one wave constant
valueG ,then (7) becomes
®(x,z,t) = G(cos k x + sinkx)
(ek*2) + e=k(M+2)) sin g t....( 20)
The hyperbolic function equation is, e*"+2) +
e k+2) — 2coshk(h + z), (13) becomes
®(x,z,t) = 2G(cos kx + sinkx)coshk(h + z) sino t
Defined G = 2G
®(x,z,t) = G(cos kx + sinkx)coshk(h + z) sina t
...(21)
A complete velocity potential equation is obtained with
the form as in (21). In that equation, there are still two
wave constants where the form should be known, i.e.
wave number kand wave constant G. Considering that
the values of wave number kand wave constant Gis
similar along the wave curve, then the calculation of the
two parameters will be done at the point of characteristic
where coskx = sinkx, at this condition,(21) becomes,
®(x,z,t) = 2Gcoskxcoshk(h + z) sinat....(26)

The particle velocity in horizontal-xdirection is,

u=- i—j = 2Gksinkxcoshk(h + z)sinat ....(27)
The particle velocity in vertical-zdirection is,
w=——= —2Gkcos kx sinh k(h + z) sin ot .....(28)

V. Application of Weighted Total Acceleration on
Euler Momentum Equation
From (28), the total derivative for horizontal xdirection

velocity is,
Du _ du 4 du 4 du
ac Yae T Yax T g

With this total derivative equation, the Euler momentum

equation in horizontal-xdirection becomes,
du du du 1dp

Yae T Yax T T T pax
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By doing the characteristic of irrotational flow, 3—;‘:

i—:obtained,

yi{{—lt‘+ %;—x(uz + y,w?) = —%i—i ....... (29)

Total derivative equation for vertical velocity in axis-z
direction.

Dw dw dw dw

dt ' ae dx az

The Euler momentum equation in vertical-zdirection
becomes,

dw 4 dw 4 dw  1dp
Var T Yax T e T o Y
The execution of irrotational flow characteristic, i—: = 2—:

dw 1d 2
dt 2dz
(29) and (30) are modified Euler momentum equations,
where there are time weighting coefficient yand
weighting coefficient vertical zdirection of weighting
coefficient, i.e.y,. Using (30) pressurep equation will be
formulated where (30) is written as an equation for

pressurep.
1dp dw 1d
——— =y + ——
pdz dt 2dz
This equation is multiplied by dzand integrated against
vertical-z axis.

1dp

W+ y,w?)+yg

p Tdw 1
;=]/fz a—tdZ-l'z(urz)'i' ]/ZW,$

1 2 2
— ;W w)+g0 -2

Differentiated against horizontal-xaxis
1dp d (Tdw 1d
e =y — —d _ 2 2
pdx Vax , dt Z+2£[x(u"+yzw’7)
1d dn
— (2 2 !
TR AR
Substituted to (29)
du d (Mdw

—+ty=—| S-dz
Var " Vax), a
d

1 dn
+ Ea(u% + ]/ZW,?) =-9 ...(31)

The completion of %fznz—t’dzis done using velocity
potential (21), where the particle velocity in horizontal
direction is in equation (27), and the particle velocity in
vertical-zdirection (28). From (28) the following is

obtained,

dw
i —2Gkocoskxsinhk(h + z)cosot

This equation is integrated against time t,

mdw
J- —dz = —2Gocoskx
_at

(coshk(h +1n) — coshk(h + Z))cosat
Then, it is differentiated against horizontal-x axis
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i 7]a—Wdz = Gkosinkx
dx ), dt

(coshk(h +n) — coshk(h + Z))COSO't
Equation (27) is differentiated against time ¢t, %z
2Gkosinkxcoshk(h + z)cosat, and it is seen that this

form is in — 77E[—Wdz, so the following relation is
dx vz dt

obtained

d (7dw (E[u,, E[u)

- _d = — -

dx ), at dc at

Substitute this equation to (31)

duy 1d 2 2\ _ dn
]/E-I- Ea(un + ]/ZW,]) = —ga ..... (32)
This equation is a surface momentum equation that will

be used in the calculation of Gandk.

V. THE FORMULATION OF AN EQUATION
FOR THE CALCULATION OF G AND k

As has been mentioned in the previous section that the

calculation of Gand kis done in the point of characteristic

where coskx = sinkx. Therefore, (27) is used as the

particle velocity in horizontal xdirection and (28) is

particle velocity equation in vertical z direction.

5.1 Wave number conservation equation

In the formulation of an equation for the calculation of
Gandkin the following sub-chapter, the wave number
conservation equation will be done. The equation come
from the principle of variable separation at the completion
of Laplace equation, i.e. that velocity potential is
considered as a multiplication of three functions, i.e.
®(x,z,t) = X(x)Z(2)T(t)whereX (x)is just a function-x,
Z(z)is just a function-zandT (t) is just a function-t. In
this case Z(z) = coshk(h + z). As just function-zthen,

dz(z) _

ax
dcoshk(h + dk(h +
dcoshk(h + z) = sinhk(h + Z)M =0

dx dx
For sinhk(h + z)is not equal to zero, then
D) — o ..(33)
dx

This equation (33) is called wave number conservation
equation. This means that all area of calculation has
similar values for the function tanhk(h + z), coshk(h +
z) dan sinhk(h + z). As deep water, it can be defined as
water depth wheretanhk(h +n) = 1, wheren = n(x.t)is
the water surface elevation against still water level.
Bearing in mind that the wave number conservation
equation or law, in the entire domain applies
tanhk(h+n) =1 ..(34)

In this research, the following is used

kth+n)=20m ...(35

Wheretanh(2.0m) = 0.999993.
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sinhk(h +n) = coshk(h + n) = sinh(2.0m) =
cosh(2.0m) ......(36)
Bearing in mind this wave number conservation law, then
even though the weighting coefficient is formulated in
deep water condition, it will also apply in other depths.
5.2. Substitute Velocity Potential to Momentum Equation
From (27),

u = 2Gksinkxcoshk(h + z)sinat

du
e 2Gk?coskxcoshk(h + z)sinot
du
Ugo= 4G?k3sinkxcoskxcosh?*k(h + z)sin®ot
Atz =ng

ug—z = 4G?k3sinkxcoskxcosh?k(h + n)sin®at.....(37)
From (28)

w = —2Gkcos kx sinh k(h + z) sinot

dw
Fite 2Gk?sin kx sinh k(h + z) sin ot

dw

W = —4G?k3sinkxcoskxsinh?k(h + z)sin?ot
Atz=ng
wi—: = —4G?k3sinkxcoskxsinh?k(h + n)sin?at)

..(38)
In deep water wheretanhk(h +n) = 1, thensinhk(h +
n) = coshk(h +n). Substitute (37) and (38) to the
convective velocity,

( E[u+ E[W) _
Yax T gy 2=y

(1 —y,)G%*k3sin kxcoskx cosh? k(h + 1) sin® ot
At the characteristic point, i.e. a point where coskx =

. . A
sinkx = cosat = sinat, wheren = >

d Ax) yey
1 A
(1 -¥,)G?k? cosh® k (h + 5) ..... (39)
If in (39) y, =1 is used, then (u%"'WVZ%) =0

z=1
will be obtained. So, it is found that if at the term

wi—ﬁandyz = 1is used or without weighting coefficient y,

, hydroynamic force of the surface in horizontal
direction has a value of zero or there is no

hydrodynamicforce. From (27), at the characteristic point,
& = Gko coshk (R +2) .....(40)
dt 2

Substitute (39) and (40) to (32),
A
yoGk cosh k (h + E)
1 A\ _ dn
+2(1 - ¥,)G?k® cosh? k (h +2) = —g 2t ..(41)
Where g g—Zis worked at the characteristic point. This

equation is a relation between Gandkwhere wave
amplitude Ais the input.
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5.2 The formulation of wave amplitude function
The weighted total acceleration equation (2), done at the

water wave surface equation n = n(x,t), obtainedZ—'Z =
V?TZ"' Uy :_Z' The original kinematic free surface
boundary condition (KFSBC) equation is, w, = %+
Uy g_Z' By comparing the two equations, then the KFSBC

equation should be in the form of w,, = y?{—z + u, & ,or

dx
a a
ya—z =w, — uné ..(42)
Substituteufrom (27) andwfrom (28) and done at z = 7,
d
yE[_Z = —2Gksinhk (h + n)coskxsinot

—2Gkcoshk(h + n)sinkxsinat ;—z ...... (43)

Water wave surface equation was obtained by integrating
(43) against time t. The right side of the equation is a
non-linear function against time tof which the integration
completion is difficult. However, there is an argument
that can simplify the integration (43) completion. First
bearing in mind (36), i.e. coskh(h + n) = cosh(2.0m) =
constant. Then, (43) is written as,
dn

T o6k
Y

d
(coskxsinhk (h +n) + sinkxcoshk(h + 1) %) sinot

...(44)
In (44) the one that is the function of time tis only the
element ofsingt. In addition, as a periodical function

against time t, the element —2Gk (coskxsinhk(h+

n) + 2sinkxcoshk(h + 1) E—Z) should be a constant

number against time t. Thus, the integration (44) against
time ¢, is sufficient by integrating only the sinotelement,
obtained

2Gk
nx,t) =——
Yo

d
(coskxsinhk (h + 1) + sinkxcoshk(h + n) %) cosat

At the characteristics point, (45) can be written as

(1) = 2Gk
nx,t) = Yo
. dn
(smhk (h+n) + coshk(h +n) 5) coskxcosat

The form coskx was selected becauseit has been
determined that the velocity potential component that was
used is coskx componentlt is defined

2Gk /. dn
A= —(smhk(h +n) + coshk(h +n) —)
yo dx
Then (46) becomes
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n(x,t) = Acoskxcosat ... (47)
At the characteristic point, thenn = %‘, wave amplitude
function equation,

26k A A\ kA
A= (sinhk (h + —) — coshk (h + —) —)
Vo 2 2) 72

From (36) wheresinhk (h + g‘) = coshk (h + g‘) the

wave amplitude function equation becomes,

A= Z:—Ukcoshk (h+2)(1-%).....49)

5.3 Equation for the calculation of kand G
Substitute (47) to (41) at the characteristic point

A
yoGk cosh k (h + E)

+1(1 )G?%k3 hzk(h+A> _ g
2 Yz cos 5) =975
Substitute wave amplitude function,

A 1
Gyo cosh k (h + E) + > (1 -y,)G*k?

A Gk A kA
2 il —_ _ -
cosh k(h+ 2) gyacoshk(h+ 2)(1 2)

The equation is divided by %COSh k (h + g)

yo A kA
y2c? + 7(1 —¥,)Gk?coshk (h + E) =gk (1 - 7)
Wave amplitude equation is written as an equation for G,
i.e.
_ Ayo
- 2kcosh k(h+§)(1—%)
and substitute it to the last equation,
20.2 2

22(1 kA)+y (1 —y,)kA = k(l kA)
y%e )+ Y)kA =g :

The calculation of the value kwith this equation using
Newton-Rhapson method requires initial estimation
ofkfor the initial value of the iteration. The initial value of
kcan be obtainedby ignoring convective acceleration, then
(50) becomes

y2o? = gk (1 - %A) ....(51)

This equation is the quadratic equation of wave number
kthat can be easily completed. The use of (51) maximum
value of wave amplitude A in a wave period in deep water
is obtained, i.e. if the determinant D from (51) has a value
of zero.

Amax = 5= (52)

T 2y202

The value ofGcan be calculated using (49).

VI. THE FORMULATION OF WATER WAVE
SURFACE EQUATION.

Water wave surface equation is formulated using a

complete velocity potential equation, i.e. equation (21).
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By using (21), particle velocity in horizontal-xdirection
and particle velocity in vertical-zdirection are
consecutively,

u = Gk(sin kx — coskx)coshk(h + z) sinot

w = —Gk(cos kx + sinkx)sinhk(h + z) sino t
The two particle velocity equations are done at z = nand
substituted to equation KFSBC (42),

d
ya—z = —Gk(cos kx + sinkx)sinhk(h +n) sinot
d
—Gk(sin kx — coskx)coshk(h +n)sinat %
....(53)

As in the previous section, the water wave surface
equation is obtained by integrating (53) against timet,
where the integration is sufficient to be done only at the
sin g telement,

n(x,t) =
Gk
y_cr (cos kx + sinkx)sinhk(h +n)cosot

Gk . dn
+—(sin kx — coskx)coshk(h +n) cosat —
yo dx

In the deep water the equation can be written as,

106 = 6o (0 + € + (6 = ) 32 5..0.(64)
where,to simplify the writing ¢, = s—:coshk(h +n),¢, =
sinkx, ¢, = coskx dan c; = cosotare defined. Equation
(54) is differentiated against horizontal-x axis

d d
ﬁ = cok ((—C1 +c;)+ (e +¢1) ﬁ) C3 woeeene (55)
Equation (54) is water wave surface equation that is used

to calculate water surface elevation where E—Zin (54) is
calculated using (55). nin ¢, = %COShk(h + n)is
calculated using the equation,

n(x,t) = A(coskx + sinkx)cosat ....(56)

Whereas j—zm (55) it is calculated with,

;—Z = Ak(—sinkx + coskx)cosat ....(57)

VILI. THE RESULTS OF THE EQUATION.
7.1 The characteristic of water wave surface.
In the calculations that will be done in this section, the
value of y =3.0andy, = 1.630are used and the
calculation is done in the deep water. Deep water depth
hois obtained with the following equation

ho =1 (20m —%) ..(58)
WhereAis calculated using (52).
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Table.3: The result of calculation of wave parameter and
other characteristic
T H L H H

nmax

(sec) | (m) (m) L A H
6 | 1,409 | 5,026 | 0,28 | 2,865 | 0,851

7 1918 | 6,842 | 0,28 | 2,865 | 0,851
8 2,506 | 8,936 | 0,28 | 2,865 | 0,851
9 3,171 | 11,309 | 0,28 | 2,865 | 0,851
10 | 3,915 | 13,962 | 0,28 | 2,865 | 0,851
11 | 4,737 | 16,894 | 0,28 | 2,865 | 0,851
12 | 5,638 | 20,105 | 0,28 | 2,865 | 0,851
13 | 6,617 | 23,595 | 0,28 | 2,865 | 0,851
14 | 7,674 | 27,365 | 0,28 | 2,865 | 0,851
15 8,81 |31413 | 0,28 | 2,865 | 0,851

Using water wave surface equation, the elevation of wave
crest nqcand the elevation of wave trough n,,,are
calculated. The wave height iS H = Npmex — Mmin
whereas Wilson (1963) criteria is"";J.Table (3) presented
the result of the calculations of wave height, wavelength,
wave steepness, and the comparison of wave height Hand
wave amplitude A.

Wave-steepness %=0.280, where considering the

calculation used maximum wave Amplitude A that was
calculated using (52), then wave steepness is critical wave

steepness.
Table.4: Types of wave, according to Wilson criteria
(1963)
Wave Type Nmax
H
Airy waves < 0.505
Stoke’s waves < 635
Cnoidal waves 0.635 < nn;lax <1
Solitary waves =1

The critical wave steepness is bigger than the criteria

ofMichell (1893) i.e.%=0.142. The comparison

between wave height and wave amplitude is%=

2.865which is bigger than 2. Therefore, therelation
between wave height and wave amplitude isH = 24
cannot be used. The obtained Wilson parameter is "”‘% =
0.851. Based on Wilson criteria (1963), Table (4), the
value of the parameter shows that the wave profile has a
cnoidal wave type, with wave profile presented
inFig.1l.and Fig.2.for wave period T = 8 sec.

Page | 142


https://dx.doi.org/10.22161/ijaers.610.21
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS)

https://dx.doi.orqg/10.22161/ijaers.610.21

[Vol-6, Issue-10, Oct- 2019]
ISSN: 2349-6495(P) | 2456-1908(0)

2.5
1.5
0.5

-0.5

Fig.1. Wave profile with wave period of 8 sec., in one
wave length
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Fig.2. Wave profile with wave period of 8 sec., in3 wave
lengths.

7.2. Comparison with Wiegel equation

Using data from an observation, Wiegel (1949-1964)
formulated relation between wave period Tand maximum
wave height H,,,,in a wave period, i.e.

Twieg = 15.6 /”mT .......... (58)

Table.5: Comparison with Wiegel equation

y=3.0 y = 2.97102

T Y, = 1.63164 Y, = 1.60095
Hyax TWieg Hyax TWieg
(sec) | (m) (sec) (m) (sec)

6 1,40943 | 5,91305 | 1,45118 6

7 1,9184 | 6,89858 | 1,97523 | 7,00002

8 2,50569 | 7,88412 | 2,57992 | 8,00007

9 3,1713 | 8,86969 | 3,26522 | 9,00007

10 | 3,91518 | 9,85522 | 4,03119 | 10,0002

11 | 4,73746 | 10,8408 | 4,87774 | 11,0002

12 | 5,63796 | 11,8264 | 5,80504 | 12,0003

13 | 6,61695 | 12,8121 | 6,81286 | 13,0004

14 | 7,67409 | 13,7976 | 7,90155 | 14,0006

15 | 8,80954 | 14,7831 | 9,07066 | 15,0006

The comparison was done by calculating Ty;cqin (58)
usingthe wave height which is the result of a calculation
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using the model, where the input in the model is wave
period Tand wave amplitude calculated using (52), so that
the wave height that is obtained is the wave height
maximumH,,,..in the related wave period.

Table (5) shows that fory =3, the obtained Ty;.g4is
almost similar with the Tthat is a wave period to
calculate H,,,, with the model. Whereas in y = 2.97102,
it can be said that the obtained T4 is equal with T. The
result of this calculation concludes that the values of y,
yzand equations formulated in this research are in line
with the result of Wiegel research (1949-1964) which is
the result of an observation.

VIIl.  CONCLUSION

If the characteristic of ideal fluid i.e. irrotational flow is
done at Euler momentum equation, and the velocity
potential as the product of Laplace equation solution is
substituted, the hydrodynamic force or convective
equation in the horizontal direction becomes zero. This
problem can be solved using weighted total acceleration
where there is weighting coefficient at the differential
term against vertical-z axis and the resulted model
producewave height that corresponds to Wiegel equation.
Another finding that should be noticed is that the value of
wave height is not twice the value of wave amplitude.

A further research needed is formulating shoaling and
breaking model by doing the weighted total acceleration
equation, because there are many researches result in the
laboratory on breaker height that are stated in the form of
Breaker Height Index equation, so that the shoaling-
breaking model and its various basic theories can easily
be calibrated.
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