
International Journal of Advanced Engineering Research and Science (IJAERS)                               [Vol-5, Issue-12, Dec- 2018] 

https://dx.doi.org/10.22161/ijaers.5.12.26                                                                               ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                            Page | 186 

Frequency Response of a Fractional Order 

Shunt Resonator of the Class R-RLβCα 
Mehmet Emir Koksal 

 

Department of Mathematics, Ondokuz Mayis University, Samsun, Turkey  

Email: mekoksal@omu.edu.tr 

 

Abstract—Frequency domain analysis of a fractional 

order parallel shunt resonator of the class 𝑅 − 𝑅𝐿𝛽 𝐶𝛼is 

conducted. The voltage and current waveforms are 

computed in the frequency domain. It is shown that the 

circuit exhibits all three types of basic filtering 

characteristics; namely low-pass, band-pass, and high-

pass. 
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I. INTRODUCTION 

Although the fractional order (FO) derivative is not new 

in mathematics [1], it has gained great popularity in the 

application of fractional calculus in the last few decades  

at various areas of science and engineering [2-7]. In 

particular, electrical circuits having FO components have 

been dealt with many authors [8-11]. In [12], Walczak 

and Jacubowska studied the series FO 𝑅𝐿𝛽𝐶𝛼  circuit. And 

a recent paper by Ciszek and Walczak has covered the 

transients states of a parallel circuit composed of 

fractional order inductor and capacitor branches are 

analyzed. 

Ciszek and Walczak presented the results of transient 

analysis in a parallel circuit containing a real coil 𝐿𝛽  and a 

supercapacitor 𝐶𝛼modelled as fractional elements in their 

paper [13]. Current and voltage waveforms are obtained 

with different current source excitations for both cases of 

real and complex poles. But they hardly concerned with 

the frequency response characteristics of the circuit. In 

this contribution, we study the frequency response 

characteristics of the similar circuit but added with a load 

resistance 𝑅which can be treated as (or combined with) 

the source resistance as well. The resulting circuit is 

shortly denoted by 𝑅 − 𝑅𝐿𝛽 𝐶𝛼 , and as far as the author’s 

knowledge, it has not been studied before. 

The paper is organized as follows; Section 2 introduces 

the 𝑅 − 𝑅𝐿𝛽 𝐶𝛼circuit and its formulation. Section 3 

covers the derivation of the transfer functions. Frequency 

response properties and time domain step responses are 

studied on the base of examples in Section 4. Finally, 

Section 5 covers the conclusions. 

II. 𝑹 − 𝑹𝑳𝜷 𝑪𝜶  CIRCUIT 

TheFO parallel resonator circuit considered in this paper  

is shown in Fig. 1. The FO coil inductance is 𝐿𝛽  and FO 

capacitance is 𝐶𝛼;  𝛼, 𝛽 ∈ 𝑅+ .𝑅𝐿is the series internal 

resistance of the coil, 𝑅𝐶 is the ESR resistance of the 

capacitor.The circuit is excited by a parallel current 

source 𝐼(𝑡); 𝑅 represents either the internal resistance of 

the source and/or the load resistance of the circuit, if both 

exist they can be combined.𝐼𝑅 , 𝐼𝐿 , 𝐼𝐶 represent currents 

flowing through the resistor, inductor, and capacitor 

respectively. According to the Kirchhoff’s  current law 

𝐼𝑅
(𝑡) + 𝐼𝐿

(𝑡) + 𝐼𝐶
(𝑡) = 𝐼(𝑡).                    (1) 

The component behavior equations are  

𝑉 = 𝑅𝐼𝑅 ,𝑉𝑅𝐿 = 𝑅𝐿𝐼𝐿 , 𝑉𝑅𝐶 = 𝑅𝐶 𝐼𝐶,      (2a, b, c) 

for the resistances. The FO components are modelled by  

𝑉𝐿𝛽
(𝑡) = 𝐿𝛽

𝑑 𝛽𝐼𝐿
(𝑡)

𝑑𝑡𝛽
, 𝐼𝐶

(𝑡) = 𝐶𝛼

𝑑 𝛼𝑉𝐶𝛼
(𝑡)

𝑑𝑡𝛼
.    (3a, b) 

 
Fig. 1: Fractional order shunt resonator 

 

III. TRANSFER FUNCTIONS 

From the Kirchhoff’s  voltage law  

𝑉(𝑡) = 𝑅𝐿𝐼𝐿
(𝑡) + 𝑉𝐿𝛽

(𝑡),                      (4a) 

 𝑉(𝑡) = 𝑅𝐶 𝐼𝐶
(𝑡) + 𝑉𝐶𝛼

(𝑡).                     (4b) 

Taking the Laplace transform of Eqs. (1-4) with zero 

critical conditions, we obtain 

𝐼𝑅 + 𝐼𝐿 + 𝐼𝐶 = 𝐼,                                (5) 

𝑉 = 𝑅𝐼𝑅 ,𝑉𝑅𝐿 = 𝑅𝐿 𝐼𝐿 ,𝑉𝑅𝐶 = 𝑅𝐶 𝐼𝐶,        (6a, b, c) 

𝑉𝐿𝛽 = 𝐿𝛽𝑆𝛽𝐼𝐿 , 𝐼𝐶 = 𝐶𝛼𝑆𝛼𝑉𝐶𝛼 ,             (7a, b) 

𝑉 = 𝑅𝐿𝐼𝐿 + 𝑉𝐿𝛽 , 𝑉 = 𝑅𝐶 𝐼𝐶 + 𝑉𝐶𝛼 .          (8a, b) 

These eight equations in eight unknowns 

(𝐼𝑅 , 𝐼𝐿 , 𝐼𝐶, 𝑉, 𝑉𝑅𝐿 , 𝑉𝑅 𝐶 , 𝑉𝐿𝛽 , 𝑉𝐶𝛼 ) can be solved in terms of 𝐼; 

the resulting transfer functions are 
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𝐻𝑉𝑅 =
𝑉

𝐼
=

𝛥𝑣 (𝑠)

𝛥(𝑠)
,                           (9a) 

𝐻𝐼𝑅 =
𝐼𝑅

𝐼
=

𝛥𝑣 (𝑠)

𝑅𝛥(𝑠)
,                           (9b) 

𝐻𝐼𝐿 =
𝐼𝐿

𝐼
=

𝛥𝑣(𝑠)

(𝐿𝛽 𝑆𝛽 + 𝑅𝐿 )𝛥(𝑠)
,                   (9c) 

𝐻𝐼𝐶 =
𝐼𝑐

𝐼
=

𝐶𝛼𝑆𝛼𝛥𝑣(𝑠)

(𝑅𝐶 𝐶𝛼𝑆𝛼 + 1)𝛥(𝑠)
,                 (9d) 

𝐻𝑉𝐿 =
𝑉𝐿𝛽

𝐼
=

𝐿𝛽𝑆𝛽𝛥𝑣(𝑠)

(𝐿𝛽𝑆𝛽 + 𝑅𝐿 )𝛥(𝑠)
,               (9e) 

𝐻𝑉𝐶 =
𝑉𝐶𝛼

𝐼
=

𝛥𝑣(𝑠)

(𝑅𝐶 𝐶𝛼𝑆𝛼 + 1)𝛥(𝑠)
,              (9f) 

𝐻𝑉𝑅𝐿 =
𝑉𝑅𝐿

𝐼
= 𝑅𝐿

𝐼𝐿

𝐼
=

𝑅𝐿𝛥𝑣(𝑠)

(𝐿𝛽 𝑆𝛽 + 𝑅𝐿)𝛥(𝑠)
,        (9g) 

𝐻𝐼𝑅𝐶 =
𝑉𝑅 𝐶

𝐼
= 𝑅𝐶

𝐼𝐶

𝐼
=

𝑅𝐶 𝐶𝛼𝑆𝛼𝛥𝑣(𝑠)

(𝑅𝐶𝐶𝛼𝑆𝛼 + 1)𝛥(𝑠)
.      (9h) 

Where, with 𝜇 =
1

𝐺 𝑅𝐶+1
, 𝜂 = 𝐺𝑅𝐿 + 1, 𝐺 =

1

𝑅
, 

𝛥𝑣(𝑠) = 𝜇 (𝑅𝐿 𝑆𝛼+𝛽 +
𝑅𝐿𝑅𝐶

𝐿𝛽

𝑆𝛼 +
1

𝐶𝛼

𝑆𝛽 +
𝑅𝐿

𝐿𝛽 𝐶𝛼

), 

𝛥(𝑠) = 𝑆𝛼+𝛽 +
𝑅𝐶

𝐿𝛽

(𝜇 +
𝑅𝐿

𝑅𝐶

) 𝑆𝛼 +
𝜇𝐺

𝐶𝛼

𝑆𝛽 +
𝜇𝜂

𝐿𝛽 𝐶𝛼

. 

From (6), the FO differential equation governing the 

dynamics of the circuit can be obtained by replacing the 

Laplace operator 𝑆𝛾 with 
𝑑𝛾

𝑑𝑡𝛾, the result is 

𝑑 𝛼+𝛽

𝑑𝑡𝛼+𝛽
𝑣 +

𝑅𝐶

𝐿𝛽

(𝜇 +
𝑅𝐿

𝑅𝐶

)
𝑑 𝛼

𝑑𝑡𝛼
𝑣 +

𝜇𝐺

𝐶𝛼

𝑑 𝛽

𝑑𝑡𝛽
𝑣 +

𝜇𝜂

𝐿𝛽 𝐶𝛼

𝑣 

= 𝜇𝑅𝐿

𝑑 𝛼+𝛽

𝑑𝑡𝛼 +𝛽
𝐼 +

𝜇𝑅𝐿𝑅𝐶

𝐿𝛽

𝑑 𝛼

𝑑𝑡𝛼
𝐼 +

𝜇

𝐶𝛼

𝑑 𝛽

𝑑𝑡𝛽
𝐼 +

𝜇𝑅𝐿

𝐿𝛽 𝐶𝛼

𝐼. (10) 

Since the scope of the paper is mainly confined to 

frequency response characteristics, the solution of this 

fractional order differential equation for 𝑣(𝑡)when 

different types of excitons (such as impulse, step, sinusoid 

etc.) is left as a future work. The result will be the 

generalization of the analytical solutions given in [13] for 

the case of nonideal current source and/or the existence of 

a load resistance in the circuit. 

 

IV. EXAMPLES 

As the first example, assume the numerical values of the 

components are chosen as follows: a supercapacitor of 

pseudo-capacitance𝐶𝛼 = 10𝐹/𝑠1−𝛼 , with a series internal 

resistance of 𝑅𝐶 = 0.1𝛺; a real FO coil of pseudo-

inductance 𝐿𝛽 = 1 + 𝑠1−𝛽 with a series interval resistance 

of 𝑅𝐿 = 0.1𝛺. Coefficients of the FO elements  

are 𝛼 = 0.5, 𝛽 = 0.25. The source and/or load resistance 

𝑅 = 4𝛺.. 

The Bode plots of transfer functions 𝐻𝐼𝑅 , 𝐻𝐼𝐿 ,𝐻𝐼𝐶 are 

shown in Fig. 2. It is seen that 𝐻𝐼𝐿  (𝐻𝐼𝐶) exhibits low pass 

(high pass) filter characteristics, and 𝐻𝐼𝑅  has a small 

magnitude of type band pass , which is due to the 

relatively high value of 𝑅 = 4𝛺. The gain and phase 

relations are observed to be consistent with Eqs. (9b,c,d). 

Fig. 2: Bode Plots of𝐻𝐼𝑅 , 𝐻𝐼𝐿 ,𝐻𝐼𝐶 for Example 1 

 

Fig. 3 shows the time variations of the currents 𝐼𝐿𝛽 , 𝐼𝐶𝛼 , 𝐼𝑅 . 

It is observed that 𝐼𝑅 is smaller than 𝐼𝐿𝛽 and 𝐼𝐶𝛼(𝑡) due to 

high values of 𝑅. 𝐼𝐿𝛽 and 𝐼𝐶𝛼(𝑡) show step responses 

typical to low pass and high pass filters, respectively. 

Note also that these three characteristics sum up to unity 

at any time. 

Fig. 3: Step Responses for the Currents in Example 1 

 

Step response for the voltages 𝑉𝑅 , 𝑉𝑅𝐿 , 𝑉𝐿 , 𝑉𝑅𝐿 , 𝑉𝐶  are 

shown in Fig. 4. Note that Kirchhoff’s  voltage laws 𝑉𝑅𝐿 +

𝑉𝐿 = 𝑉𝑅 , 𝑉𝑅𝐶 + 𝑉𝐶 = 𝑉𝑅  are satisfied. 
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Fig. 4: Step Responses for the Voltages in Example 1 

 

The hole circuit exhibits an overdamped type step 

response characteristics and highly stable. 

As the second example, we consider the same parameters 

values except, 𝛽 = 1.00, 𝛼 = 1.00 and 𝑅 = 1000𝛺. This 

case corresponds to an integer order circuit with a very 

slight load 𝑅, whilst the internal losses 𝑅𝐿  and 𝑅𝐶  

arepresent.  

The results of the simulations are presented in Figs. 5,6,7. 

In Fig. 5, the low pass and high pass characteristics of 

𝐻𝐼𝐿and 𝐻𝐼𝐶are preserved, but the cut off rate is sharper. It 

is also apparent that 𝐻𝐼𝑅  is much more reduced than in 

Example 1 due to the high resistance 𝑅 = 1000 𝛺 , 

though it is still a band pass characteristic. The same 

sharpening is observed in the phase characteristics as 

well.  

Fig. 5: Bode Plots of 𝐻𝐼𝑅 ,𝐻𝐼𝐿 , 𝐻𝐼𝐶 for Example 2 

 

Currents 𝐼𝑅 , 𝐼𝐿𝛽 , 𝐼𝐶𝛼for a unit step are plotted in Fig. 6. It 

is seen that 𝑉𝑅 (𝑡) is almost zero since 𝑅 = 1000 𝛺. 

Further, the currents 𝐼𝑅 , 𝐼𝐿𝛽 , 𝐼𝐶𝛼  sum up to the unit input 

step. The circuit behaves as an underdamped circuit due 

to oscillations in the responses. The damping is small due 

to the small values of internal resistances 𝑅𝐿  and 𝑅𝐶 . 

Fig. 6: Step Responses for the Currents in Example 2 

 

Step responses for the voltages 𝑉𝑅 , 𝑉𝑅𝐿 , 𝑉𝐿 , 𝑉𝑅𝐿 and𝑉𝐶  are 

shown in Fig. 7. The underdamped nature of the circuit is 

observed in all responses. Kirchhoff’s  voltage laws 𝑉𝑅𝐿 +

𝑉𝐿 = 𝑉𝑅 , 𝑉𝑅𝐶 + 𝑉𝐶 = 𝑉𝑅  are still observed in all responses. 

𝑉𝑅𝐶  goes to 0 as 𝑡gets large due to open circuit behavior 

of the capacitor under steady-state conditions with step 

input so it hardly passes current, so that 𝑉𝑅𝐶 = 0. 

Similar argument holds for the inductor; it behaves as 

short circuit under step input steady-state conditions and 

the voltage across  𝑅𝐿𝛽  is generated by the full input 

current, so 𝑉𝑅𝐿𝛽 = 𝑅𝑅𝛽 . 1 = 0.1 𝐴 as 𝑡 gets infinity. 

Fig. 7: Step Responses for the Voltages in Example 2 . 

 

V. CONCLUSION 

Frequency response characteristics and step responses of 

a lossy, fractional order, parallel 𝑅𝐿𝐶  circuit driven by a 

current source is investigated in this paper. Since the 

circuit is loaded and/or driven by a non-ideal current 

source due to its internal resistance, it is denoted by the 
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class 𝑅_𝑅𝐿𝛽 𝐶𝛼, where the first 𝑅 denotes this resistance. 

The circuit is modelled in both time and frequency 

domains, but only frequency domain analysis results are 

given. Three types of filter characteristics are noted each 

of which due to a branch of the circuit. It is observed that 

the circuit exhibits the response characteristics of a tank 

resonator with lossy capacitor and inductor for unity 

values of the fractional orders. It is avoided from further 

numerical examples to keep the content substantial.   

Explicit solutions of different voltages and currents in the 

circuit when it is excited by several types of source 

waveforms (such as step, sinusoidal, exponential,poly-

harmonic and arbitrary being an element of a Hilbert 

space) can be found by the Laplace transform method 

applying the decomposition of FO rational functions to 

partial fractions. The results will involve single and two 

parameter Mittag-Leffler function. However, due to the 

added source and/or load resistance 𝑅, the characteristic 

polynomial gets more complicated and this will cover 

much more effort than in [13]. Therefore, that part of the 

study is left as a future work. 
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