Review of Research Papers Related to V_4-cordial Labeling of Graphs

N. B. Rathod

Research Scholar, R. K. University, Rajkot-360020, Gujarat, India.

Concise Summary:
Authors: M. Seenivasan & A. Lourdusamy.

In this research paper authors investigate a necessary condition for an Eulerian graph to be V_2-cordial. They also proved that all trees except P_4 and P_5 are V_2-cordial and the cycle C_n is V_r-cordial, $n \neq 4$ or n does not congruent to $2 (mod 4)$.

Evaluation of Paper:

1. Positive Aspects:
(i) All the figures are very nicely drawn so any one can understand easily.
(ii) The proof of Theorem 2.4 “Let f be a V_2-cordial labeling of a graph G with P_4 and uv be an edge of G such that $f(u) = 0$ and $f(u) = f(v).$” is very useful to find some more graphs which admits V_2-cordial labeling and also this proof can be used for finding V_2-cordiality of generalized graph of any graph.

2. Negative Aspects:
(i) The proof of Lemma 2.6 “If all trees on $4m$ vertices are V_2-cordial then all trees on $4m+1, 4m+2, 4m+3$ vertices are also V_2-cordial.” contains very less explanation and not given any illustration so it’s very difficult to understand.
(ii) The proof of Theorem 2.7 “All trees except P_4 and P_5 are V_2-cordial.” is divided into two cases. In each case the explanation is difficult and authors are not given any illustrations so it is very difficult to understand the proof.

3. Discrepancy:

In Corollary 2.3 “The cycle C_n is not V_2-cordial, where $n \neq 2 (mod 4)$, the generalized Peterson graph $P(n,k)$, where $n \neq 2 (mod 4)$ and $C_m \times C_n$, where m and n are odd are not V_2-cordial.” there is no given any proof about V_2-cordiality of Peterson graph $P(n,k)$ and $C_m \times C_n$.

Further comments:
(i) The authors use V_r-cordiality and this labeling is such a nice combination of group theory and graph theory. This labeling can be used in application of abstract algebra in graph theory.
(ii) The authors give the proof of V_2-cordial labeling of standard graphs Path and cycle. By using these graphs there may be found more graphs which may contain V_2-cordiality.
(iii) Authors should have to give some illustration so anyone can understand.

Review of a Research Paper entitled, “Generalized Graph Cordiality”

Concise Summary:
Authors: O. Pechenik & J. Wise.
Published in: Discussiones Mathematicae Graph Theory, Vol. 32(3) (2012), 557-667.

In this paper authors investigate some A-cordial graphs, V_2-cordial graphs and Q-cordial graphs. Authors proved the following results. All complete bipartite graphs are V_2-cordial except $K_{m,m}$, where $m \neq 2 (mod 4)$. All Paths P_n are V_2-cordial except P_4 and P_5. All cycles C_n are V_2-cordial except C_4, C_5 and C_6, where $k \neq 2 (mod 4)$. All ladders $P_2 \times P_k$ are V_2-cordial except C_2. All prisms are V_2-cordial except $P_2 \times C_4$, where $k \neq 2 (mod 4)$. All hypercube are V_2-cordial, except C_4.

Evaluation of Paper:

1. Positive Aspects:
In this paper authors proved all ladders $P_2 \times P_k$ and all prisms $P_2 \times C_4$ are V_2-cordial. These graphs ladders and prisms are obtained by operation on standard graphs, which is very hard, but the authors make it very easy.

2. Negative Aspects:
(i) In Theorem 3.4 authors proved that the path P_n is V_2-cordial unless $n \neq 4, 5$. They proved this result by induction on n. But in 2009 Seenivasan and Lourdusamy[4] have been already proved that all trees except P_4 and P_5 are V_2-cordial and path P_n is one type of tree.
In theorem 3.5 authors proved that the cycle C_n is V_4-cordial for n does not congruent to $2(\mod 4)$ and $n \neq 4, 5$. But Seenivasan and Lourdusamy [4] have been already given a proof for V_4-cordiality of cycle C_n.

In this paper all symbols of graph operation do not appear properly.

The authors prove that the d-dimensional hypercube Q_d is V_4-cordial, but the authors have not been introduced the definition of d-dimensional hypercube Q_d.

Further comments:
(i) This paper contains three types of labeling defined as A-cordial labeling, V_4-cordial labeling and Q-cordial labeling. Using this combination of labeling authors can see the behavior of graphs in different labeling.

(ii) Authors must have to give the definitions of new words.

REFERENCES