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Abstract— In this study, a Boussinesq equation was developed to model 

water waves. The equations were formulated using a weighted Taylor 

series, the Taylor series with weighted coefficients in the terms. The 

equation consists of the water surface elevation equation, the water 

particle velocity in the direction of the horizontal axis and vertical axis. 

The formulation of the continuity equation and the momentum equation is 

carried out on the same control volume with the same characteristics of 

particle velocity change. Thus, both equations have velocity variables with 

the same characteristics. The study obtained the Boussinesq equation that 

can be used with large wave amplitudes that are in line with those found in 

nature and can model shoaling and breaking well. 

 

I. INTRODUCTION 

The time series water wave model is generally referred to 

as the Boussinesq equation. There are many versions of the 

Boussinesq equation, both the continuity equation or the 

water surface equation and the momentum equation. 

Among researchers who developed the Boussinesq 

equationareBoussinesq (1871), Dingermans(1997), Hamm, 

Madsen, and Peregrin(1993), Johnson (1997), Kirby 

(2003), Peregrine (1967), Peregrine (1972), and many 

more. These equations are formulated using continuity 

equation and Euler’sthe momentum equation, which are 

well known, but in different explanationsmaking each 

researcher has his own Boussinesq equation. 

The Boussinesq equations in this study were formulated 

using a different method from the previous Boussinesq 

equation formulation. This study formulated the continuity 

equation and momentum equation using the weighted 

Taylor series (Hutahaean, 2021a). The total acceleration in 

the momentum equation is formulated using the same 

control volume as in the continuity equation, where the 

horizontal velocity of 𝑥-direction only changes on the 𝑥-

direction and the vertical velocity of 𝑧-direction changes 

only on the 𝑧-axis of vertical. 

The basic form of the continuity equation obtained is the 

sum of the total acceleration in the horizontal-𝑥direction 

with the total acceleration in the vertical 𝑧-axis. 

Furthermore, by working on very small time intervals, the 

term acceleration versus time (localacceleration) is 

omitted, obtaining a continuity equation in the form of a 

spatial differential only, as is the case with the continuity 

equation that has been widely used. However, there is a 

weighting coefficient on the horizontal differential term. 

Furthermore, by reducing the spatial size of the control 

volume in the horizontal 𝑥-direction and in the vertical-

𝑧direction, the relation between the local acceleration of 

the particle in the vertical  𝑧-axis and the local acceleration 

of the particle in the horizontal 𝑥-direction is obtained. 

This relation is used to calculate the particle velocity in the 

vertical 𝑧-direction. While the particle velocity equation in 

the horizontal 𝑥-directionis obtained from the momentum 

equation in the horizontal 𝑥-direction. The hydrodynamic 

pressure and dynamic driving force in the horizontal axis-

𝑥are obtained by integrating the vertical 𝑧-direction 

momentum equation on the vertical axis. 

By using the same control volume in the formulation of the 

continuity equation with the formulation of the momentum 
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equation, the definitive equation equal to the velocity of 

the particlewas obtained. Hence, there is a harmony 

between the continuity equation and the momentum 

equation. 

 

Continuity Equation Formulation 

The continuity equation is formulated by working on the 

principle of conservation of mass in an incompressible 

flow using the control volume in Figure (1). The input-

output due to fluid flow in the control volume is as 

follows. 

Input, 

𝐼 = 𝜌𝑢 𝛿𝑧 +  𝜌𝑤 𝛿𝑥 

Output, 

𝑂 = 𝜌(𝑢 + 𝛿𝑢)𝛿𝑧 +  𝜌(𝑤 + 𝛿𝑤)𝛿𝑥 

As a result of the input and output, at the small time 

interval 𝛿𝑡, there is a change in the fluid mass at the 

control volume of, 

𝛿𝑚 = (𝐼 − 𝑂)𝛿𝑡 

 

 

 

 

 

 

 

 

 

 

Fig.1: Input-output on the controlvolume 

 

Substitute the input and output equations, and divide both 

sides of the equation by𝛿𝑡 𝛿𝑥 𝛿𝑧, 

𝛿𝑚

𝛿𝑡𝛿𝑥 𝛿𝑧
= −𝜌 

𝛿𝑢

𝛿𝑥
 −  𝜌 

𝛿𝑤

𝛿𝑧
 

For a constant control volume, the mass change in the 

control volume is 

𝛿𝑚 =  𝛿𝜌 𝛿𝑥 𝛿𝑧 

equation obtained: 

𝛿𝜌 

𝛿𝑡
= −𝜌 

𝛿𝑢

𝛿𝑥
−  𝜌 

𝛿𝑤

𝛿𝑧
 

for incompressible flow
𝛿𝜌 

𝛿𝑡
= 0, 

𝛿𝑢

𝛿𝑥
+  

𝛿𝑤

𝛿𝑧
= 0     …….(1) 

Equation (1) is a continuity equation in a very basic form. 

The derivative form of (1) is determined by the definitions 

of 𝛿𝑢 and δw. To get the form of 𝛿𝑢 and 𝛿𝑤,  the weighted 

Taylor series (Hutahaean, 2021a) is used for a function: 

𝑓(𝑥, 𝑧, 𝑡) = cosh 𝑘(ℎ + 𝑧) cos 𝑘𝑥 cos 𝜎𝑡 

𝑘 is the wave number, ℎ is the water depth, 𝜎 is the 

angular frequency, 𝑥 is the horizontal axis, 𝑧 is the vertical 

axis, and 𝑡 is the time. This equation is a form of velocity 

potential solution to Laplace’s equation (Dean, 

1991).cos 𝜎𝑡 is used instead of sin 𝜎𝑡. The weighted 

Taylor series from the equation is: 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) 

+𝛾2 𝛿𝑡 
Ƌ𝑓

Ƌ𝑡
+ 𝛾 𝛿𝑥 

Ƌ𝑓

Ƌ𝑥
+  𝛿𝑧

Ƌ𝑓

Ƌ𝑧
 

..(2) 

𝛾is the weighting coefficient. In (2), there is a relation, 

𝛿𝑧 = 𝛾 𝛿𝑥        ……(3) 

For the horizontal velocity𝑢(𝑥, 𝑧, 𝑡), the only thing that 

change is the horizontal 𝑥-direction, 

𝑢(𝑥 + 𝛿𝑥, 𝑧, 𝑡 + 𝛿𝑡) = 𝑢(𝑥, 𝑧, 𝑡) 

+𝛾2 𝛿𝑡 
Ƌ𝑢

Ƌ𝑡
+ 𝛾 𝛿𝑥 

Ƌ𝑢

Ƌ𝑥
 

The first term of right-hand side is moved to the left and 

defined, 

𝛿𝑢 = 𝛾2𝛿𝑡 
Ƌ𝑢

Ƌ𝑡
+ 𝛾 𝛿𝑥

Ƌ𝑢

Ƌ𝑥
…..(4) 

For the vertical velocity 𝑤(𝑥, 𝑧, 𝑡), which changes in the 

vertical 𝑧-direction only, 

𝑤(𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑤(𝑥, 𝑧, 𝑡) 

+𝛾2 𝛿𝑡 
Ƌ𝑤

Ƌ𝑡
+ 𝛿𝑧 

Ƌ𝑤

Ƌ𝑧
 

 

𝛿𝑤 is 

𝛿𝑤 = 𝛾2 𝛿𝑡 
Ƌ𝑤

Ƌ𝑡
+ 𝛿𝑧 

Ƌ𝑤

Ƌ𝑧
….(5) 

Substitute (4) and (5) to (1), 

𝛾2 𝛿𝑡 
Ƌ𝑢

Ƌ𝑡
+ 𝛾 𝛿𝑥 

Ƌ𝑢

Ƌ𝑥

𝛿𝑥
+

𝛾2 𝛿𝑡 
Ƌ𝑤

Ƌ𝑡
+ 𝛿𝑧 

Ƌ𝑤

Ƌ𝑧

𝛿𝑧
= 0 

Substitute𝛿𝑧by (3)in the denominator of the second term 

and multiplying the equation by𝛾 𝛿𝑥, 

𝛾3𝛿𝑡
Ƌ𝑢

Ƌ𝑡
+ 𝛾2 𝛿𝑥 

Ƌ𝑢

Ƌ𝑥
+  𝛾2 𝛿𝑡 

Ƌ𝑤

Ƌ𝑡
+ 𝛿𝑧 

Ƌ𝑤

Ƌ𝑧
= 0 

…(6) 

Then, with constant𝛿𝑥and𝛿𝑧, 𝛿𝑡is reduced to close to zero, 

the equation becomes, 

𝑢 +δu 𝑢 

𝑤 

𝑤 + 𝛿w 

𝛿𝑥 

𝛿𝑧 
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𝛾2 𝛿𝑥 
Ƌ𝑢

Ƌ𝑥
+  𝛿𝑧 

Ƌ𝑤

Ƌ𝑧
= 0 

Substitute𝛿𝑧by (3)and divide the equation by 𝛾 𝛿𝑥, 

𝛾 
Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
= 0….(7) 

(7) is theweighted continuity equationthat will be used to 

formulate the water surface elevation equation, in the 

following section. 

 

II. THE FORMULATION OF WATER SURFACE  

EQUATION𝜼(𝒙, 𝒕). 

The continuity equation (7) is multiplied by 𝑑𝑧and 

integrated over water depth, 

𝛾 ∫
Ƌ𝑢

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ

+ ∫ 𝑑𝑤
𝜂

−ℎ

= 0 

The integration of the 1st term is accomplished by the 

Leibniz integration rule. The equation of the Leibniz 

integral rule (Protter, Murray, Morrey, &Charles, 1985)is: 

∫
Ƌ𝑓

Ƌ𝑥
𝑑𝑧

𝛽

𝛼
=

Ƌ

Ƌ𝑥
∫ 𝑢 𝑑𝑧

𝛽

𝛼
− 𝑓𝛽

Ƌ𝛽

Ƌ𝑥
+ 𝑓𝛼

Ƌ𝛼

Ƌ𝑥
……(8) 

Then the integration of the 1st term is, 

𝛾 ∫
Ƌ𝑢

Ƌ𝑥
𝑑𝑧

ɳ

−ℎ

= 𝛾
Ƌ

Ƌ𝑥
∫ 𝑢 𝑑𝑧

ɳ

−ℎ

−  𝛾𝑢ɳ

Ƌɳ

Ƌ𝑥
− 𝛾𝑢−ℎ

Ƌℎ

Ƌ𝑥
 

where
Ƌ(−ℎ)

Ƌ𝑥
= −

Ƌℎ

Ƌ𝑥
 , 𝑢𝜂is the horizontal velocity at the 

surface, while𝑢−ℎis the horizontal velocity on the sea bed. 

This integration is substituted into(8), while𝑤ɳparticle 

velocity of 𝑧-direction is substituted by weighted 

Kinematic Free Surface Boundary Condition (Hutahaean, 

2021a), which is: 

𝑤ɳ = 𝛾
Ƌɳ

Ƌ𝑡
+ 𝑢ɳ

Ƌɳ

Ƌ𝑥
, 

So, 

𝛾
Ƌ

Ƌ𝑥
∫ 𝑢𝑑𝑧

ɳ

−ℎ

−  𝛾𝑢ɳ

Ƌɳ

Ƌ𝑥
− 𝛾𝑢−ℎ

Ƌℎ

Ƌ𝑥
 

+𝛾
Ƌɳ

Ƌ𝑡
+ 𝑢ɳ

Ƌɳ

Ƌ𝑥
− 𝑤−ℎ = 0 

Integration is completed by working on the concept of 

depth average velocity, while 𝑤−ℎis substituted with the 

bottom kinematic boundary condition, 

𝛾
Ƌɳ

Ƌ𝑡
+ 𝛾

Ƌ𝛽𝑢𝑈𝐻

Ƌ𝑥
+ (1 − 𝛾)𝛼𝑢𝜂𝑈

Ƌɳ

Ƌ𝑥
+ (1 − 𝛾)𝛼𝑢ℎ𝑈

Ƌℎ

Ƌ𝑥
= 0 

…(9) 

𝑈is the horizontal depth average velocity, 𝛽𝑢is the 

coefficient integration, 𝐻is the total water depth 𝐻 = ℎ +

𝜂,  while𝛼𝑢𝜂is the transformation coefficient from the 

horizontal surface velocity𝑢𝜂to the depth average velocity 

𝑈,  while𝛼𝑢ℎis the transformation coefficient from𝑢−ℎto 

depth average velocity 𝑈.These coefficients will be 

discussed in section 4. 

 

III. EQUATION OF PARTICLE VELOCITY IN THE 

HORIZONTAL DIRECTION AND VERTICAL 

DIRECTION 

3.1. Momentum equation 

For the conformity with the continuity equation, the 

momentum equation will be formulated using the control 

volume in figure (1) where the horizontal velocity 𝑢 only 

changes on the horizontal 𝑥-axis, while the vertical 

velocity 𝑤 only changes on the vertical 𝑧-axis. Equation 

(4) is divided by 𝛿𝑡 and very small 𝛿𝑡 and 𝛿𝑥close to zero 

were taken, 

𝐷𝑢

𝑑𝑡
= 𝛾2 Ƌ𝑢

Ƌ𝑡
+ 𝛾 𝑢

Ƌ𝑢

Ƌ𝑥
      ……(10) 

This equation is the total acceleration in the horizontal 𝑥-

direction. Equation (5) is divided by 𝛿𝑡 and very 

small 𝛿𝑡and𝛿𝑧close to zero were taken, 

𝐷𝑤

𝐷𝑡
= 𝛾2 Ƌ𝑤

Ƌ𝑡
+ 𝑤

Ƌ𝑤

Ƌ𝑧
     ……(11) 

This equation is the total acceleration in the vertical 𝑧-

direction. 

A method is used to formulate the Euler’s momentum 

equationin (10) and (11),that the mass multiplied by the 

acceleration is the same as the driving force, the equations 

for the horizontal 𝑥-directionand vertical 𝑧-direction are 

obtained, respectively, 

𝛾2 Ƌ𝑢

Ƌ𝑡
+ 𝛾 𝑢

Ƌ𝑢

Ƌ𝑥
= −

1

𝜌

Ƌ𝑝

Ƌ𝑥
    …….(12) 

𝛾2 Ƌ𝑤

Ƌ𝑡
+ 𝑤

Ƌ𝑤

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑧
− 𝑔…….(13) 

3.2. Hydrodynamic Pressure Equation 

To obtain the pressure equation𝑝, (13) is multiplied by 

𝑑𝑧and integrated about the vertical 𝑧-axis, 

𝛾2 ∫
Ƌ𝑤

Ƌ𝑡
 𝑑𝑧

𝜂

𝑧

+
1

2
∫ 𝑑𝑤𝑤

𝜂

𝑧

= −
1

𝜌
∫ 𝑑𝑝

𝜂

𝑧

− 𝑔 ∫ 𝑑𝑧
𝜂

𝑧

 

 

The integration of the 2ndterm on the left and the 1st and 2nd 

terms on the right is solved.The surface dynamic boundary 

conditions are done𝑝𝜂 = 0and the equation is written as 

the equation for 𝑝, 

𝑝

𝜌
= 𝛾2 ∫

Ƌ𝑤

Ƌ𝑡
 𝑑𝑧

𝜂

𝑧

+
1

2
(𝑤𝜂𝑤𝜂 − 𝑤𝑤) + 𝑔(𝜂 − 𝑧) 

…..(14) 

 

This equation is the hydrodynamic pressure equation. 

Next, (14) is differentiated about the horizontal 𝑥-axis, 

 

1

𝜌

Ƌ𝑝

Ƌ𝑥
= 𝛾2

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
 𝑑𝑧

𝜂

𝑧

+
1

2

Ƌ𝑤𝜂𝑤𝜂

Ƌ𝑥
−

1

2

Ƌ𝑤𝑤

Ƌ𝑥
+ 𝑔

Ƌ𝜂

Ƌ𝑥
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Hutahaean (2021b) solves the integration and differential 

on the 1st term on the right side of the equation by using 

the velocity potential of the solution to the Laplace 

equation obtaining 

 

1

𝜌

Ƌ𝑝

Ƌ𝑥
= 𝛾2 (

Ƌ𝑢𝜂

Ƌ𝑡
−

Ƌ𝑢

Ƌ𝑡
) +

1

2

Ƌ𝑤𝜂𝑤𝜂

Ƌ𝑥
−

1

2

Ƌ𝑤𝑤

Ƌ𝑥
+ 𝑔

Ƌ𝜂

Ƌ𝑥
 

 

        ……..(15) 

This equation is the equation for the hydrodynamic driving 

force in the horizontal 𝑥-direction. 

 

3.3. Velocity Equation in the Horizontal 𝑥-direction 

 

(15) is substituted to (12),   

 

𝛾2
Ƌ𝑢

Ƌ𝑡
+

𝛾

2

Ƌ𝑢𝑢

Ƌ𝑥
= −𝛾2 (

Ƌ𝑢𝜂

Ƌ𝑡
−

Ƌ𝑢

Ƌ𝑡
) 

−
1

2

Ƌ𝑤𝜂𝑤𝜂

Ƌ𝑥
+

1

2

Ƌ𝑤𝑤

Ƌ𝑥
− 𝑔

Ƌ𝜂

Ƌ𝑥
 

The 1stterm on the left side and the the 2ndterm on the right 

side cancel each other out, then this equation is multiplied 

by 𝑑𝑧 and integrated over water depth, 

 

𝛾2
Ƌ𝑢𝜂

Ƌ𝑡
𝐻 +

𝛾

2
∫

Ƌ𝑢𝑢

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ

= −
1

2

Ƌ𝑤𝜂𝑤𝜂

Ƌ𝑥
𝐻 

+
1

2
∫

Ƌ𝑤𝑤

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ
− 𝑔

Ƌ𝜂

Ƌ𝑥
𝐻 …….(16) 

 

The integration of the 2ndterm on the left and right sides is 

solved by the Leibniz Integral rule, 

∫
Ƌ𝑢𝑢

Ƌ𝑥

𝜂

−ℎ

𝑑𝑧 =
Ƌ

Ƌ𝑥
∫ 𝑢𝑢 𝑑𝑧

𝜂

−ℎ

− 𝑢𝜂𝑢𝜂

Ƌ𝜂

Ƌ𝑥
− 𝑢−ℎ𝑢−ℎ

Ƌℎ

Ƌ𝑥
 

The integration of the right-hand side is solved by using 

the concept of depth average velocity, 

∫
Ƌ𝑢𝑢

Ƌ𝑥

𝜂

−ℎ

𝑑𝑧 =
Ƌ𝛽𝑢𝑢𝑈𝑈𝐻

Ƌ𝑥
− 𝑢𝜂𝑢𝜂

Ƌ𝜂

Ƌ𝑥
− 𝑢−ℎ𝑢−ℎ

Ƌℎ

Ƌ𝑥
 

𝛽𝑢𝑢is the coefficient integration, that will be discussed in 

section 4, then the horizontal velocity at the 

surface𝑢𝜂andthe horizontal velocity on the sea bed 𝑢−ℎare 

transformed intohorizontal depth average velocity, 

∫
Ƌ𝑢𝑢

Ƌ𝑥

𝜂

−ℎ

 𝑑𝑧 =
Ƌ𝛽𝑢𝑢𝑈𝑈𝐻

Ƌ𝑥
− 𝛼𝑢𝜂𝛼𝑢𝜂𝑈𝑈

Ƌ𝜂

Ƌ𝑥

− 𝛼𝑢ℎ𝛼𝑢ℎ𝑈𝑈
Ƌℎ

Ƌ𝑥
 

𝛼𝑢𝜂and𝛼𝑢ℎare transformation coefficients thatwill be 

discussed in section 4. 

In the same way, it will be obtained, 

∫
Ƌ𝑤𝑤

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ

=
Ƌ𝛽𝑤𝑤𝑊𝑊𝐻

Ƌ𝑥
− 𝛼𝑤𝜂𝛼𝑤𝜂𝑊𝑊 

Ƌ𝜂

Ƌ𝑥

− 𝑤−ℎ𝑤−ℎ

Ƌℎ

Ƌ𝑥
 

 

𝛽𝑤𝑤coefficient integration and 𝛼𝑤𝜂is the transformation 

coefficient.  Kinematic sea bed boundary condition 

is𝑤−ℎ = −𝑢−ℎ
Ƌℎ

Ƌ𝑥
. So 

𝑤−ℎ𝑤−ℎ

Ƌℎ

Ƌ𝑥
= −𝑢−ℎ𝑢−ℎ (

Ƌℎ

Ƌ𝑥
)

3

 

Ƌℎ

Ƌ𝑥
is the small bottom slope, so𝑤−ℎ𝑤−ℎ

Ƌℎ

Ƌ𝑥
is very small and 

can be ignored, so 

 

𝑢𝜂in (16) is transformed into 𝑈and𝑤𝜂is transformed into 

𝑊and divided by 𝐻, 

 

𝛾2𝛼𝑢𝜂

Ƌ𝑈

Ƌ𝑡
+

𝛾

2𝐻
∫

Ƌ𝑢𝑢

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ

= −
𝛼𝑤𝜂𝛼𝑤𝜂

2

Ƌ𝑊𝑊

Ƌ𝑥
 

+
1

2𝐻
∫

Ƌ𝑤𝑤

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ

− 𝑔
Ƌ𝜂

Ƌ𝑥
 

 

The result of integration is substituted∫
Ƌ𝑢𝑢

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ
 

and∫
Ƌ𝑤𝑤

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ
 

𝛾2𝛼𝑢𝜂

Ƌ𝑈

Ƌ𝑡
+

𝛾

2𝐻

Ƌ𝛽𝑢𝑢𝑈𝑈𝐻

Ƌ𝑥
 

−
𝛾𝛼𝑢𝜂𝛼𝑢𝜂

2𝐻
𝑈𝑈 

Ƌ𝜂

Ƌ𝑥
−

𝛾𝛼𝑢ℎ𝛼𝑢ℎ

2𝐻
𝑈𝑈 

Ƌℎ

Ƌ𝑥
= 

−
𝛼𝑤𝜂𝛼𝑤𝜂

2

Ƌ𝑊𝑊

Ƌ𝑥
+

1

2𝐻

Ƌ𝛽𝑤𝑤𝑊𝑊𝐻

Ƌ𝑥
 

−
𝛼𝑤𝜂𝛼𝑤𝜂

2𝐻
𝑊𝑊 

Ƌ𝜂

Ƌ𝑥
− 𝑔

Ƌ𝜂

Ƌ𝑥
…..(17) 

 

(17) is the equation for theparticle velocity in the 

horizontal 𝑥-direction. 

 

3.4. Velocity Equation vertical 𝑧-direction 

In (6),with constant𝛿𝑡,the size of𝛿𝑥and𝛿𝑧are reduced to a 

point, so that the 2nd and 4th terms become zero, then 

divided by𝛾2 𝛿𝑡, then the equation becomes, 

𝛾 
Ƌ𝑢

Ƌ𝑡
+

Ƌ𝑤

Ƌ𝑡
= 0 

This equation is written as the equation for 
Ƌ𝑤

Ƌ𝑡
multiplied 

by𝑑𝑧and integrated about the vertical 𝑧-direction.The 

integration is completed by Leibniz integral rule and  the 

concept of depth average velocity is obtaining 

𝛽𝑤𝐻
Ƌ𝑊

Ƌ𝑡
+ (𝛽𝑤 − 𝛼𝑤𝜂)𝑊

Ƌ𝜂

Ƌ𝑡
= 

−𝛾𝛽𝑢𝐻
Ƌ𝑈

Ƌ𝑡
+ 𝛾(𝛽𝑢 − 𝛼𝑢𝜂)𝑈

Ƌ𝜂

Ƌ𝑡
                 ……(18) 
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In this equation 
Ƌ𝑈

Ƌ𝑡
is obtained from (17) while

Ƌ𝜂

Ƌ𝑡
is obtained 

from (9). The equation(18) can be said to be an expression 

of the law of conservation of energy, where there is an 

interaction of 
Ƌ𝑈

Ƌ𝑡
, 

Ƌ𝑊

Ƌ𝑡
and

Ƌ𝜂

Ƌ𝑡
. 

 

IV. COEFFICIENT INTEGRATION AND 

TRANSFORMATION COEFFICIENT  

In the previous sections, the integration of water depth is 

done using the concept of depth average velocity, where 

the depth average velocity (Dean, 1991) is, 

𝑈(𝑥, 𝑡) =
1

𝛽𝑢𝐻
∫ 𝑢

𝜂

−ℎ
𝑑𝑧      ……(19) 

𝛽𝑢 =Coefficient of integration of horizontal velocity 𝑢, 

and𝐻  = ℎ + 𝜂 

Furthermore, in this study, it is defined that the depth 

average velocity is the velocity at a depth of 𝑧 = 𝑧0 (Fig. 

2), and the integration coefficient 𝛽𝑢 is, 

𝛽𝑢 =
1

𝐻𝑢(𝑥, 𝑧0, 𝑡)
∫ 𝑢

𝜂

−ℎ

𝑑𝑧 

 

 

 

 

 

 

 

 

 

Fig 2. Depth average velocity 

 

Using the particle velocity equation from the velocity 

potential, 

𝑢(𝑥, 𝑧, 𝑡) = 𝐺𝑘 cosh 𝑘(ℎ + 𝑧) cos 𝑘𝑥 sin 𝜎𝑡 

So,  

𝑢

𝑈
=

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘(ℎ + 𝑧0)
 

𝛽𝑢 =
1

𝐻 cosh 𝑘(ℎ + 𝑧0)
∫ cosh 𝑘(ℎ + 𝑧)

𝜂

−ℎ

𝑑𝑧 

Integration is completed and by taking𝜂 =
𝐴

2
, so 

𝛽𝑢 =
sinh 𝑘(ℎ+

𝐴

2
)

𝑘𝐻 cosh 𝑘(ℎ+𝑧0)
…..(20) 

Law of conservation of wave number (Hutahaean. 2021), 

Ƌ𝑘(ℎ+
𝐴

2
)

Ƌ𝑥
= 0…..(21) 

where𝑘 (ℎ +
𝐴

2
) = 𝑘𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝜃𝜋, so 

𝛽𝑢 =
sinh 𝜃𝜋

𝜃𝜋 cosh 𝑘(ℎ+𝑧0)
..…(22) 

So to get 𝛽𝑢is to set the value of𝑧0beforehand. 

𝜃is referred to as the deep water coefficient which is 

greater than or equal to 1 where tanh 𝜃𝜋 ≈ 1. This 

coefficient for defining the deep water limit, for 

exampleSPM (1984), using𝜃 = 1, in this case, deep water 

depth isℎ0 =
𝐿0

2
.  In this study,𝜃 = 1.8 is used, this value 

was obtained based on a study of the solution generated by 

the model. 

∫ 𝑤
𝜂

−ℎ

𝑑𝑧 =  𝛽𝑤𝑊𝐻 

𝛽𝑤 =
1

𝐻 sinh 𝑘(ℎ + 𝑧0)
∫ sinh 𝑘(ℎ + 𝑧)

𝜂

−ℎ

 𝑑𝑧 

By completing the integration obtaining, 

𝛽𝑤 =
cosh 𝜃𝜋−1

𝜃𝜋 sinh 𝑘(ℎ+𝑧0)
….(23) 

The other integration coefficients are, 

∫ 𝑈𝑈
𝜂

−ℎ

𝑑𝑧 =  𝛽𝑢𝑢𝑈𝑈𝐻 

𝛽𝑢𝑢 =
1

𝐻 cosh2 𝑘(ℎ + 𝑧0)
∫ cosh2 𝑘(ℎ + 𝑧)

𝜂

−ℎ

 𝑑𝑧 

By completing the integration obtaining, 

𝛽𝑢𝑢 =
(

1

2
sinh 2𝜃𝜋+𝜃𝜋)

2 𝜃𝜋cosℎ2 𝑘(ℎ+𝑧0)
….(24) 

∫ 𝑊𝑊
𝜂

−ℎ

𝑑𝑧 =  𝛽𝑤𝑤𝑊𝑊𝐻 

𝛽𝑤𝑤 =
1

𝐻 sinh2 𝑘(ℎ + 𝑧0)
∫ sinh2 𝑘(ℎ + 𝑧)

𝜂

−ℎ

 𝑑𝑧 

By completing the integration obtaining, 

𝛽𝑤𝑤 =
1

2
sinh 2𝜃𝜋−𝜃𝜋

2𝜃𝜋 sinℎ2 𝑘(ℎ+𝑧0)
….(25) 

 

The integration coefficients are calculated in deep water. 

The value of the integration coefficient is constant, 

considering (21). 

In the momentum equation and the continuity equation, 

there are surface velocities 𝑢𝜂and𝑤𝜂 and seabed velocities 

𝑢−ℎand𝑤−ℎ.     These variables must be transformed into 

depth average velocity of 𝑈 and𝑊,  with the following 

transformation coefficients. 

𝑢𝜂 =
cosh 𝜃𝜋

cosh 𝑘(ℎ + 𝑧0)
 𝑈 

𝑢𝜂 = 𝛼𝑢𝜂 𝑈 

Still water level 

𝑈 = 𝑢(𝑥, 𝑧𝑜 , 𝑡) 
ℎ 

𝑧0 

𝜂 𝑧 

x 

Sea bed 
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𝛼𝑢𝜂 =
cosh 𝜃𝜋

cosh 𝑘(ℎ+𝑧0)
….(26) 

𝑢−ℎ = 𝛼𝑢ℎ 𝑈 

𝛼𝑢ℎ =
1

cosh 𝑘(ℎ+𝑧0)
…(27) 

𝑤𝜂 = 𝛼𝑤  𝑊 

𝛼𝑤𝜂 =
sinh 𝜃𝜋

sinh 𝑘(ℎ+𝑧0)
…(28) 

The vertical velocity transformation on the sea bed cannot 

be used for potential flow equations because it will 

produce a vertical bottom velocity which is equal to zero. 

For this reason, the vertical bottomvelocity is changed to 

horizontal bottom velocity by using the kinematic bottom 

boundary condition, which is, 

𝑤−ℎ = −𝑢−ℎ

𝑑ℎ

𝑑𝑥
 

𝑑ℎ

𝑑𝑥
is bottom slope, so 

𝑤−ℎ = −𝛼𝑢ℎ𝑈
𝑑ℎ

𝑑𝑥
…(29) 

 

V. MODEL RESULTS 

First, the model is carried out on a channel with a constant 

depth, with a water depth of ℎ = 15.0 𝑚 and a canal 

length of 300 m. The input is a sinusoidal wave with 

period 𝑇 = 8 second and wave amplitude 𝐴 = 1.20 𝑚. 

The calculation constants used are 𝛾 = 1.6, 𝜃 = 1.8, and 

𝑧0 = −0.4 ℎ. The model is executed up to 11 times the 

wave period. The model outputs are presented in Figure 3 

and Figure 4. 

In the output of the model, the resulting solution is stable 

at the execution of 11 times the wave period. This shows 

the stability of the equation and the numerical method. The 

wavelength of the model is quite short, around 25 m 

(Figure 3 and Figure 4). The particle velocity in the 

vertical direction 𝑊 is greater than the particle velocity in 

the horizontal direction 𝑈 with the opposite phase. The 

horizontal phase velocity 𝑈 is the same as the water 

surface movement phase 𝜂 while the particle phase 

velocity in the vertical 𝑊-direction is opposite to both. 

This shows that the change in kinetic energy in the vertical 

direction is proportional to the amount of change in 

horizontal kinetic energy with changes in potential energy 

at the water surfaceelevation. 

In addition, when 𝑈 = 0 and 𝜂 = 0, 𝑊 is also equal to 

zero. This makes it easier to define the initial condition 

where at𝑡 = 0, 𝑈 = 𝜂 = 𝑊 = 0.Calculation of the water 

particlevelocity in the vertical direction using the 

Kinematic Free surface Boundary Condition, there will be 

difficulties in defining the initial value, considering that 

this equation produces a phase where at 𝑈 = 0and𝜂 = 0, 

the particle velocity in the vertical 𝑊-direction is in the 

maximum phase. 

 

Fig 3. Output model on theflat bottom. 

 

Fig 4. Output model on theflat bottom. 
 

Next, the model is executed on a channel with a bottom 

slope of -0.07. The upstream water depth is 15.0 m, while 

the downstream water depth is 1.0 m, with a channel 

length of 200 m. The incoming wave is a sinusoidal wave 

with a wave period of 𝑇 = 8 𝑠𝑒𝑐, with an initial wave 

amplitude of 𝐴0 = 1.2 𝑚. The model output is presented in 

Fig 5. 

 

Fig 5. Output model on the sloping bottom. 
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Fig 5 shows that the model can model the phenomenon of 

shoaling well. At a distance of 𝑥 = 150.0 𝑚, at a water 

depth of ℎ = 4.50 𝑚, the wave begins to break, followed 

by the main breaking at ℎ = 3.80 𝑚 with a breaking 

amplitude of 𝐴𝑏 = 1.5. Furthermore, after breaking, the 

model stops after one wave period. From these results, it 

can be said that the model can simulate shoaling with 

breaking even though it is not complete until the waves 

disappear. 

 

VI. CONCLUSION 

The formulation of the total acceleration equation in the 

momentum equation using the same control volume as in 

the continuity equation provides certainty that the velocity 

characteristics in the momentum equation and the 

continuity equation are the same. Thus, it can be said that 

the velocity stated in the continuity equation is exactly the 

generated velocity by the momentum equation creating a 

good couple between the continuity equation and the 

momentum equation. 

By defining that the depth average velocity is a 

representative velocity of the velocity at a certain depth, 

the integration coefficient, and the transformation 

coefficient can be calculated using the velocity potential 

theory. 

The weighted coefficient on the Taylor series functions to 

adjust the particlewavelength and velocity, be it horizontal 

or vertical. The greater the value of the weighted 

coefficient, the shorter the wavelength, the smaller the 

particle velocity in the horizontal direction while the 

particle velocity in the vertical direction will be greater. 

Determination of the deepwater depth represented by the 

deepwater coefficient, in addition to determining the 

stability of the solution, also determines the depth at which 

breaking begins to occur.  

In general, the model gives good results where the model 

can be carried out at large wave amplitude that match 

those in nature, and the model can simulate shoaling and 

breaking well. However, it requires development so that 

the model can simulate breaking completely with the wave 

height that gradually gets smaller until it disappears after 

breaking. 
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