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Abstract— Estimation of Ground Water Level (GWL) is 

important in the determination of the sustainable use of 

water resources and Ground Water resources. 

Groundwater level fluctuations were investigated using 

the variable of groundwater level, precipitation, 

temperature. In the present study, GWL estimation studies 

were conducted via Neuro-Fuzzy (NF), Support Vector 

Regression with radial basis functions (SVR-RBF) and 

Support Vector Regression with poly kernel (SVR-PK) 

models. The daily data of the precipitation, temperature 

and groundwater level are used which is taken from 

Minnesota, United States of America. The results were 

compared with NF and SVR methods. According to this 

comparison, it was observed that the NF and SVR models 

gave similar results for observation.  
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I. INTRODUCTION 

Estimation of groundwater level is important for 

effective planning and sustainable groundwater 

management. Since the available data generally do not 

fully reflect the sum of the process, the process needs to 

be modeled in order to make more reliable decisions. 

Models can be used to generate data for planning and 

design, or to estimate the future value of processes. In 

addition to increasing population-related water use, 

climate change, agriculture and industrialization, taking 

into account factors such as the need for water in the 

future, modeling studies are done. The precipitation-

evaporation relationship, the interaction between 

groundwater and surface waters and the quantity, storage 

and nutritional potentials of the modeling studies should 

be determined accurately. In the estimation of these 

parameters, the determination or prediction of the 

groundwater in the region is important in determining the 

other parameters of the hydrological cycle. 

Groundwater level; It is an indicator of the 

interaction between groundwater and surface water, 

aquifer feeding and water use. Regular measurement of 

groundwater levels, which is an important variable in 

determining these mechanisms, is expensive and difficult. 

However, it is possible to determine the groundwater 

potential in a region by using meteorological data and 

ground water levels of previous days. In order to monitor 

the groundwater level regularly, it is necessary to estimate 

either directly by means of observation wells or by using 

different methods for non-observable or missing 

locations.  

Artificial intelligence methods collect information 

about the samples, make generalizations and then make 

decisions about the samples by using the information they 

have learned compared to the samples they have never 

seen before. Recently, artificial intelligence methods have 

begun to be frequently used in modeling the suspended 

sediment [1-4], dam reservoir level [5-7], density flow 

plunging [8], dam reservoir volume [9-11], sand bar crest  

[12], evaporation [13-14], and groundwater level  [15-16], 

and in many different disciplines-areas [17-26].   

Mohanty et al [27] investigated that artificial neural 

network (ANN) approach to the weekly forecasting of 

groundwater levels at river basin. Gong et al [28] used 

three nonlinear time-series intelligence models for 

prediction of the groundwater level. They studied 10 

years data-sets including hydrological parameters such as 

precipitation, temperature, past groundwater level and 

lake level to forecast groundwater level. Guzman et al 

[29] used nonlinear autoregressive with exogenous inputs 

(NARX) artificial neural network (ANN) and support 

vector regression (SVR) methods for daily groundwater 

level predictions. According to their results, SVR method 

had a better modeling in prediction of groundwater 

level. In this study, daily of temperature, precipitation and  

 In this study, Neuro-Fuzzy (NF), Support Vector 

Regression with radial basis functions (SVR-RBF) and 

Support Vector Regression with poly kernel (SVR-PK) 

models were used estimate groundwater level.  Ground-

water level data belong to Prairie Island well reservoir 
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station (PI98-14). Well reservoir station is in the Goodhue 

County- Minnesota, hydrologic unit is 07040001. All data 

were taken from United States Geological Survey 

(USGS). 

 

 

II. METHODOLOGY 

In this paper, Neuro-Fuzzy (NF), Support Vector 

Regression with radial basis functions (SVR-RBF) and 

Support Vector Regression with poly kernel (SVR-PK) 

models were used. In the all  models, daily Mean 

Precipitation (MP), Mean Temperature (MT), Ground 

Water Level (GWL+1) were used for the Ground Water 

Level Estimations. All data obtained from Minnesota in 

the United States of America. 

2.1. Neuro Fuzzy (NF) 

Adaptive Neuro-Fuzzy System (NF) is a hybrid artificial 

intelligence method that uses the ability of parallel neural 

network to calculate and learn artificial neural networks 

and the inference of fuzzy logic. The NF model developed 

in 1993 by Jang [30] uses the fuzzy inference model and 

Hybrid learning algorithm. Adaptive networks consist of 

directly connected nodes. Each node represents a 

processing unit. The connections between the nodes 

indicate an undetermined interest (weight) between them. 

All or part of the nodes can be adaptive.NF is a universal 

approximation methodology and is capable of 

approximating any real continuous function on a compact 

set to any degree of accuracy.NF with first-order Sugeno 

fuzzy model which used in this study. For more 

information, researchers can access Jang [30]. 

 

2.2. Support Vector Regression 

Support vector (SVR) is machine-learning approach in 

data-driven research fields which founded by Cortes and 

Vapnik [31]. SVR is based on statistical learning theory. 

SVR are mainly used to best distinguish between two 

classes of data. For this purpose, the decision limits or 

hyper planes are determined. In a non-linear dataset, 

SVRs cannot draw a linear hyper-plane. Therefore, kernel 

tricks are used. The Kernel method greatly increases 

machine learning in nonlinear data. The process of an 

SVR estimator (y) can be expressed as  : 

b)jkWxi(Ky                                               (1) 

where the Kernel function is Kpi , b is bias term of SVM 

network and Wjk is called as the weight vector. Kx and W 

show Lagrange multipliers. Kxi  is a nonlinear function 

that maps the input vectors into a high-dimensional 

feature space. The inner product of the inputs is calculated 

by using kernel functions. Lagrange multipliers show the 

weights. The output value for a sample in the SVR is 

equal to the sum of the inner product of the inputs and the 

independent combinations of Lagrange multipliers. The 

non-linear Kernel functions used in this study are Poly 

kernel and radial basis function kernels. Details about 

SVM can be found in Vapnik [32], Haykin [33], Vapnik 

[34]. 

2.2.1. Support Vector Regression with radial basis 

functions (SVR-RBF) 

Lagrange multipliers that obtain the significance of the 

training data sets for the output data. The kernel function 

of non-linear radial basis ( Hsu et al [35] ) is: 

1,2,3,...ni    and

 0γ
2

ypγ
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



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where Kxi  is a nonlinear function , γ is a user-defined 

parameter, pi and yi are vectors in input space. 

2.2.2. Support Vector Regression with poly kernel 

(SVR-PK) 

The kernel function of polynomial (Hsu et al [35]) is: 

  1,2,3,...ni   .xiK  dcyp             (3) 

where Kxi  is a nonlinear function,  pi and yi are vectors, c 

is the free parameter in input space. 

 

III. MODEL RESULTS AND ANALYZE 

3.1. Model Results  

To see the relationship between created NF model 

and observed values distribution graph are drawn in 

Figure 1 and scatter chart belong to this model was drawn 

in Figure 2. 
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Fig.1: Distribution of NF model 

Figure 1. shows that distribution of NF model test results are quite close to observed values of groundwater level for 

the study area. 

 
Fig.2: Scatter chart of NF model  

 

As it is seen in Figure 2, determination coefficient is calculated as 0.994 for test set of ANN method.  In distribution 

and scatter charts, values are close to the actual values. 

Distribution of SVR RBF method results and scatter chart is given with Figure 3. and Figure 4., respectively.  

 

Fig.3: Distribution of SVR RBF model  
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Fig.4: Scatter chart of SVR RBF model  

Results of SVR RBF model show that the determination coefficient is high and the groundwater level estimate is 

closer to the actual values shown in Figure 3. Determination  coefficient is calculated as 0.995 for SVR RBF results as it is 

seen in Figure 4. 

Distribution of SVR PK method results and scatter chart is given with Figure 5. and Figure 6., respectively.  

 
Fig.5: Distribution of SVR PK model  

 
Fig.6: Scatter chart of SVR PK model  
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Results of SVR PK model show that the 

determination coefficient is high and the groundwater 

level estimate is closer to the actual values shown in 

Figure 5. Determination coefficient is calculated as 0.996 

for SVR PK results as it is seen in Figure 6. 

3.2. Model Analyze  

Within the scope of the study conducted for the 

relationship between Precipitation, Temperature and 

Ground Water Level, a total of 2025 daily data was used. 

1419 daily data are used for training models and 

remaining 606 daily data are used for testing. Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE) 

and determination coefficient (R2) statistics are calculated 

for comparison of methods used. NF, SVR RBF and SVR 

PK results are compared in Table 1. 

Table.1: Comparison of NF and SVR model performances 

MODEL 

NAMES 
MODEL INPUTS RMSE MAE R2 

NF MP,MT, GWL+1 0.227 0.139 0.994 

SVR RBF MP,MT, GWL+1 0.192 0.090 0.995 

SVR PK MP,MT, GWL+1 0.168 0.074 0.996 

RMSE: Root Mean square error, MAE: Mean absolute error, R2: Determination coefficient 

According to Table 1, it is observed that all models have 

good results for the test data. When the table is analyzed, 

we can express the good results with the high coefficient 

of determination (R2) and the lowest error amount 

(RMSE, MAE). Accordingly, the best estimation and low 

error rate of the SVR PK model and the highest number 

of determinations (R2 = 0.996) and the lowest RMSE 

(0.168 feet) and MAE (0.074 feet) error is seen. In 

addition, the NF and SVR RBF models are close to SVR 

PK prediction performance. When the results were 

examined, NF, SVR RBF and SVR PK models were 

found to perform better  in GWL estimations.  

IV. CONCLUSION 

In this paper, Neuro-Fuzzy (NF), Support Vector 

Regression with radial basis functions (SVR-RBF) and 

Support Vector Regression with poly kernel (SVR-PK) 

models were used for the relationship between the 

precipitation, temperature and groundwater level.  2025 

data of Minnesota observation station was studied model 

prediction analyze. NF and SVR methods results were 

compared with the observed real GWL values. When the 

determination coefficients and error calculations are 

evaluated it is understood that NF and SVR models gave 

good and similar results. 
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