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Abstract—In this paper we have obtained approximate 

solutions of a wave equation using previously studied 

method namely perturbation-iteration algorithm (PIA). 

The results are compared with the first and second order 

difference scheme solutions by absolute error. In 

addition, to prove the effectiveness of the method, we have 

presented some graphics and tables. 
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I. INTRODUCTION 

Partial differential equations have been used to 

explain many phenomena in different science and 

engineering branches such as mathematical biology, 

physics, image processing, quantum mechanics, fluid 

flow, viscoelasticity and so on. Therefore, to understand 

and explain physical interpretation of the problems arise 

in the above-mentioned fields, a considerable effort has 

been achieved and numerous methods have been 

proposed to obtain both numerical and analytical 

solutions of the partial differential equations.  These 

methods include, Adomian decomposition method 

(ADM)[1-2], variational iteration method (VIM)[3-4], 

homotopy analysis method (HAM)[5-6], homotopy 

perturbation method (HPM)[7-8], finite difference 

method (FDM)[9-11], differential transform method 

(DTM)[12-13], etc.  

Alongside these methods , a perturbation-iteration 

method, namely perturbation-iteration algorithm (PIA) 

has been proposed by Aksoy and Pakdemirli in 2010 [14-

15]. In this paper we implementPIA to obtain some 

approximate solutions of a wave partial differential 

equation with initial conditions. Obtained results are 

compared with the known exact solutions and the 

solutions obtained by the finite difference method via first 

and second order difference schemes. The findings are 

satisfactory and the present method produces highly 

approximate results even for a few iterations. 

 

II. BASIC IDEA OF PIA 

In this section we introduce some fundamental points of 

the PIA.  

Take the wave partial differential equation: 

𝐹(𝑢𝑡𝑡 , 𝑢𝑡 ,𝑢𝑢𝑥𝑥 , 𝑢, 𝜀) = 0                                                (1) 

where 𝑢 = 𝑢(𝑥, 𝑡) and 𝜀 is a small perturbation parameter 

that will be inserted to the equation later. The perturbation 

expansion with only one correction term is  

𝑢𝑛+1 = 𝑢𝑛 + 𝜀 (𝑢𝑐)𝑛                                                           (2) 

Replacing Eq.(2) into Eq.(1) and writing in the Taylor 

series expansion with first order derivatives only gives  

𝐹((𝑢𝑛)𝑡𝑡 , (𝑢𝑛)𝑡 , (𝑢𝑛)𝑥𝑥 , 𝑢𝑛 ,0)

+ 𝐹𝑢𝑡𝑡
((𝑢𝑛)𝑡𝑡 , (𝑢𝑛)𝑡 , (𝑢𝑛)𝑥𝑥 , 𝑢𝑛 ,0)𝜀((𝑢𝑐)𝑡𝑡)𝑛

+ 𝐹𝑢𝑡
((𝑢𝑛)𝑡𝑡 , (𝑢𝑛)𝑡 , (𝑢𝑛)𝑥𝑥 , 𝑢𝑛 , 0)𝜀((𝑢𝑐)𝑡)𝑛

+ 𝐹𝑢𝑥𝑥
((𝑢𝑛)𝑡𝑡 , (𝑢𝑛)𝑡 , (𝑢𝑛)𝑥𝑥 , 𝑢𝑛 ,0)𝜀((𝑢𝑐)𝑥𝑥 )𝑛

+ 𝐹𝑢 ((𝑢𝑛)𝑡𝑡 , (𝑢𝑛)𝑡 , (𝑢𝑛)𝑥𝑥 , 𝑢𝑛 , 0)𝜀(𝑢𝑐)𝑛
+ 𝐹𝜀((𝑢𝑛)𝑡𝑡 , (𝑢𝑛)𝑡 , (𝑢𝑛)𝑥𝑥 , 𝑢𝑛 ,0)𝜀 = 0                            (3) 

or shortly, 

𝐹

𝜀
+ ((𝑢𝑐)𝑡𝑡)𝑛𝐹𝑢𝑡𝑡 +

((𝑢𝑐)𝑡)𝑛𝐹𝑢𝑡

+ ((𝑢𝑐)𝑥𝑥)𝑛𝐹𝑢𝑥𝑥+
(𝑢𝑐)𝑛𝐹𝑢 +𝐹𝜀 = 0 (4) 

where  𝐹𝑢𝑡𝑡 =
𝜕𝐹

𝜕𝑢𝑡𝑡
, 𝐹𝑢𝑡𝑡 =

𝜕𝐹

𝜕𝑢𝑡𝑡
, 𝐹𝑢𝑡𝑡 =

𝜕𝐹

𝜕𝑢𝑡𝑡
, 𝐹𝑢𝑡𝑡 =

𝜕𝐹

𝜕𝑢𝑡𝑡
 

and 𝐹𝑢𝑡𝑡 =
𝜕𝐹

𝜕𝑢𝑡𝑡
.  

In the expansion, allof the derivatives are calculated at 

𝜀 = 0. Opening with the initial assumption 𝑢0(𝑥, 𝑡), in 

the first step  (𝑢𝑐)0(𝑥, 𝑡) is determined from Eq.(3) and 

then subrogated into Eq.(2) to obtain𝑢0(𝑥, 𝑡).The iteration 

procedure continues until a desired solution is obtained. 

 

III. NUMERICAL RESULTS 

Consider the following wave equation [16] 

𝑢𝑡𝑡 − (𝑥 + 𝑡)𝑢𝑥𝑥 = (
6𝑡4 + 4𝑡2− 2

(1 + 𝑡2)4
+
𝑥 + 𝑡

1 + 𝑡2
) sin(𝑥)(5) 

for 0 < 𝑡 < 1, 0 < 𝑥 < 𝜋 given with the initial and 

boundary conditions 

𝑢(𝑥, 0) = sin(𝑥) , 𝑢′(𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 𝜋 

𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0, 0 ≤ 𝑡 ≤ 1. 

The known exact solution of the problem is  

𝑢(𝑥, 𝑡) =
1

1 + 𝑡2
sin(𝑥) .                                                      (6) 

Introducing the artificial perturbation parameter 𝜀 and 

rewriting Eq.(4) yields the following iteration equation. 

𝜀(𝑢𝑐)𝑡𝑡(𝑥, 𝑡) =

=
(−2 +𝑥 + 𝑡(1 + 𝑡(6 + 2𝑡 + 𝑡3 + (2 + 𝑡2)𝑥))) sin(𝑥)

(1 + 𝑡2)3

− (𝑢𝑛)𝑡𝑡(𝑥, 𝑡) + (𝑡 + 𝑥)(𝑢𝑛)𝑥𝑥 (𝑥, 𝑡), 𝑛 = 0,1,2, …      (7) 
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Appropriate to the initial conditions, an initial estimation 

to begin the iteration process is proposed as 𝑢0(𝑥, 𝑡) =

sin(𝑥). Subrogating this initial condition in Eq.(4) and 

solving it gives 

(𝑢𝑐(𝑥, 𝑡))0 =
6− 6𝑡− 7𝑡3−𝑡5 − 3𝑡2𝑥 −3𝑡4𝑥

6(1 + 𝑡2)
sin(𝑥)

+
6(1 + 𝑡2)(1 + 𝑡𝑥)tan−1(𝑡)

6(1 + 𝑡2)
sin(𝑥)

+
3(1 + 𝑡2)(𝑡 − 𝑥)ln(1 + 𝑡2)

6(1 + 𝑡2)
sin(𝑥)

+ 𝑐1(𝑥) + 𝑡𝑐2(𝑥)                                     (8) 

So the first iteration result using the initial conditions  is 

𝑢1(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝜀((𝑢𝑐(𝑥, 𝑡))0)                                 (9) 

or 

𝑢1(𝑥, 𝑡) = sin(𝑥) +
6𝑡2 +(𝑡 + 𝑡3)(6 + 𝑡2 + 3𝑡𝑥)

6(1 + 𝑡2)
sin(𝑥)

− 3
(1 + 𝑡2)(2(1 + 𝑡𝑥)𝑡𝑎𝑛−1(𝑡))

6(1 + 𝑡2)
sin(𝑥)

− 3
(𝑡 − 𝑥) ln(1 + 𝑡2)

6(1+ 𝑡2)
sin(𝑥)               (10) 

If the procedure continues similarly, we get the following 

results 

𝑢2(𝑥, 𝑡)

= − sin(𝑥) +
6𝑡2 +(𝑡 + 𝑡3)(6 + 𝑡2 + 3𝑡𝑥)

6(1 + 𝑡2)
sin(𝑥)

−
3(1+ 𝑡2)(2(1 + 𝑡𝑥)tan−1(𝑡)+ (𝑡 − 𝑥) ln(1 + 𝑡2))

6(1 + 𝑡2)
sin(𝑥)

+
1

720(1 + 𝑡2)
(4(1

+ 𝑡2)cos(𝑥) (𝑡(−30−20𝑡2+ 9𝑡4− 150𝑡𝑥+ 15𝑡3𝑥)

+ 30(𝑡+ 𝑡3 −𝑥 +3𝑡2𝑥) ln(1 + 𝑡2))

− (−1440 +2520𝑡3 +4𝑡8− 180𝑡(−12+ 𝑥) + 24𝑡7𝑥

+ 12𝑡5(30 +17𝑥) − 30𝑡2(−3− 36𝑥+ 10𝑥2)

+ 𝑡6(99+ 30𝑥2) −5𝑡4(−37 −216𝑥 +54𝑥2)

− 30(1+ 𝑡2)(−1 + 𝑡4+ 𝑡(36 −8𝑥) − 36𝑥 +2𝑥2

− 6𝑡2𝑥2) ln(1 + 𝑡2))sin(𝑥)

+ 60(1+ 𝑡2)tan−1(𝑡)(−2(−1+ 𝑡4 −6𝑡𝑥 + 2𝑡3𝑥) cos(𝑥)

+ (36 − 3𝑥 +6𝑡2𝑥 + 𝑡4𝑥 + 𝑡(2 + 36𝑥− 6𝑥2)

+ 2𝑡3(1+ 𝑥2)) sin(𝑥)))                                                      (11)  

𝑢3(𝑥, 𝑡) =
1

3175200(1+ 𝑡2)
× −21(𝑡 + 𝑡3)(8400(−6+ 𝑥)

+ 𝑡(𝑡(−33600 + 𝑡(−15350+ 3𝑡(5040

+ 608𝑡+ 105𝑡3))) + 20𝑡(−1778

+ 3𝑡(420− 399𝑡+ 22𝑡3))𝑥 +630(54

− 77𝑡2+2𝑡4)𝑥2 − 180(27

+ 1400𝑥)))cos(𝑥)+ 3175200sin(𝑥) + (1

+ 𝑡2)(1260cos(𝑥)(2(10𝑡7+ 70(−6+ 𝑥)

− 210𝑡4(−2+ 𝑥) − 420𝑡2𝑥 +56𝑡6𝑥

+ 7𝑡(−7+45(−8+ 𝑥)𝑥) +63𝑡5(1 +𝑥2)

− 70𝑡3(2+ 3𝑥(−4 +3𝑥)))tan−1(𝑡)

− (−17−840𝑥 +7(2𝑡6+ 6𝑡(20− 7𝑥)

+ 30𝑡5𝑥− 90𝑡2(−4 +𝑥)𝑥 + 9𝑥2

+ 20𝑡3(6+ 𝑥)+ 5𝑡4(5 +9𝑥2)))ln(1

+ 𝑡2))+ (𝑡(245𝑡8 +2205𝑡7𝑥

+ 1260(−47+ 42(−30+ 𝑥)𝑥)

+ 45𝑡6(−155 +126𝑥2)+ 63𝑡5(560

+ 313𝑥+ 70𝑥3)− 63𝑡4(−9262

+ 21𝑥(−160+ 37𝑥)) −210𝑡2(326

+ 21𝑥(−360+ 67𝑥)) +630𝑡(1260

+ 𝑥(−1304 +21𝑥(−200 + 9𝑥)))

− 105𝑡3(−7980+ 𝑥(−8966+ 21𝑥(−120

+ 77𝑥))))− 1260(−47+5𝑡7𝑥 + 42(−30

+ 𝑥)𝑥 − 315𝑡2(−8+𝑥)𝑥 + 35𝑡4(19

+ 12𝑥) +21𝑡5𝑥(−2+ 𝑥2)+ 7𝑡6(−10

+ 3𝑥2) + 7𝑡(120 +𝑥(−104+ 15(−24

+ 𝑥)𝑥)) + 35𝑡3(24 +𝑥(35 − 6(−4

+ 𝑥)𝑥)))tan−1− 630(−420+ 5𝑡7+ 7𝑡6𝑥

+ 𝑥(152− 21(−40+ 𝑥)𝑥) +105𝑡2𝑥(−13

+ 2(−12+ 𝑥)𝑥) − 63𝑡5(−6+ 𝑥2)

− 35𝑡3(13+ 6𝑥2)+ 35𝑡4(12+ 14𝑥

− 3𝑥3) + 7𝑡(−20+ 3𝑥(−160+ 9𝑥)))ln(1

+ 𝑡2))sin(𝑥))                                        (12) 

 

 

 

In this study, the Eq.(5) in [16] is solved by using PIA 

and the following first-order difference scheme  

{
 
 

 
 𝜏−2(𝑢𝑘+1−2𝑢𝑘+ 𝑢𝑘−1) + 𝐴𝑘𝑢𝑘+1 = 𝑓𝑘 ,

𝐴𝑘 = 𝐴(𝑡𝑘),𝑓𝑘 = 𝑓(𝑡𝑘),𝑡𝑘 = 𝑘𝜏,
1 ≤ 𝑘 ≤ 𝑁−1, 𝑁𝜏 = 𝑇,

𝜏−1(𝑢1 −𝑢0) + 𝑖𝐴1
1/2
𝑢1 = 𝑖𝐴0

1/2
𝑢0+𝜓,𝑢0 = 𝜑.

 

studied in [17] and the second-order difference scheme  

{
 
 

 
 

𝑢𝑘+1−2𝑢𝑘+𝑢𝑘−1
𝜏2

+ 𝐴𝑘𝑢𝑘 +
𝜏2

4
𝐴𝑘
2𝑢𝑘+1 = 𝑓𝑘,

𝐴𝑘 = 𝐴(𝑡𝑘),𝑓𝑘 = 𝑓(𝑡𝑘), 𝑡𝑘 = 𝑘𝜏,1 ≤ 𝑘 ≤ 𝑁 − 1,𝑁𝜏 = 𝑇,
(𝐼 + 𝜏2𝐴0)𝜏

−1(𝑢1− 𝑢0)

=
𝜏

2
(𝑓0 − 𝐴0𝑢0) +𝜓, 𝑓0 = 𝑓(0),𝑢0 = 𝜑.

stu

died in [16]. The results are compared and discussed.  
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IV. FIGURES  AND TABLES 

 
Fig. 1: Surface plot of the third order PIA solution. 

 
Fig. 2: Surface plot of the exact solution. 

 

Table. 1: Comparison of the third order PIA absolute 

errors 

 Third order PIA Absolute Errors 

𝑥 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 

2𝜋/10  3.26329𝐸 −7 2.32795𝐸

− 5 

2.85770𝐸

− 4 

4𝜋/10 3.23876𝐸− 7 2.47931𝐸

− 5 

3.24057𝐸

− 4 

6𝜋/10 1.78211𝐸 − 64 1.23072𝐸

− 4 

1.48412𝐸

− 3 

 

Table. 2: Comparison of the first order difference scheme 

absolute errors 

 First Order Difference Scheme Absolute Errors 

𝑥 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 

2𝜋/10  2.66413𝐸 −4 4.85849𝐸

− 4 

6.71907𝐸

− 4 

4𝜋/10 4.33106𝐸− 4 8.00497𝐸

− 4 

1.12590𝐸

− 3 

6𝜋/10 4.35134𝐸− 4 8.14527𝐸

− 4 

1.16251𝐸

− 3 

 

Table. 3: Comparison of the second order difference 

scheme absolute errors. 

 Second Order Difference Scheme 

𝑥 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 

2𝜋/10  6.50953𝐸 −8 1.19193𝐸

− 7 

4.00733𝐸

− 8 

4𝜋/10 1.11504𝐸− 7 2.51531𝐸

− 7 

1.43050𝐸

− 7 

6𝜋/10 1.71319𝐸− 7 5.05788𝐸

− 7 

7.22128𝐸

− 7 

 

As shown in Table 1 and 3, the second order difference 

scheme is approximately 10-3 times better than the first 

order difference scheme. On the other hand, the results 

obtained by PIA are better than the first-order difference 

method but they are not as satisfactory as the results 

obtained second-order difference method. 

For more steps of PIA, various partial differential 

equation scan be studied and solved and the results are 

compared with each other as future problems  

 

V. CONCLUSION 

In this paper the approximate solution of a wave partial 

differential equation is obtained by previously developed 

efficient method, perturbation-iteration algorithm. The 

method gives highly approximate solutions after a few 

iterations. The results are compared with the exact 

solution via absolute error and finite difference method. 

For this purpose first and second order difference 

schemes are applied. Also some surface plots and tables 

are presented to show the reliability of the method. This 

confirms that the method is ready to apply for wider class 

of partial differential equations . 
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