

International Journal of Advanced Engineering Research and

Science (IJAERS)

Peer-Reviewed Journal

ISSN: 2349-6495(P) | 2456-1908(O)

Vol-8, Issue-7; Jul, 2021
Journal Home Page Available: https://ijaers.com/

Article DOI: https://dx.doi.org/10.22161/ijaers.87.26

www.ijaers.com Page | 224

Constructive Cost Model II Metrics for Estimating Cost of

Indigenous Software

Njoku Obilor A.1, Agbakwuru Onyekachi A.2 Amanze Chibuike B.3, Njoku Donatus O.4

1,4Department of Computer Science, Federal University of Technology, Owerri, Imo State, Nigeria
2, 3 Department of Computer Science, Imo State University, Owerri-Imo State, Nigeria

Received:11 Jun 2021;

Received in revised form: 02 Jul 2021;

Accepted: 13 Jul 2021;

Available online: 20 Jul 2021

©2021 The Author(s). Published by AI

Publication. This is an open access article

under the CC BY license

(https://creativecommons.org/licenses/by/4.0/).

Keywords— COCOMO II, Cost-estimation,

Indigenous software, Nigeria’s Computing

environment

Abstract— There is growing concern over the frequent cases of cost

overruns, and underestimation in software cost, especially, indigenous

software products. This has a lot to do with the choice of Cost-estimation

tools, techniques and models deployed. Constructive Cost Model

(COCOMO) II model has been adjudged as the most reliable and

accurate. However, the existing cost drivers/variables of this model

(COCOMO II) do not capture fully the uniqueness of Nigeria’s computing

environment. This paper has highlighted the strengths and weaknesses of

COCOMO II considering the hierarchy of COCOMO. A new algorithm

was proposed to effectively enhance the cost estimation effort of

indigenous software in Nigeria

I. INTRODUCTION

Software development has become an essential concern

[1] because many projects are still not completed on

schedule, with under or overestimation of efforts leading

to their particular problems [2]. Therefore, to manage the

budget and schedule of software projects [2], various

software cost estimation models have been developed.

Accurate software cost estimates are critical to both

developers and customers [3]. They can be used for

generating the request for proposals, contract negotiations,

scheduling, monitoring, and control.

Cost estimation includes the process or methods that

help us in predicting the actual and total cost that will be

needed for our software and is considered as one of the

complex and challenging activities for software

companies. Their goal is to develop cheap software and at

the same time deliver good quality products. Software cost

estimation [4] is used basically by system analysts to get

an approximation of the essential resources needed by a

particular software project and their schedules. Important

parameters in estimating cost are size, time, effort, etc. The

process of software estimation focuses on four steps.

A variety of cost estimation models was developed in

the last two decades, including commercial and public

models as well [5]. Constructive Cost Model (COCOMO)

II is one of the most sophisticated estimation models that

allow one to arrive at fairly accurate and reasonable

estimates. Estimation helps in setting realistic targets for

completing a project. This enables one to obtain a

reasonable idea of the project cost. The value chain

consists of the creators, distributors, resellers, and

consumers.

Cost estimation is one of the most challenging tasks in

Software Development. Many system projects have failed

in the past due to an inaccurate estimate of the actual cost

of delivery. This had happened because an effective

software estimation model had not been deployed by

software organizations at the inception of software

development. Underestimating the costs has resulted in

management getting software with inadequate

functionality, poor quality, under-staffing (resulting in

staff burnout), and failure to complete on time. This has

also led to project abandonment. Overestimating a project

can be just about as bad for the organization! This results

https://ijaers.com/
https://dx.doi.org/10.22161/ijaers.87.26
http://www.ijaers.com/
https://creativecommons.org/licenses/by/4.0/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 225

in too many resources being committed to the project and

delays the use of your resources on the next project or

during contract bidding; result in not winning the contract,

which can lead to loss of jobs. A solution to this malady is

being sought by developing the COCOMO II cost

estimation model to minimize this risk. Without reasonable

accurate cost estimation capability, project managers

cannot determine how much time and manpower cost the

project should take and that means the software portion of

the project is out of control from its beginning. With this

development, system analysts cannot make realistic

hardware-software trade-off analyses during the system

design phase. Where the estimation is flawed, software

project personnel cannot tell managers and customers

whether their proposed budget and schedule are realistic.

Coming to local industries, there is a growing concern

about how our indigenous software products are initiated

and planned. For any new project, it is necessary to know

how much it will cost to develop and how much

development time is needed. These estimates are needed

before development is ultimately initiated. In many cases,

estimates are made using past experiences as the only

guide. This should not be the case because projects differ

in many respects, and hence past experiences alone are not

enough. To achieve reliable cost and schedule estimates,

several options abound: delay estimation until late in the

project; use decomposition techniques to generate project

cost and schedules estimates; develop empirical models for

estimation or acquire one or more automated tools.

Unfortunately, the first option is not practical, even though

attractive. The other options are used to establish the scope

and cost estimates in advance. The cost estimate must and

should be provided upfront. Amongst many cost-

estimation tools, techniques, and models, COCOMO II is

the most reliable and accurate. This is because, COCOMO

II mathematical equation is expandable and extendable to

accommodate more variables (cost drivers), to suit unique

and peculiar computing environments. Introducing and

extending the COCOMO II model to reflect the country's

unique environment gives a better, reliable and accurate

prediction of cost, effort, and duration required for the

successful delivery of software projects on schedule.

Hierarchy of Constructive Cost Model

The Constructive Cost Model (COCOMO) is a widely

used algorithmic software cost model. It was proposed by

Boehm [6]. It has the following hierarchy-

a) Model 1 (Basic COCOMO Model):-The basic

COCOMO model computes software

development effort and cost as a function of

program size expressed in estimated lines of code

(LOC) [7]. Being the first of the COCOMO set of

models, the formula used by this model is:

Effort = a*(KLOC)*b (1)

where, KLOC - denotes the code size, and a, b – constants

such that value of these constants [8] depends on the type

of project, which is whether it’s organic, semi-detached or

embedded.

b) Model 2 (Intermediate COCOMO Model): This

takes the Basic COCOMO effort and schedule

computation as its starting point. It then applies a

series of multipliers to the Basic COCOMO

figures. It takes into account factors such as

required product reliability, database size,

execution and storage constraint, personnel

attributes, and the use of Software tools. In this,

we obtain nominal effort estimation and the value

of constants a, b differs from that of basic

COCOMO. The formula used in this model is:

 Effort = a*(KLOC) b* EAF (2)

Here the effort adjustment factor is represented by EAF.

c) Model 3 (Detailed COCOMO model): This model

is slightly better than the Intermediate one. It has

17 cost drivers, instead of 15 which the

Intermediate Model has. This works on each sub-

system separately and serves as a boon for large

systems made up of non-homogenous

subsystems.

Constructive Cost Models presume the system and

software requirements to be stable and predefined. But

usually, this situation is not always valid. This model

provides some advantages but it also has some

disadvantages. Advantages: Simple to estimate cost.

Disadvantages: Because estimation in the COCOMO

model is done at the early stages of software development,

many times it may lead to estimation failures.

As a result of these problems the newest version of

COCOMO which is COCOMO II was developed in 1990

and uses a broader set of data. It uses source lines of code,

function points, and object points as inputs. It also includes

some modifications to the effort multiplier cost drivers of

previous COCOMO. The obtained output is in the form of

size and effort estimates later developed into a project

schedule. Advantages: COCOMO II proves to be an

industry-standard model, and has a clear and effective

calibration process. Disadvantages: Calculation of

duration for small projects is unreasonable.

II. METHODOLOGY AND SYSTEM ANALYSIS

Object- Object-oriented analysis and design methodology

http://www.ijaers.com/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 226

(OOADM) which is adopted in this study is a set of

standards for the analysis and development of the

COCOMO II software effort estimation. It uses a formal

methodical approach to the analysis and design of

information systems. Object-oriented design (OOD)

elaborates the analysis models to produce

implementation specifications. The main difference

between object-oriented analysis and other forms of

analysis is that by the object-oriented approach one

organizes requirements around objects, which integrate

both behaviors (processes) and states (data) modeled

after real-world objects that the system interacts with. In

other traditional analysis methodologies, the two aspects:

processes and data are considered separately.

Sources of Data / Methods of Data Collection

To carry out a detailed analysis of the existing system,

both primary and secondary data will be collected from

different sources. Both secondary and primary data were

used to get facts on the subject. Primary data was

collected from actual institutions and secondary data was

collected from the literature review that includes

understanding and observing available COCOMO 11

software effort estimation. Secondary data was also be

gathered from several sources to carry out an insightful

investigation into the existing systems, their working

procedures, and their mode of operation. Secondary data

include internet sources, journals, books, newspapers,

and COCOMO 81.

a) Data Collection Tools: Due to the sensitive

nature of the study, the methods used for

primary data collection were limited to the

person(s) involved who were reluctant to

have any written document from them, the

result was the following methods:

b) Person/Telephone Interviews: This is done

by interviewing software project key players

from their personal experience on areas on

the COCOMO 11 software effort estimation

that were prone to misuse by users.

c) Prototype System: This method proved to be

very useful. Even though the software

projects developers were reluctant to give

information on the subject when provided

with a prototype system.

 Analysis of the Existing System

An analysis is made according to the current comparison

and based on the principles of the algorithmic and non-

algorithmic methods. For using the non-algorithmic

methods, it is necessary to have enough information

about the previous projects of a similar type, because

these methods perform the estimation by analysis of the

historical data. Also, non-algorithmic methods are easy to

learn because all of them follow human behavior. On the

other hand, Algorithmic methods are based on

mathematics and some experimental equations. They are

usually hard to learn and they need much data about the

current project state. However, if enough data is

reachable, these methods present reliable results. In

addition, algorithmic methods usually are complementary

to each other, for example, COCOMO uses the SLOC

and Function Point as two input metrics, and generally, if

these two metrics are accurate, the COCOMO presents

the accurate results too. Finally, for selecting the best

method to estimate, looking at available information of

the current project and the same previous project's data

could be useful.

COCOMO II model: It is a collection of three variants,

Application composition model, early design model, and

Post architecture model. This is an extension of the

intermediate COCOMO model and is defined as:-

Effort = 2.9 (KLOC)1.10

 (3)

Table 1 shows the advantages and disadvantages of

existing method.

http://www.ijaers.com/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 227

III. ANALYSIS OF THE PROPOSED SYSTEM

This research has generated algorithmic effort estimation

for COCOMO II measurement. The proposed system is

built to help all the practitioners measure the size of

computerized business information systems. Such sizes

are needed as a component of measurement of

productivity in system development and maintenance

activities and as a component of estimating the effort

needed for such activities. Nowadays, software

developers recognize the importance of the realistic

estimates of effort to successful management of software

projects and having realistic estimates at an early stage of

the project life cycle which allow the project manager

and development organizations to manage resource

effectively. The process starts with the planning phase

activities and is refined throughout the development.

The proposed system is designed to establish better and

more realistic estimations for software projects. The

system is designed and built with an infusion of some

dummy variables and also features a user-friendly

graphic user interface (GUI).

The study introduces certain cost drivers that are peculiar

to Nigeria’s computing environment and indeed the third

world countries. These are issues that relate to our

computing Environmental. They are Indigenous

Environmental Cost Factors.

The following are the new values added in the proposed

system and are summarized in Table 2:

I) Power Supply (PS)

II) Corporate/Social Responsibilities (COSR)

III) Public Relations Needs/Goodwill (PRN)

IV) Governmental Policies.(GTP)

COCOMO II Model Structure and Its Variables

Upon data collection, the following variables were

proposed. Definitions of the variables are explained

below. Effort is a dependent variable referring to the total

man-hour effort required to build a software project.

Independent variables include Development kit (Dev-kit),

Designer-experience (Designer-exp), No-of-

programmers (No-prog), Complexity (Comp) and

Education-level (Edu-level).

a) Effort: This variable emphasizes the effort (man-

hour) spent by project developers to design

application software. Effort is measured either in

man-hour or man-month depending on the size of

software projects. In the study, one considers

man-hour is because the software projects are

small to medium. Some software projects didn't

last several months. For those software projects

studied, only the time spent in analyzing and

designing by project designers is counted. While

the time spent to discuss with clients and end-

users is excluded. The measurement used to

count the effort is the total number of man-hours

for a single software project. The software

company has a very good practice to record

detailed information, such as time spent for each

project, the number of project designers assigned

to a project, and the development tool used, of

each developed software project. Therefore, the

data collection process was easy and

straightforward.

b) Dev-kit: This variable is to measure the

complexity of the system development kit used

by project designers. Usually, the complexity of a

development kit correlates to the time required to

develop software projects, as a good development

kit can make programmers more productive

during system development. When a suitable

development kit is used, it can support the

construction process by automating tasks

executed at every stage of the system

development life cycle. It facilitates interaction

among project designers by diagramming a

dynamic, iterative process, rather than one in

which changes are cumbersome. It is also a

useful tool to enable project designers to clarify

end user's requirements at the very early stage of

the system development life cycle. CASE tool is

the common development kit used to support the

development process in many companies. This

factor is measured with a five-point Liker-like

scale ranging from (1) very low productivity to

(5) very high productivity.

Table 2: Indigenous Environment (New) Cost Factor

c) Designer-exp: This variable is to measure the

actual working experience of project designers

designing application software in the computer

industry. The experience of project designers in

Cost Drivers Rating Values

Power Supply

(PS)

Very Poor 1.75

Poor 1.5

Good 1.1

Excellent 1.0

Public Relation

Need (PSN)

Normal 1.0

Abnormal 1.5

Government

Policies (GTP)

Consistent 1.0

Inconsistent 1.5

Corporate Social

Responsibilities

(COSR)

Rural 1.75

Semi-Rural 1.5

Urban 1.2

http://www.ijaers.com/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 228

developing software projects and the experience

in a specific kind of programming language are

key determinants. By common sense, an

experienced project designer can reduce the

number of errors to program codes if he has good

mastering of that type of programming language

and has several years in developing software

projects. This leads to a minimum time in

developing and maintaining programs in the

future. Thus, the more the number of years of

service that a designer serves in the industry, the

higher the level of working experience the

designer has gained. We take the average of years

of experience among the team members if there is

more than one participates in a project.

d) No-prog: This variable is to count the number of

project designers working collaboratively as a

team. To make sure a late project can be

completed on time, there are project designers

who often add extra programmers. Sometimes,

this arrangement may not work well, especially

when there is a lack of proper communication

among project designers and no training offered

before the development. This could slow down

the development process and lead to many

problems. However, the situation may not happen

in our study, because the software projects

developed by a team of project designers are

small to medium in terms of LOC. A project

designer is relatively easy to make an accurate

estimate before a software project starts.

Therefore, there are no additional members who

are invited to a late project. For this variable,

according to the detailed information of the

developed projects, one is in an easy position to

collect the number of project developers

responsible for each project being developed.

e) Comp: This variable refers to the degree of

program complexity designed. A thorough

understanding of the software development

process improves the relationship between

program complexity and maintenance effort. That

is, the high complexity of software projects

increases the difficulty of project designers to

quickly and accurately understand the programs

before they are developed or repaired. The higher

the level of complexity of a program is, the

greater the effort required by the project designer.

Especially, when a program has highly

interactive modules to communicate not only

within it, but also with modules from other

programs. This will increase the time required by

project designers in designing software projects.

In the study, this variable is to measure and

examine system specifications and design

specifications prepared by the company during

the analysis and design phases. Due to the

characteristics of collected software projects, they

all are business-oriented programs. The

determination process for program complexity is

under the control of project designers. For this

variable, the data is collected using a five-point

Liker-like scale ranging from (1) very low

complexity to (5) very high complexity.

f) Edu-level: This variable is to measure the level of

education that a project designer has acquired in a

related field. Many companies prefer to recruit

programmers who are equipped not only with

extensive working experience in the industry but

also those who have well trained with at least a

bachelor's degree or higher in a related field.

Project designers with a higher level of education

usually can solve programming problems more

easily than those who don't. To measure the

factor, we use a five-point Liker-like scale ranged

from (1) very low level of education to (5) very

high level of education.

A linear regression model is hypothesized following

discussion of the variables and it is shown in the

following equation:

LevelEduCompproNo

DesignerkitDevEffort

__

exp__

543

21

++

+++=
(

4)

where: α, β1, β2, β3, β4, and β5 are constants; Dev_kit -

Software Development tools/kits; Designer_exp–

Experience of the Software Designer; No_pro – number

of programmers; Comp – Complexity of Software

Edu_level – the highest level of education. The full

COCOMO II model includes three stages:

Stage I Supports estimation of prototyping or

applications composition efforts.

Stage 2: Supports estimation in the Early Design

stages of a project, when less is known about the

project’s cost drivers.

Stage 3: Supports estimation in the Post-

Architecture stage of a project.

This version of COCOMO II implements stage 2

formulas to estimate the effort, schedule, and cost

required to develop a software product. It also provides

the breakdown of effort and schedule into software life-

cycle phases and activities from both the Waterfall model

and the M base Model. The M base model is fully

http://www.ijaers.com/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 229

described in Software Cost Estimation with COCOMO

II. The stages of the model are shown in Figure 1.

Fig.1: COCOMO Model Stages

COCOMO 11 Model Effort Estimation Equations

a) Effort Estimation: Obtaining the values of A, B, EMi, and

SFjin COCOMO II is managed by calibrating the

parameters and effort for the 161 projects in the model

database. The main formula is below (Eq. 5) and

acquires the size of the software development as input,

combined with predefined constant A, an exponent E

inclosing five scale factors, and 17 so-called effort

multipliers.

The predefined constant estimates productivity in

PM/KSLOC for the case where a project's economies and

diseconomies of scale are in balance. Productivity alters

as the exponent changes for the reason of non-linear

effects on size. The constant is originally set when

COCOMO II is calibrated to the project database which

reflects a global productivity average.

The application size exponent is aggregated of five scale

factors (SF) that describe relative economies or

diseconomies of scale that are encountered for software

projects of dissimilar magnitude. A project exhibits

economies of scale if the exponent is less than one i.e.

effort is non-linearly reduced. Economies and

diseconomies of scale are in balance should the exponent

hold a value of one. A project exhibits diseconomies of

scale if the exponent is more than one i.e. effort is non-

linearly increased in Eq. (7).

Boehm, [9] selected the scale factors in a foundation on

the underlying principle that they have a significant

exponential effect on effort or productivity disparity. As

seen from the below formula, the five scale factors are

summed up and utilized to establish a figure for the

scaling exponent.

Cost Drivers: Cost drivers are characteristics of software

development that influence effort in carrying out a certain

project. Unlike the scale factors, cost drivers are selected

based on the rationale that they have a linear effect on

effort. There are 17 effort multipliers (EM) that are utilized

in the COCOMO II model to emulate the development

effort. What will be exposed in the subsequent review was

that every multiplicative cost driver is assigned the same

rating level with the distinction being the combination of

assigned weights. Annotated by [9] is the possibility to

assign transitional rating levels and weights for the effort

multipliers. They are furthermore leveled to establish a

mean value that supplementary reflects upon a more

reasonable figure 1. Even though the model specifies a

finite number of cost drives, COCOMO II endows the user

to define its own set of effort multipliers to better

correspond to prevailing circumstances in any given

development. Cost drivers are rated and founded on a

sturdy rationale that they autonomously give details on a

considerable source of effort and/or productivity

discrepancy. Nominal levels do not impact effort whilst a

value beneath/over one decreases/increases it.

reasonable figure 1. Even though the model specifies a

finite number of cost drives, COCOMO II endows the user

to define its own set of effort multipliers to better

correspond to prevailing circumstances in any given

development. Cost drivers are rated and founded on a

sturdy rationale that they autonomously give details on a

considerable source of effort and/or productivity

discrepancy. Nominal levels do not impact effort whilst a

value beneath/over one decreases/increases it.

With the introduction of four 4 additional cost drivers

(table 2), in the new system; the total number of cost

drivers increases to 21, instead of 17. Thus, mathematical

equations for the proposed system are extended thus:

 (5)

where;

 (6)

and;

http://www.ijaers.com/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 230

Table 3: Estimate effort

Symb

ol

Description

A Constant, currently calibrated as 2.45

AA Assessment and assimilation

ADAP

T

Percentage of components adapted (represents

the effort required in understanding software)

AT Percentage of components that are

automatically translated

ATPR

OD

Automatic translation productivity

REVL Breakage: Percentage of code thrown away

due to requirements volatility

CM Percentage of code modified

DM Percentage of design modified

EM Effort Multipliers: RELY, DATA, CPLX,

RUSE, DOCU, TIME, STOR, PVOL, ACAP,

PCAP, PCON, APEX, PLEX, LTEX, TOOL,

SITE

IM Percentage of integration and test modified

KASL

OC

Size of the adapted component expressed in

thousands of adapted source lines of code

KNSL

OC

Size of component expressed in thousands of

new source of lines of codes

PM Person months of estimated effort

SF Scale Factors: PREC, FLEX, RESL, TEAM,

PMAT

SU Software understanding (zero if DM = 0 and

CM = 0)

Schedule Estimation Equation

Determine the time to develop (TDEV) with an estimated

effort, PM, that excludes the effect of the SCED effort

multiplier.

 (7)

Where:

 (8)

Scale Factors: Equation (8) defines the exponent, B, used

in Eq. (7). Table 4 provides the rating levels for the

COCOMO II scale drivers. The selection of scale drivers

is based on the rationale that they are a significant source

of exponential variation on a project's effort or

productivity variation. Each scale driver has a range of

rating levels, from Very Low to Extra High. Each rating

level has a weight, W, and the specific value of the

weight is called a scale factor. A project's scale factors,

W, are summed across all of the factors and used to

determine a scaling exponent, B.

Table 4: COCOMO Scale Drivers

Symbol Description

PM Person months of estimated effort from

Early Design or Post-Architecture

models (excluding the effect of the

SCED effort multiplier)

SF Scale Factors: PREC, FLEX, RESL,

TEAM, PMAT

TDEV Time to develop

SCED Schedule

SCED% The compression/expansion percentage

in the SCED effort multiplier

Table 5: Scale Factors for COCOMOII Early Design

and Post-Architecture Models

In COCOMO II, the logical source statement has been

chosen as the standard line of code. Defining a line of

code is difficult due to conceptual differences involved in

accounting for executable statements and data

declarations in different languages. The goal is to

measure the amount of intellectual work put into program

development, but difficulties arise when trying to define

consistent measures across different languages. Breakage

due to changes of requirements also complicates sizing.

To minimize these problems, the Software Engineering

Institute (SEI) definition checklist for a logical source

statement is used in defining the line of code measure. The

Software Engineering Institute (SEI) has developed this

checklist as part of a system of definition checklist,

report forms, and supplemental forms to support

measurement definitions.

Post-architecture model

COCOMO II helps in the reasoning about cost

http://www.ijaers.com/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 231

implications of software decisions that need to be made,

and for effort estimates when planning a new software

development activity. The model uses historical projects

as data points by adding them to a calibration database

which is then calibrated by applying statistical

techniques. The post-architecture model is utilized once

the project is ready to be developed and sustain a fielded

system meaning that the project should have a life-cycle

architecture package that provides comprehensive

information on cost driver inputs and enables more

accurate cost estimates. All further references to

COCOMO II can be assumed to be about the post-

architecture model.

For the Rational Unified Process (RUP) model, all

software development activities such as documentation,

planning, and control, and configuration management

(CM) are included, while database administration is not.

For all models, the software portions of a hardware-

software project are included (e.g., software CM,

software project management) but general CM and

management are not [9]. COCOMO II estimates utilize

definitions of labor categories, thus they include project

managers and program librarians, but exclude computer

center operators, personnel-department personnel,

secretaries, higher management, janitors, etc. A person-

month (PM) consists of 152 working hours and has by

[9] been found consistent with practical experience with

the average monthly time off (excluding holidays,

vacation, and sick leave).

It is of utmost importance for good model estimations to

have a sufficient size estimate.[9] elucidates that

determining size can be challenging and COCOMO II

only utilizes size data that influences effort thus, new

code and modified implementations are included in this

size baseline category. Normal application development

is typically composed of new code; code reused from

other sources –with or without modifications – and

automatically translated code. Adjustment factors capture

the quantity of design, code, and testing that was altered.

It also considers the understandability of the code and the

programmer familiarity with the code.

COCOMO II expresses size in thousands of SLOC

(KSLOC) and excludes non-delivered support software

such as test drivers. They are included should they be

implemented in the same fashion as distributed code.

Determinants are the degree of incorporated reviews, test

plans, and documentation. [9] Conveys that “the goal is

to measure the amount of intellectual work put into

program development”. The definition of a SLOC can be

quite different in nature because of conceptual

dissimilarities in different languages. As a consequence,

backfiring tables are often introduced to counterbalance

such circumstances. This is fairly reoccurring when

accounting size in diverse generation languages.

However, an organization that specializes in one

programming language is not exposed to such conditions.

A SLOC definition checklist is made available in the

Appendix and somewhat departs from the Software

Engineering Institute (SEI) definition to fit the

COCOMO II models definitions and assumptions.

Moreover, the sidebar demonstrates some local

deviations that were interpreted from the – to some extent

– general guidelines. Code produced with source code

generators is managed by counting separate operator

directives as SLOC. Concurring with [9], it is divulged to

be highly complex to count directives in an exceedingly

visual programming system. A subsequent section will

unearth the settlement of this troublesome predicament.

IV. HIGH LEVEL MODEL OF THE NEW SYSTEM

This section presents the model of the new system.

Fig.2: Block diagram of the high-level model of the

Proposed System.

Application Composition Model

At the beginning of a project when the developer does

not have any detailed design and maybe not even

formulated the requirements, this model should be used.

It is based on object points as an estimation of the

software´s size. To calculate object points is a way to

estimate the size of software, early in the development

process. The very first thing to do when an object point

analysis should be made is to identify screens, reports,

and 3GL components. After that, the objects should be

classified in the difficulty levels simple, medium, and

difficult. In the same way, as with function points, every

class and difficulty level is assigned a number that

functions as weight.

http://www.ijaers.com/

Njoku A. Obilor et al. International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 232

a) Advantages of the new system:

1. It is an open cost model, in which all details are

published. Very profound information is easily

available.

2. COCOMO II adjusts to software reuse and re-

engineering where automated tools are used for

the translation of existing software.

3. It can be used to determine the actual size of the

project by algorithmic methods as well as

historical data or expert opinions.

4. The COCOMO II software cost estimation model

provides a tailor-able cost estimation capability

well matched to the major current and likely

future software process trends.

5. It offers a clear and effective calibration process.

6. COCOMO II has effective tool support (also for

the various extensions).

7. Well-documented, ‘independent’ model which is

not tied to a specific software vendor

8. Algorithmic cost models like COCOCMO II

support quantitative option analysis as they allow

the costs of different options to be compared.

V. CONCLUSION

An Effective software project estimation is one of the

most challenging and important activities in software

development. Proper project planning and control is not

possible without a sound and reliable estimate. As a whole,

the software industry does not estimate projects well and

doesn’t use estimates appropriately. We suffer far more

than one should as a result and we need to focus some

effort on improving the situation. Thus, the software

engineering community has put tremendous effort to

develop models that can help estimators to generate the

accurate cost estimate of a software project. In the last

three decades, many software estimation models and

methods have been proposed, evaluated, and used.

There are many software cost estimation methods

available including algorithmic methods, estimating by

analogy, expert judgment method, top-down method, and

bottom-up method. No one method is necessarily better or

worse than the other but COCOMO II is preferred over

other methods because it is the most suitable for large and

lesser-known projects. COCOMO II has capabilities to

deal with the current software process and is served as a

framework for an extensive current data collection and

analysis effort to further refine and calibrate the model's

estimation capabilities. The COCOMO models provide

clear and consistent definitions of processes, inputs,

outputs, and assumptions, thus help estimators reason their

estimates and generate more accurate estimates than using

their intuition. The new system has both advantages and

disadvantages. But the advantages far outweigh the

disadvantages thereby justifying the new system.

REFERENCES

[1] Albrecht, A.J and Gaffiney, J.E. (2010). Software function,

source lines of code, and development effort prediction: a

software science validation. IEEE Transaction on Software

Engineering, 639-647.

[2] Putnam, L.H.(2008). A General Empirical Solution to the

macro software sizing and estimation problem. IEEE

Transactions on Software Engineering, 345-361.

[3] Caper, J. (2007). Estimating Software Cost. Tata: Mc-Graw

Hill.

[4] Pressman, R.S. (2005). Software Engineering: A

Practitioner’s Approach. (6th ed.). McGraw-Hill, New

York, USA.

[5] Osuagwu, O.E. (2008). Software Engineering: A Pragmatic

and Technical Perspective. Owerri: Oliverson Industrial

Publishing House.

[6] Black, R.K.et al (2014). BCS Software Production Data,

Final Technical Report, RADC-TR-77-116. Boeing

Computer Services, Inc.

[7] Chris, F.K. (2010). An Empirical Validation of Software

Cost Estimation Models. Management of Computing

Communications of ACM, 30(5), 416-429.

[8] Khalifelu, Z.A., and Farhad, S.G. (2012). Comparison and

Evaluation of data mining techniques with algorithmic

models in software cost estimation. Procedia Technology.

[9] Boehm, B. W. (2010). Cost Models for Future Software

Life Cycle Processes: COCOMO 2.0. Annals of Software

Engineering Special Volume on Software Process and

Product Measurement, Science Publishers, Amsterdam,

Netherlands, 1(3), 45-60.

http://www.ijaers.com/

