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Abstract—Semantic segmentation is one of the biggest and most important concerns of computer vision in order 

to synthesize novel designs and reconstruct buildings. Traditionally, a human expert was required to write 

grammars for specific building styles, which limited the scope of method applicability. The main purpose of this 

paper is to improve learning grammar used for building’s façade segmentation. To deal with that, we propose a 

framework with two layers: in the first layer, we provide a reinforcement learning (RL) techniques to make the 

segmentation allowing the user to brush strokes on the input image through Gaussian Mixture Models (GMM). 

Still in this layer, the segmentation can be also make based on shape grammars. Note that for both segmentation, 

we get as output a ground-truth segmentation. The second layer consist to learn automatically an inferred 

grammar. Thanks to ground-truth segmentations generated in previous layer, in particular the one generated by 

RL techniques, we perform clustering techniques to make an improvement of the grammar learned. We evaluate 

our model on two different datasets and compare in the state-of-the-art our learned-grammar. It show that the 

proposed outperformed performance gain compared to other learned grammar methods in all the two dataset. 

Keywords—Computer vision, Clustering techniques, Gaussian Mixture Models (GMM), learned-grammar, 

Reinforcement Learning (RL). 

 

I. INTRODUCTION 

How building facades are segmented is great of interest 

in computer vision due to the number of applications and 

associated issues such as building information models 

(BIM). Knowing the regularities in facade layout can be 

used in video games and movies to generate plausible urban 

landscapes with realistic rendering [16]. Existing 

approaches for facade analysis, i.e., the segmentation of 

facade images into semantic classes, use either conventional 

segmentation methods or rely on grammar-driven 

recognition methods [13, 5, 9]. Conventional segmentation 

methods treat the problem as a pixel labeling task, with the 

possible addition of local regularity constraints related to 

building elements, but ignoring the global structural 

information in the architecture as shown in [26]. On the 

contrary, methods based on shape grammars impose strong 

structural consistencies by considering only segments that 

follow a hierarchical decomposition corresponding to a 

combination of grammar rules [17, 18]. 

For a better understanding of our topic, a definition of 

the term "learning grammars" is essential. There are at least 

two forms of grammar parsing: the first one is refer to string 

grammar parsing which consists of an optimal analysis that 

provides information on the nature of different words and 

groups of words in the sentence (verbs, nouns, subjects, 

complements, etc.), it is widely used in Natural Language 

Processing (NLP) [7]. The second one is called shape 

grammar parsing that manipulate shapes and their 

relationships through semantic-geometric rules defined on 

template shapes (called basic shapes) [7]. It turns out that 

the groups of words "learning grammar" is nothing more 

than an automatic learning semantic-geometric rules from 

images (shapes). 

Although Conventional segmentation methods obtain 

very good pixel-wise scores, these techniques are not 

appropriate for a number of applications because they 

frequently produce segments that are inconsistent with basic 

architectural rules, e.g., irregular window sizes or 

alignments, or balconies shifted from associated windows. 

Moreover, as they label only what is visible, ordinary 

segmentation methods are sensitive to occlusions, e.g., due 

to potted plants on windows and balconies, or to pervasive 

foreground objects in the street: trees, vehicles, pedestrians, 

street signs, lampposts, etc. As a result, important elements 
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can be partially or totally missing from the produced 

segments, e.g., portions of wall or even complete windows. 

In this work, we focus on structural segmentation, i.e., 

with global regularities and strict constraints as opposed to 

just local pixel labeling. More clearly, we propose a new 

model that combine buildings segmentations and learning 

grammar. The proposed model consists of two parts: (1) 

perform a segmentation of a façade building through 

reinforcement learning techniques and show how shape 

grammars achieve it too, (2) used clustering algorithm to 

improve the grammar learned through RL techniques.  

This paper is organized as follow: Section 2 gives a brief 

review of related work. Section 3 details on our approach. 

The performance of the proposed method is compared with 

state-of-the-art methods in Section 4. Section 5 summarizes 

the contributions of this work. 

 

II. RELATED WORK 

Combining Computational Geometry with the ideas of 

Formal Grammars as defined in 1956 by Noam Chomsky in 

[10], procedural geometry appears first with the definition 

of L-systems and then with shape grammars. The idea of 

representing the image contents in a hierarchical and 

semantized manner can be traced back to the work of 

Kanade and Ohta [23, 25]. However, the practical 

applications of grammars to image interpretation or 

segmentation are attributed to more recent works [4, 21, 24, 

11]. 

In many works, the hierarchical and regular structure of 

man-made objects is explored to improve segmentation or 

detection results [21, 24, 11, 19]. In these works, researchers 

are focused on conventional segmentation techniques. 

Conventional segmentation techniques rely on grouping 

together consistent visual characteristics while imposing 

piecewise smoothness. Popular methods are based on active 

contours [15, 6], clustering techniques such as mean-shift 

[3] and SLIC [1], and graph cuts [2, 7]. Although they 

obtain very good pixel-wise scores, these techniques are not 

appropriate for a number of applications because they 

frequently produce segments that are inconsistent with basic 

architectural rules. On the contrary, grammar-based 

methods can infer invisible or hardly visible objects thanks 

to architecture-level regularity. The use of grammar-based 

facade parsing has been inspired by the successful 

application of split grammars for generating virtual urban 

environments [16]. The key to success is to encode in the 

grammar basic constraints on the generated objects: the 

principles of adjacency, non-overlap and snaplines. A 

number of research works has been aimed at applying the 

grammar principles for retrieving building models from 

images [12, 13, 8, 24]. In their work, Teboul et al. present 

an application of a 2D binary split grammar for parsing 

rectified facade images [12]. The two kinds of approaches 

are thus complementary: a better low-level classification or 

segmentation naturally leads to a better parsing and better 

overall accuracy (assuming the observed facade follows the 

architecture style modeled in the grammar). 

Although grammatical inference is common in natural 

language processing (NLP), it is rare in computer vision. 

Recently, a couple of methods have been proposed to 

automatically learn shape grammars from ground-truth 

image annotations [9, 22]. Both operating on split 

grammars. It seems however this approach does not scale 

well as the authors have to reduce the size of the training set 

to keep the induction time practicable. Weissenberg et al. 

[22] present an alternative technique to learn split grammars 

from images with ground-truth annotations showing the 

performance of grammar compression, an experiment in 

facade image retrieval and examples of virtual façade 

synthesis.  

Previous approaches for shape grammar learning 

involve a first stage of tree hypothesis generation to produce 

ground-truth parse trees from the ground-truth 

segmentation, based on heuristics [9, 22]. In order to get 

more similar trees in which patterns can be found, Gadde et 

al. [17, 18] propose to generate these ground-truth parse 

trees differently, using a small generic handwritten 

grammar. 

 

III. APPROACH 

The proposed model consists of two parts: the first one 

is to perform a segmentation of façade building through 

reinforcement learning techniques. This segmentation is 

formulated in term of Markov Decision process (MDP) 

using shape grammar convention. Still in this stage, we 

allow user to brush strokes on the input image for each 

terminal symbol of the binary split grammar (BSG) with 

Gaussian Mixture Models (GMM). Through these 

techniques, we get ground-truth segmentations at this first 

stage. The output of the first stage become an input for the 

second stage where we performed hierarchical clustering 

algorithm to improve the learning grammar. Note that for 

each architecture image parsed in previous stage it 

corresponds a ground-truth segmentation thus a binary tree. 

A set of these binary trees is then parse through the split 

grammars formalism in 2D. It is then realized a rule 

compression on these trees by finding and freezing repeated 

subtrees. Furthermore, it is performed clustering on 

compressed rules to merge inferred rules (learning 

grammars). These rules are automatically generated by our 

model and supersedes manual expert work and cuts the time 

required to build a procedural model of a facade from 
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(2) 

(3) 

(4) 

several days to a few milliseconds. Moreover, thank to 

inferred rules, it could be designed new buildings, making 

comparison between two facades architecture, etc. A 

pipeline of our model is provided in Fig.1. 

In the following sections, we will first describe the 

formalism of shape grammar used in our model (Section 

3.1), then will present how we used Markov Decision 

Process to formulate buildings segmentation through 

reinforcement learning (Section 3.2) and finally we will 

describe the clustering techniques used to inferred grammar 

(Section 3.3). 

 
Fig. 1: Overview of our architecture 

 

3.1 Formalism of Shape Grammars 

The basic concept of a shape grammar is a labeled 

rectangle, namely a 5-tuple (𝑐, 𝑥, 𝑦, 𝑤, ℎ), where c is a label 

or symbol and (𝑐, 𝑥, 𝑦, 𝑤, ℎ) 𝜖ℕ4 defines the position and 

dimensions of an axis-aligned rectangle; for notational 

convenience we may denote a labeled rectangle as 

c (𝑥, 𝑦, 𝑤, ℎ). A shape S is a set of labeled rectangles: 𝑆 =

{𝑠1, ⋯ , 𝑠𝑛}; we will consider these rectangles disjoint.A 

grammar rule modifies a shape by replacing a labeled 

rectangle 𝑠𝑖𝜖 S by a set of labeled rectangles (𝑠𝑖
1,…,𝑠𝑖

𝑘 ). In 

our work we consider only binary split rules (𝑘 = 2) that 

split a labeled rectangle in two along either the horizontal or 

vertical directions. We denote a rule to break symbol A 

along axis ‘ℎ0’ (for horizontal) into symbols B and C as: 

𝐴(𝑥, 𝑦, 𝑤, ℎ) ⟶ ℎ𝑜:𝛼{𝐵(𝑥, 𝑦, 𝛼, ℎ),𝐶(𝑥 + 𝛼, 𝑦, 𝑤

− 𝛼, ℎ)} 

The dimensions of Β and 𝐶 are uniquely determined 

given A, the split direction ℎ0, and size 𝛼, where 𝛼 ≥ 𝑤; 

if 𝛼 =  𝑤, 𝐶 is the empty symbol. For brevity we introduce 

the shorthand notation: 

𝐴 →  𝐵(𝛼)𝐶 

which indicates that shape 𝐴 is split horizontally (↑ means 

vertically) into a shape of width 𝛼 and the remainder. 

A Binary Split Grammar 𝐺 is a 4-tuple (𝒩, 𝒯, ℛ, 𝜔), 

where 𝒩 is a set of non-terminals, 𝒯 is a set of terminals, 𝜔 

is a special non-terminal called the axiom and ℛ a finite set 

of binary split rules. A labeled rectangle 𝑐(𝑥, 𝑦, 𝑤, ℎ) is 

terminal if it cannot be further expanded by a rule. To 

generate a shape 𝑆 according to a BSG 𝐺 we start from the 

axiom { 𝜔 }. At each step of the generation a non-terminal 

element 𝑠𝑖𝜖 S is selected and a rule 𝑟𝜖 S applicable to 𝑠𝑖 is 

chosen. After applying 𝑟 the labeled rectangle 𝑠𝑖 is removed 

from S and replaced by its offspring. This process is called 

a derivation process and stops when 𝑆 only contains 

terminal elements. We call such a shape a segmentation. If 

the axiom 𝜔 corresponds to the image domain, a shape 

made of terminal elements is an image partition that 

associates every rectangular region with a label. We can 

equivalently represent 𝑆 in terms of a parse tree rooted at 𝜔. 

During the derivation, the offsprings of 𝑠𝑖 are added as its 

children to the tree. At the end of the process the leaves of 

the parse tree are terminal elements while its internal nodes 

represent non-terminal labeled rectangles. The language 

𝐿(𝐺) is the set of all the possible derivations of the 

grammar 𝐺; in our case this amounts to all possible image 

segmentations. 

3.2 Shape parsing via Reinforcement Learning 

In this section, we will introduce in the first time the 

principles of reinforcement learning and in second time 

show how we fit these principles to the façade parsing. 

 Principles of Reinforcement Learning  

In reinforcement learning (RL) [20], an agent interacts 

with an unknown environment while choosing actions that 

maximize its cumulative reward. The unknown 

environment is modeled as a Markov Decision Process 

(MDP), described by a finite set of states 𝑆, a set of 

actions 𝐴, transition probabilities 𝑃, and expected rewards 

𝑅 consecutive to actions. At time t, the agent in state 𝑠𝑡, 

takes action 𝑎𝑡𝜖𝒜(𝑠𝑡) leading the agent to a new state 

𝑠𝑡+1with an immediate reward of 𝑟𝑡+1. The transition from 

state 𝑠 to 𝑠′ due to an agent action is subject to the 

probability 𝑃𝑠𝑠′
𝑎  : 

𝑃𝑠𝑠′
𝑎 =𝑃 (𝑠𝑡+1  =  𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡  =  𝑎) 

and the reward  𝑟𝑡+1 received for selecting action 𝑎 in state 

𝑠 and arriving in state 𝑠′ is denote by its expectation 𝑅𝑠𝑠′
𝑎 : 

𝑅𝑠𝑠′
𝑎  = 𝐸[𝑟𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′] 

The goal of the reinforcement learning agent is to 

maximize its long term reward which is: 

𝑅𝑡 = ∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘+1 

The parameter 𝛾 is a discount factor and represents how 

much weight we give to the rewards that we will come 

across in the future. Such a behavior is governed by the 

agent’s policy 𝜋(𝑠, 𝑎), the probability of choosing action 𝑎 

while in state 𝑠. This leads to the following state-value 

function 𝑉𝜋(𝑠) and action-value function 𝑄𝜋(𝑠, 𝑎): 

(1) 

(5) 
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𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎) 𝑄𝜋(𝑠, 𝑎)

𝑎

 

 

 𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎 (𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′))

𝑠′

 

For the most optimal policy 𝜋∗, the above two equations 

lead to the following non-linear Bellman optimality 

equations: 

𝑉∗(𝑠) = max
𝑎

∑ 𝑃𝑠𝑠′
𝑎 (𝑅𝑠𝑠′

𝑎 + 𝛾𝑉∗(𝑠′))

𝑠′

 

 𝑄∗(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾 max
𝑎′

 𝑄∗(𝑠′, 𝑎′)]

𝑠′

 

The optimal policy is related to 𝑄∗: to maximize 

cumulative reward, at every state 𝑠, the agent must choose 

action 𝑎∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎  𝑄∗(𝑠, 𝑎). An optimal policy is 

therefore deterministic and derived from 𝑄∗. 

 Reinforcement Learning for façade parsing  

In order to get a better parsing for façade, our approach 

is to combine the most techniques used for façade parsing 

such as: state aggregation, Q-learning and some merits 

functions. In the following sentences, we describe how each 

technique is performed and converge to a better parsing. 

State aggregation: The first advantage of state 

aggregation consists in reducing the number of possible 

states, the second one consists in ensuring consistency along 

the facade. Instead of such computationally intractable 

alternatives, we propose to use a common policy over all 

non-terminals which should be split in a common way. For 

instance, when splitting floors, the learned policy will 

depend exclusively on the horizontal coordinate, and not on 

the height of the floor. This enforces symmetry constraints 

implicitly, aligning windows across floors, or balconies 

inside of floors. These advantages come at the price of 

stochasticity in the decision process. The agent can obtain 

different rewards, while performing the same action on the 

same aggregated state. This is why the ability of 

Reinforcement Learning to cope with stochastic rewards 

becomes indispensable in our problem setting. 

Q-learning: we use a Q-learning agent that iteratively 

segments facades until converging to an optimal policy. In 

each episode the agent sequentially builds the segmentation 

by selecting one rule (action) at a time based on a local 

information (state). By applying a rule, it may create a 

terminal symbol, a subtask or a cyclic symbol. Then it 

receives a reward and reaches a new state where it faces a 

new decision. The value function is iteratively learned by 

Q-learning updates. After convergence, reached after 

around 103 episodes, we deterministically parse the facade 

by following the greedy policy with respect to the estimate 

of 𝑄∗(𝑠, 𝑎). By virtue of being deterministic, and using a 

policy defined on aggregated states, the delivered parse 

satisfies symmetry constraints. Moreover, despite the large 

dimensionality of the original space of states and actions, 

state aggregation allows us to compactly store the action-

value function in a few Mbs of RAM. 

Merits functions: The merit functions are defined on 

the terminals and are involved in the computation of the 

rewards. If training data is available in the form of 

segmentation annotations we can obtain supervised merit 

functions such as Random Forest (RF) and Gaussian 

Mixture Models (GMM) which is based on the RGB values 

of individual pixels selected by the user through brush 

strokes on the image for each terminal symbol of the BSG. 

Both RF and GMM merits are making use of some training 

examples and therefore require some amount of user 

interaction. To accommodate also the common case where 

training data is not available we consider the learning of 

unsupervised merit functions. In particular for simpler cases 

where the BSG has only two terminal windows, wall and 

window, we can separate the two classes based on the 

heuristic introduced by [14]: the hue value distinguishes the 

walls from the windows. 

3.3 Clustering to Learning Grammars 

This part of our work is linked to previous one, which 

generated as output the ground-truth labeled images. Based 

on these outputs, we provide two steps instead of three steps 

used in previous works [9, 18], leading to generate the 

learning grammars. 

Ground-truth parse trees: a parse tree generation 

encodes a facade as a binary split tree whose nodes 

correspond to facade regions, operations and parameters. 

The parser tries to produce a tree which associate label 

image matching as much as possible the ground-truth label 

image. We used generic grammar (Table 1) to generate 

parse trees. Although it cannot parse real images (in a 

reasonable time), it is able to successfully parse the ground-

truth label images. One advantage of this technique is there 

are less decisions to make and good choices are tried first 

[18]. Another advantage is that the generated ground-truth 

parse trees can be easily understood, as they reuse the same 

“concepts” and terms as the generic grammar. This 

translates as well to the specialized grammars that we infer. 

While generating parse trees using a generic grammar, the 

number of meta-rules present in the trees and thus in 

ground-truth grammar is bounded by the number of meta-

rules in the generic grammar. 

Clustering rule patterns: once generated the ground-

truth parse tree, the problem we have to deal with here is to 

define the pattern search as a clustering. The idea is that 

each given tree or subtree is considered as an object to be 

grouped with other similar trees or subtrees into clusters. 

(7) 

(8) 

(9) 

(6) 
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More precisely, given a parse trees T1,....,Tn covering all the 

learning set, we want to identify similar subtrees and group 

them. To deal with that, we use hierarchical clustering 

algorithm as opposed to LP-based clustering used by [18].  

Table 1. Example of generic grammar 

Simple generic grammar 𝓖𝐬𝐠𝐞𝐧 

Axiom 
 

GroundFloorFloorsRoofFloorsky 

GroundFloor 
 

shop door shop 

Floors 
 

wall (Floorwall)+  

Floor 
 

wall (BalcWinswall)+  

Floor 
 

balconyWinFloor 

WinFloor 
 

wall (windowswall)+  

BalcWin 
 

balconywindow 

RoofFloor  roof (window roof)+  

 

Hierarchical clustering technique is divided into two 

approaches: bottom-up approach which use first to identify 

all repeated subtress in individual parse trees separately. 

The second one is top-down approach used to cluster and 

merge all parse trees at root level. An example of such a rule 

merging is shown on Fig.2. 

 
Fig. 2: An example of merging rules. 

 

IV. EVALUATION 

In this section, we evaluate our approach based on 

Reinforcement Learning segmentation in one hand, and in 

the second hand we evaluate the learning grammar based on 

hierarchical clustering algorithms. These two approaches 

are evaluated on two benchmark datasets and compare with 

state-of-the-art. 

4.1 Datasets 

We test our model on two benchmarks datasets: 

ENPC2014 [Raghudeep 2017] with 79 images of Art-deco 

buildings in Paris and ECP2011 [Teboul2011b] which 

contain 104 annotated images of Haussmannian buildings 

in Paris. 

4.2 Evaluation based on Reinforcement Learning 

segmentation 

In this section we will show examples of parsing facades 

using our reinforcement model with specifically rewards as 

Gaussian Mixture Model (GMM), Random Forest and Hue. 

 
Fig.3: Parsing facades with a 4-color BSG. From left to 

right: original image, user’s brush strokes to train a GMM 

classifier, pixel-wise segmentation using the GMMs, 

optimal parse with our algorithm. 

 
Fig. 4: Parsing facades with Hue reward. On the left the 

original image, on the right the optimal parse. 

 
Fig. 5: Parsing facades with Randomized Forest. On the 

left the original image, on the right the optimal parse. 
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4.3 Evaluation based on hierarchical segmentation 

To do this evaluation, our data are follow some 

parameters such as: 𝒢gt (grammar inferred directly from the 

ground-truth parse trees), 𝒢hcl(grammar inferred directly 

from hierarchical clustering), in order to show the accuracy 

of parsing using our learned grammars (Table 2): we report 

classwise accuracy: average class accuracy, overall pixel 

accuracy and average intersection-over-union score (IoU). 

Both datasets ECP2011 and ENPC2014 are segmented and 

annotated into seven classes: door, shop, balcony, window, 

wall, sky and roof. 

Table 2. Segmentation results on the ENPC2014 datasets. 

 
[Teboul2

011b] 

[Raghudeep 

2017] 
𝓖𝐠𝐭 Ours 

Door 49 53 41 61 

Shop 78 84 78 89 

Balcony 49 57 46 65 

Window 51 59 46 68 

Wall 72 79 78 88 

Sky 97 96 95 95 

Roof 52 54 49 62 

Average 64.1 68.9 61.8 74.5 

Overall 68.4 74.3 69.5 79.8 

IoU 48.0 57.8 48.2 60.4 

 

Furthermore we show few visual segmentations using 

our learned grammar with number of episodes for 

convergence and segmentation accuracy. 

 

 

 

 

  
(624, 90.1%)  (500, 92.2%) 

Fig. 6: Qualitative results on ECP2011 dataset. Image 

(left) and segmentation using learned grammar 𝒢ℎ𝑐𝑙  (right) 

are shown here along with number of episodes for 

convergence and segmentation accuracy. 

 

  
(804, 80.4%)  (648, 85.1%) 

Fig. 7: Qualitative results on ENPC2014 dataset. Image 

(left) and segmentation using learned grammar 𝒢ℎ𝑐𝑙  (right) 

are shown here along with number of episodes for 

convergence and segmentation accuracy. 

 

V. CONCLUSION 

In this paper, we improve the learning grammar through 

a hierarchical clustering algorithm. We demonstrated that 

hierarchical clustering technique outperform façade 

segmentation through bottom-up approach which use first 

to identify all repeated subtress in individual parse trees 

separately and the top-down approach used to cluster and 

merge all parse trees at root level. We achieved state-of-the-

art performance on a challenging benchmark, and showed 

the potential of the method to deal with a wide variety of 

buildings. 
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