
International Journal of Advanced Engineering Research and Science (IJAERS)                               [Vol-5, Issue-12, Dec- 2018] 

https://dx.doi.org/10.22161/ijaers.5.12.25                                                                               ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                          Page | 178 

Fractional Order Butterworth Filter 
Mehmet Emir Koksal 

 

Department of Mathematics , Ondokuz Mayis University, 55139 Samsun, Turkey 

Email: mekoksal@omu.edu.tr 

 

Abstract—Fractional order Butterworth filter derived 

from the conventional 3rd order Butterworth filter by the 

transition of the ordinary derivative to the fractional one 

as in [1] is investigated in this paper. The change of the 

filter characteristics is studied depending on the order of 

the fractional derivative. Effects of the transformation on 

the components’ behaviors of the filter is formulated. 

Design of the filter in the sense of choosing the filter 

parameters to satisfying the given specifications is 

described. 
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I. INTRODUCTION 

Fractional calculus (FC) [2,3]provides more accurate 

models than classical calculus for many of the physical 

systems showing intrinsic fractional order (FO) 

behavior[4-6]. Fractional derivative takes into account the 

past history when memory like behaviors exhibit in 

components [7-10]. The same advantages appear in some 

electrical circuits as well [11-16]. 

In [1], a method is given for obtaining fractional order 

differential equation (FODE) from ordinary differential 

equation (ODE) keeping the consistency of 

dimensionality in physical systems. This method is used 

to find the natural response of a FO RLC circuit by F. 

Gomez at al. [17].  

In this paper, FO Butterworth filter (FOBF) is derived by 

using a method similar to Gomez’s method. The ordinary 

derivative is replaced by FO derivative) by the 

transformation 

𝑑

𝑑𝑡
→

1

𝜎 1−𝛾

𝑑 𝛾

𝑑𝑡𝛾
,                               (1) 

where𝛾 is an arbitrary parameter defining the order of 

derivative and the auxiliary parameter 𝜎 has the 

dimension of second. Time and frequency response 

characteristics of the obtained FOBF is investigated 

according to the transformation parameters  𝛾and 𝜎. 

The paper is organized as follows: In Section 2, a brief 

summary of the FC relevant to the content of this paper is 

presented. Section 3 covers the short introduction of the 

conventional Butterworth filter. Section 4 describes the 

evaluation of the FOBF and the related formulas. In 

Section 5, the time and frequency domain characteristics 

of the FOBF is investigated. Finally, conclusions are 

included in Section 6. 

 

II. FRACTIONAL CALCULUS 

It is well known that Caputo fractional time derivative 

[16, 17] of a function 𝑓(𝑡) is defined by 

𝑑 𝛾

𝑑𝑡𝛾
𝑓(𝑡) = 𝐷𝑡

𝛾
0
𝐶 𝑓(𝑡)

=
1

Γ(𝑛 − 𝛾)
∫

𝑓𝑛 (𝜏)

(𝑡 − 𝜏)𝛾−𝑛+1
𝑑𝜏

𝑡

0

(2a) 

where𝜏 ∈ 𝑅, 𝑛 − 1 < 𝛾 ≤ 𝑛 ∈ 𝑁 = {1, 2, … }, 𝑓𝑛  

represents the ordinary derivative of order 𝑛, and Γ is the 

Gamma function.  For 𝛾 = 1, Eq. (2) gives the usual 

derivative. It is assumed in the scope of this paper that  𝑡 

represents the time in seconds (s), and 𝑛 = 1 so that (2) 

reduces to 

𝑑 𝛾

𝑑𝑡𝛾
𝑓(𝑡) =

1

Γ(1 − 𝛾)
∫

𝑓𝑛 (𝜏)

(𝑡 − 𝜏)𝛾
𝑑𝜏

𝑡

0

.          (2b) 

We note that Eq. (2b) yields  

𝑑 𝛾

𝑑𝑡𝛾
𝑓(𝑡) |

𝑡 =0
=

1

Γ(1 − 𝛾)
∫

𝑓𝑛 (𝜏)

(𝑡 − 𝜏)𝛾
𝑑𝜏

0

0

= 0.     (2c) 

Laplace transform of Eq. (2a) is  

ℒ { 𝐷𝑡
𝛾

0
𝐶 𝑓(𝑡)}  

= 𝑠𝛾𝐹(𝑠) − ∑ 𝑠𝛾−𝑘−1

𝑛−1

𝑘=0

𝑓
(𝑘) (0+

), 𝑛 − 1 < 𝛾 ≤ 𝑛. (3a) 

For 𝑛 = 1, that is 0 < 𝛾 ≤ 1,  

ℒ { 𝐷𝑡
𝛾

0
𝐶 𝑓(𝑡)} = 𝑠𝛾𝐹(𝑠) − 𝑠𝛾−1𝑓(0+

), 0 < 𝛾 ≤ 1.  (3b) 

Considering the inverse Laplace transform, a few useful 

formulas are listed as follows: 

ℒ −1 {
𝑠𝛼 −𝛽

𝑠𝛼 − 𝜆 𝑘

} = 𝑡𝛽−1ℰ𝛼 ,𝛽
(𝜆 𝑘𝑡𝛼).           (4a) 

Where ℰ𝛼 ,𝛽
(. ) is the 2-parameter generalization of the 

Mittag-Leffler function. It is defined by 

ℰ𝛼 ,𝛽
(𝑧) = ∑

𝑧𝑘

Γ(𝛽 + 𝛼𝑘)

∞

𝑘=0

, 𝛼, 𝛽, 𝑧𝜖𝐶; 𝑅𝑒 (𝛼) > 0,   

𝑅𝑒(𝛽) > 0, (4b) 

which reduces to the original Mittag-Leffler function for 

𝛽 = 1: 

ℰ𝛼
(𝑧) = ℰ𝛼 ,1

(𝑧) 

= ∑
𝑧𝑘

Γ(1 + 𝛼𝑘)

∞

𝑘=0

,   𝛼,𝑧𝜖𝐶 ; 𝑅𝑒 (𝛼) > 0. (4c) 
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III. LOW PASS  BUTTERWORTH FILTER 

The transfer function of the 3rd order low pass 

Butterworth filter (LPBF) normalized with the 3 𝑑𝐵 

cutoff frequency of 𝜔0 = 1 𝑟/𝑠 is given by 

𝐻(𝑠) =
1

(s + 1)(𝑠2 + s + 1)
 

=
1

(𝑠3 + 2𝑠2 + 2s + 1)
.                (5a) 

One of the circuit realizations of this transfer function is 

done as the voltage ratio transfer function as it is shown 

in Fig.1. The analysis of the circuit results the following 

transfer function:  

𝑉𝑅 (𝑠)

𝑉𝑆 (𝑠)
= 𝐻(𝑠) =

𝑅

𝐿1𝐿2𝐶

𝑠3 +
𝑅

𝐿2
𝑠2 +

𝐿1+𝐿2

𝐿1𝐿2 𝐶
s +

𝑅

𝐿1𝐿2𝐶

.  (5b) 

Equating the coefficients of the transfer functions in Eqs. 

(5a) and (5b) and using the normalized resistance 𝑅 =

1 Ω, the following component values are obtained for the 

filter.  

𝐿1 = 1.5 𝐻, 𝐿2 = 0.5 𝐻, 𝐶 =
4

3
𝐹, 𝑅 = 1 Ω. (5c) 

 

 

Fig.1: 3rd order Butterworth filter with 𝜔0 = 1 𝑟/𝑠. 

 

The differential equation relating the input voltage 𝑣𝑆(𝑡) 

to the output voltage 𝑣𝑅(𝑡) is obtained form Eq. (5c) by 

inserting the Laplace operator 𝑠 with the derivative 

operator 𝑑/𝑑𝑡 and arranging the terms; the result is  

𝑑 3

𝑑𝑡3
𝑣𝑅

(𝑡) +
𝑅

𝐿2

𝑑 2

𝑑𝑡2
𝑣𝑅

(𝑡) +
𝐿1+𝐿2

𝐿1𝐿2𝐶

𝑑

𝑑𝑡
𝑣𝑅

(𝑡)  

+
𝑅

𝐿1𝐿2𝐶
𝑣𝑅

(𝑡) =
𝑅

𝐿1𝐿2𝐶
𝑣𝑆(𝑡).                   (6) 

The frequency domain characteristics, namely gain and 

phase responses of the filter are obtained replacing 

𝑠 𝑏𝑦 𝑗𝜔 in Eq. (5a); the result is  

𝐻(𝑗𝜔) = 𝑀(𝜔) 𝑒𝑗Φ(𝜔)
,𝑤ℎ𝑒𝑟𝑒                  (7a) 

𝑀(𝜔) = |𝐻(𝑗𝜔) | =
1

√1 + 𝜔6
 ,                 (7b) 

Φ(𝜔) = 𝐴𝑟𝑔{𝐻(𝑗𝜔) } = −𝑡𝑎𝑛 −1
(2 − 𝜔2)𝜔

1 − 2𝜔2
,   (7c) 

are the phase and phase characteristic, respectively. From 

Eq. (7a), it is obvious that the gain decreases from its 

value  1 𝑎𝑡 𝜔 = 0, and it becomes equal to its half power 

value 𝑀 = 1/√2  𝑎𝑡 𝜔 = 1, it decays to zero as 𝜔 → ∞. 

And the phase start from 0 𝑎𝑡 𝜔 = 0, it decreases 

monotonically to −270𝑜  𝑎𝑠 𝜔 → ∞. The time and 

frequency characteristics are not plotted at this stage since 

they will appear as the special case of the fractional 

Butterworth filter considered in the next section. 

 

IV. FRACTIONAL ORDER LOW PASS  

BUTTERWORTH FILTER  

Applying the fractional transformation to the components 

of the LPBF in Fig. 1, we have the following time and 

Laplace domain element behavior equations in the circuit:  

𝑣𝑅
(𝑡) = 𝑅𝑖𝑅

(𝑡),     𝑉𝑅
(𝑠) = 𝑅𝐼𝑅

(𝑠),             (8a) 

𝑣𝐿𝑖
(𝑡) = 𝐿𝑖

1

𝜎 1−𝛾

𝑑 𝛾𝑖𝐿
(𝑡)

𝑑𝑡𝛾
, 𝑉𝐿𝑖

(𝑠) 

= 𝐿𝑖

1

𝜎 1−𝛾
𝑠𝛾𝐼𝐿𝑖

(𝑠), 𝑖 = 1,2,             (8b) 

𝑖𝐶
(𝑡) = 𝐶 

1

𝜎 1−𝛾

𝑑 𝛾𝑣𝐶
(𝑡)

𝑑𝑡𝛾
, 𝐼𝐶

(𝑠) = 𝐶
1

𝜎 1−𝛾
𝑠𝛾𝑉𝐶

(𝑠) . (8c) 

The frequency and time domain analysis of the circuit 

with these component behavior equations, or direct 

substitutions 𝑠 →
𝑠𝛾

𝜎1−𝛾 in Eq. (5b) and 
𝑑

𝑑𝑡
→

1

𝜎1−𝛾

𝑑𝛾

𝑑𝑡𝛾 ,
𝑑2

𝑑𝑡2 →
1

𝜎2(1−𝛾)

𝑑2𝛾

𝑑𝑡2𝛾 ,
𝑑3

𝑑𝑡3 →
1

𝜎3(1−𝛾)

𝑑3𝛾

𝑑𝑡3𝛾 ,  in Eq. (6) 

yield 

𝑉𝑅
(𝑠)

𝑉𝑆
(𝑠)

= 𝐻(𝑠) = 

𝑅𝜎3(1−𝛾)

𝐿1𝐿2𝐶

𝑠3𝛾 +
𝑅𝜎(1−𝛾)

𝐿2
𝑠2𝛾 +

(𝐿1+𝐿2)𝜎2(1−𝛾)

𝐿1 𝐿2𝐶
𝑠𝛾 +

𝑅 𝜎3(1−𝛾)

𝐿1 𝐿2𝐶

, (9a) 

𝑑 3𝛾

𝑑𝑡3𝛾
𝑣𝑅

(𝑡) +
𝑅𝜎

(1−𝛾)

𝐿2

𝑑 2𝛾

𝑑𝑡2𝛾
𝑣𝑅

(𝑡)  

+
(𝐿1+𝐿2

)𝜎 2(1−𝛾)

𝐿1𝐿2𝐶

𝑑 𝛾

𝑑𝑡𝛾
𝑣𝑅

(𝑡)  

+
𝑅𝜎 3(1−𝛾)

𝐿1𝐿2𝐶
𝑣𝑅(𝑡) =

𝑅𝜎 3(1−𝛾)

𝐿1𝐿2𝐶
𝑣𝑆(𝑡).        (9b) 

respectively. The characteristic equation is obtained by 

equating the denominator polynomial of the transfer 

function in Eq. (9a) to zero: 

𝑠3𝛾 +
𝑅𝜎

(1−𝛾)

𝐿2

𝑠2𝛾 +
(𝐿1+𝐿2

)𝜎 2(1−𝛾)

𝐿1𝐿2𝐶
𝑠𝛾 +

𝑅𝜎 3(1−𝛾)

𝐿1𝐿2𝐶
 

= 0.                                             (9c) 

The characteristic polynomial appearing in the left side of 

the equality in Eq. (9c) is s a commensurate polynomial 

in power 𝑠𝛾. So the time domain responses (such as step 

and impulse responses) of the filter can be obtained 

analytically by using Mittag-Leffler function [5]. But, 

these solutions are not included within the content of the 

paper and it is satisfied by their plots only, instead we are 

confined to the frequency domain responses . 

 

V. FILTER CHARACTERIS TICS 

To find the gain and phase characteristics of the FO LPBF 

derived in the previous section, we let 𝑠 = 𝑗𝜔 in Eq. (9a) 

and use the identity 
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(𝑗𝜔)𝛾 = 𝜔𝛾 (𝑒
𝑗

𝜋

2 )
𝛾

= 𝜔𝛾 𝑒
𝑗

𝜋

2
𝛾
 

= 𝜔𝛾 [cos (
𝜋

2
𝛾) + 𝑗𝑠𝑖𝑛 (

𝜋

2
𝛾)].                 (10) 

The result is 

𝑀(𝜔) =
𝑏0

√𝐴2 + 𝐵 2
,                       (11a ) 

Φ(𝜔) = −𝐴𝑟𝑐𝑡𝑎𝑛 (
𝐵

𝐴
) ,                   (11b) 

where 

A = 𝜔3𝛾 cos(1.5𝜋𝛾) + 𝑎2 𝜔2𝛾 cos(𝜋𝛾) 

+𝑎1 𝜔𝛾 cos(0.5𝜋𝛾) + 𝑎0 ,                    (11c) 

B = 𝜔3𝛾 sin(1.5𝜋𝛾) + 𝑎2 𝜔2𝛾 cos(𝜋𝛾) 

+𝑎1𝜔𝛾 cos(0.5𝜋𝛾) ,                       (11d) 

𝑎2 =
𝑅𝜎 (1−𝛾)

𝐿2

, 𝑎1 =
(𝐿1+𝐿2)𝜎 2(1−𝛾)

𝐿1𝐿2𝐶
,      (11e , f) 

𝑎0 = 𝑏0 =
𝑅𝜎 3(1−𝛾)

𝐿1𝐿2𝐶
.                  (11g, h) 

The gain and phase characteristics on the logarithmic 

scale (Bode plots) of the filter for 𝜎 = 1 and different 

values of 𝛾 is shown in Fig. 2 where the conventional 3rd 

order Butterworth filter characteristics is shown by the 

thick dashed red line (𝛾 = 1); The details of the 

numerical data is given in Table 1 where 𝑀𝑝  (in dB) is the 

peak gain at the peak frequency 𝜔𝑝  (in rad/s) , 𝑀1 =

𝑀2 = 𝑀𝑝 − 3are the gains at the cut off frequencies 𝜔1 

and 𝜔2 , 𝐵𝑊 is the bandwidth which is defined as  𝜔2 −

𝜔1 if a peak exist (the case 𝛾 = 1); otherwise  𝐵𝑊 = 𝜔2  

(the cases 𝛾 = 1, 0.75, 0.50)  The quality factor 𝑄 =

𝜔2 /(𝜔2 − 𝜔1 )is defined only for 𝛾 = 1.25 for which the 

gain characteristics has a peak exceeding the 0 dB level 

and the filter can be considered as of bandpass type as 

well.  It is observed from Fig. 2 and the data given in 

Table 1 that the first cut off frequency 𝜔1 and the 

associated gain 𝑀1, and  𝑄 are defined only when the 

characteristic is handled as a BP type for which 

BW=0.221. In general, the bandwidth (𝐵𝑊) and hence 

the cut off frequency (𝜔2 = 𝐵𝑊) decreases with 

decreasing 𝛾 values for the LP filter. 

The phase characteristics decrease from 0𝑜 𝑡𝑜 − 180𝑜  as 

𝜔: 0 → ∞ but with a faster rate at the intermediate 

frequencies with increasing 𝛾.   

 
Fig.2: Bode plots of the transfer function for 𝜎 =1.00. 

 

Table.1: Numerical data for frequency response curves when 𝜎 = 1 for the filter. 

𝛾 𝜔1 −  (𝑀1) 𝜔2 − (𝑀2 ) 𝜔𝑝 − (𝑀𝑝 ) 𝐵𝑊 − (𝐵𝑃) 𝑄 − 𝐵𝑃 

1.25 0.852 - 8.841 1.073 - 8.867 0.979 – (11.844) 1.073 – (0.221) 4.430 

1.00 --- 1.000 – (-3) 0 – (0) 1.000 – (---) --- 

0.75 --- 0.313 – (-3) 0 – (0) 0.313 – (---) --- 

0.50 --- 0.058 – (-3) 0 – (0) 0.058 – (---) --- 

 

The step response of the filter is shown in Fig. 3 for 

values of = 1.25, 1.00, 0.75, 0.50 . It is seen that all the 

responses start from 0 𝑎𝑡 𝑡 = 0 and approaches to 

∞ 𝑎𝑠 𝑡 → ∞, which is a typical property for a LP filter. 

The response is highly oscillatory for 𝛾 = 1.25, the case 

in which the filter can be interpreted as a BP filter as well. 

There is a smaller overshoot for the ordinary 3rd order 

Butterworth filter (case 𝛾 = 1.00, thick red dashed line). 
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The rise time and the settling time decreases as 𝛾 takes 

smaller values. See Table 2 for the detailed numerical 

data, where 𝑇𝑟 : rise time,  𝑇𝑟 : rise time,  𝑇𝑝1 , 𝑇𝑝2 , 𝑇𝑝3: 

peak times, 𝑀𝑝1 , 𝑀 , 𝑀𝑝3: peak values, 𝑇𝑠: settling time all 

in seconds. Some of the data could not be detected since 

the simulations are done up to 40 s. Rise time increases 

with decreasing𝛾 and the minimum settling time occurs 

for the conventional filter (𝛾). 

 

Fig.3: Step responses of the transfer function when 𝜎 =1.00. 

 

Table.2: Step response characteristics for 𝜎 =1.00. 

𝛾 𝑇𝑟  𝑇𝑝1 − 𝑀𝑝1  𝑇𝑝2 − 𝑀𝑝2  𝑇𝑝3 − 𝑀𝑝3 𝑇𝑠 

1.25 1.49 4.56 - 1.678 10.95 - 1.315 17.27 - 1.634 24.63 

1.00 2.29 4.93 – 1.082 12.10 – 1.002 ----- 5.98 

0.75 11.25 ----- ----- ----- 27.51 

0.50 ----- ----- ----- ----- ----- 

Similar characteristics for 𝜎 = 0.1 and the same different 

values of 𝛾 considered before are presented in Fig. 4 and 

Table 3. The general arguments discussed for the case 

𝜎 = 1 hold. For 𝛾 = 1.25, all the critical frequencies are 

increased whilst the critical gains and the quality factor 

remain the same. For 𝛾 = 1.00 the responses are hardly 

affected. For 𝛾 ≤ 1, all the critical frequencies decrease 

with decreasing 𝛾.   

Considering the phase characteristic, it is slightly 

increased (decreased) for 𝛾 = 1.25 (𝛾 < 1.00) and almost 

unaffected for 𝛾 = 1.00. 

 

Fig.4: Bode plots of the transfer function for 𝜎 =0.1. 

https://dx.doi.org/10.22161/ijaers.5.12.25
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                               [Vol-5, Issue-12, Dec- 2018] 

https://dx.doi.org/10.22161/ijaers.5.12.25                                                                               ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                          Page | 182 

Table.3: Numerical data for frequency response curves when 𝜎 = 0.1 for the filter. 

𝛾 𝜔1 −  (𝑀1) 𝜔2 − (𝑀2 ) 𝜔𝑝 − (𝑀𝑝 ) 𝐵𝑊 − (𝐵𝑃) 𝑄 − 𝐵𝑃 

1.25 1.350 - 8.835 1.701 - 8.854 1.552 – (11.844) 1.701 – (0.351) 4.422 

1.00 --- 1.000 – (-3) 0 – (0) 1.000 – (---) --- 

0.75 --- 0.145 – (-3) 0 – (0) 0.145 – (---) --- 

0.50 --- 0.006 – (-3) 0 – (0) 0.006 – (---) --- 

 

Step response of the filter for 𝜎 = 0.1 is shown in Fig. 5. 

It is seen that the conventional Butterworth filter response 

is not affected by 𝜎 when 𝛾 = 1.00 (see the legends 𝛾 =

1.25 𝑎𝑛𝑑  𝛾 = 1.25 ∗). Further, the peak values of 

oscillations are not affected by changing 𝜎from 1 𝑡𝑜 0.1. 

But there is an apparent time lead (squeeze) for 𝛾 =

1.25 >, and time lag (spread) for 𝛾 = 0.75 < 1. The lag 

(spread) is higher for 𝛾 = 0.50. See Table 4 for numerical 

details. The time lead (lag) is used in the sense of faster 

(slower) motion.  

 
Fig.5: Step responses of the transfer function when 𝜎 =0.1. 

 

Table 4: Step response characteristics for 𝜎 =0.1. 

𝛾 𝑇𝑟  𝑇𝑝1 − 𝑀𝑝1  𝑇𝑝2 − 𝑀𝑝2  𝑇𝑝3 − 𝑀𝑝3 𝑇𝑠 

1.25 1.49 2.88 - 1.678 6.91 - 1.315 10.90 - 1.634 15.54 

1.00 2.29 4.93 – 1.082 12.10 – 1.002 19.35 – 1.000 5.98 

0.75 24.24 ----- ----- ----- ----- 

0.50 ----- ----- ----- ----- ----- 

 

Similar frequency characteristics for 𝜎 = 10 and the same 

different values of 𝛾 considered before are presented in 

Fig. 2 and Table 1. The general arguments discussed for 

the case 𝜎 = 1 hold. For 𝛾 = 1.25, all the critical 

frequencies are decreased whilst the critical gains and the 

quality factor remain almost the same. For 𝛾 = 1.00 the 

responses are hardly affected. For 𝛾 ≤ 1, all the critical 

frequencies decrease with decreasing 𝛾.   

Considering the phase characteristic, it is decreased 

(increased) for 𝛾 = 1.25 (𝛾 < 1.00) and almost 

unaffected for 𝛾 = 1.00. 

https://dx.doi.org/10.22161/ijaers.5.12.25
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Fig.6: Bode plots of the transfer function for 𝜎 =10. 

 

Table.5: Numerical data for frequency response curves when 𝜎 = 10 for the filter. 

𝛾 𝜔1 −  (𝑀1) 𝜔2 − (𝑀2 ) 𝜔𝑝 − (𝑀𝑝 ) 𝐵𝑊 − (𝐵𝑃) 𝑄 − 𝐵𝑃 

1.25 0.537 - 8.815 0.677 - 8.868 0.618 – (11.844) 0.677 – (0.140) 4.414 

1.00 --- 1.000 – (-3) 0 – (0) 1.000 – (---) --- 

0.75 --- 0.145 – (-3) 0 – (0) 0.145 – (---) --- 

0.50 --- 0.006 – (-3) 0 – (0) 0.006 – (---) --- 

 

Step response of the filter for 𝜎 = 10 is shown in Fig. 5. 

It is seen that the conventional Butterworth filter response 

is not affected by 𝜎 when 𝛾 = 1.00 (see the legends𝛾 =

1.25 𝑎𝑛𝑑  𝛾 = 1.25 ∗). Further, the peak values of 

oscillations are not affected by changing 𝜎from 1 to 10 . 

But there is an apparent time lag (spread) for 𝛾 = 1.25 >

1, and time lead (squeeze) for 𝛾 = 0.75 < 1. The lead 

(squeeze) is higher for 𝛾 = 0.50.   

 

 

Fig.7: Step responses of the transfer function when 𝜎 =10. 
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Table.6: Step response characteristics for 𝜎 =10. 

𝛾 𝑇𝑟  𝑇𝑝1 − 𝑀𝑝1  𝑇𝑝2 − 𝑀𝑝2  𝑇𝑝3 − 𝑀𝑝3 𝑇𝑠 

1.25 2.38 7.23 - 1.678 17.35 - 1.315 27.37 - 1.634 39.05 

1.00 2.29 4.93 – 1.082 12.10 – 1.002 19.35 – 1.000 5.98 

0.75 5.22 ----- ----- ----- 12.77 

0.50 12.63 ----- ----- ----- ----- 

 

VI. CONCLUSION 

A FO Butterworth filter derived from the conventional 3rd 

order Butterworth filter by the IO derivative to FO 

derivative transformation with two parameters 𝛾 𝑎𝑛𝑑  𝜎  as 

in [17] is investigated in this paper. It is arrived the 

following conclusions. 

1. A variety of low pass filters can be obtained by 

changing the parameters 𝛾and 𝜎.  

2. For 𝛾 > 1, the classical frequency response curve of 

the Butterworth filter disappears , and a peak occur 

in the frequency response. 

3. When 𝛾 = 1, 𝜎 does not effect on the 

characteristics. 

4. 𝜎dominantly affect the time characteristics, critical 

magnitudes of the time responses are not changed, 

but increase of 𝜎 cuuses a slower (faster) response 

for 𝛾 > 1 (𝛾 < 1). That is 𝜎 effects like a time 

scaling operator. 

5. Effect of 𝜎 on the phase characteristics is that 

increase of 𝜎 decreases (increases the phase if 𝛾 > 1 

(𝛾 < 1). 

6. For  𝛾 > 1 and as 𝛾 → 1.38 the filter can be used a 

high-Q narrow band pass filter as well. But in the 

limit case the filter becomes unstable. 

Having in mind these conclusions, fractional order low 

pass filters and/or band pass filers can be designed. 
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