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ABSTRACT. This paper presents a generalization of the cartesian product of graphs, which we call the functional product of graphs. We prove

some properties of this new product, and we show that it is commutative, associative under certain conditions, and it has a neutral element,

which consists of a single vertex without edges (the trivial graph). We present a characterization of the graphs, which can be obtained from

functional product of other graphs. We prove that the maximum degree of the product graph is the sum of the maximum degrees of the factor

graphs, and we present conditions that ensure the connectedness of the product graph. Finally, we present an application of the functional

product of graphs, in which we prove some results that allow to generate graphs that admit an equitable total coloring, with at most ∆ + 2

colors.
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1 Introduction

The cartesian product of graphs was first defined by

Sabidussi [14] and Vizing [18] in the 1960’s. Since then,

a lot of work has been done on various topics related to the

product graph. The product graphs have numerous applica-

tions in diverse areas, such as Mathematics, Computer Sci-

ence, Chemistry and Biology [6]. Furthermore, the cartesian

product presents some important algebraic properties. These

properties were investigated, independently, by Sabidussi

[14] and Vizing [18]. They showed that if we identify iso-

morphic graphs, then the cartesian product is commutative,

associative, and it has a neutral element, which consists of a

single vertex without edges (trivial graph).They also demon-

strated that each connected finite graph has a decomposition

into prime factors that is unique except for isomorphisms.

Later, several works were done studying the behavior of the

cartesian product with respect to the invariants of graphs.

[6, 1, 8, 13, 17].

The total coloring was introduced independently by Behzad

[2] and Vizing [19], and both conjectured that every graph ad-

mits a total coloring with at most ∆+2 colors. The total col-

oring of cartesian product of graphs has been investigated by

different authors [6, 12, 15, 16, 22, 23]. In [6], Kemnitz and

Marangio investigated the total chromatic number of carte-

sian product of complete graphs, cycles, complete graphs and

bipartite graphs, and cycles and bipartite graphs. In [15, 16],

the total chromatic number of the cartesian product of two

paths, a path and a cycle, a path and a star, a cycle and a star,

and two cycles are determined. Some partial results on the to-

tal coloring of cartesian products of several paths and several

cycles are contained in [22]. In [23], Zmazek and Zerovnik

generalized the result on [12], determining an upper bound

for the total chromatic number of a graph.

Recently, Lozano et al. [9] have studied some relationships

between equitable total coloring and range vertex coloring in

some regular graphs. They proved that if a regular graph ad-

mits a 2-distant coloring with ∆+1 colors, then the coloring

of the vertices can be completed to an equitable total color-

ing with at most ∆ + 2 colors. In [7] Lozano et al. showed

the equivalence of a range coloring of order ∆ and the two-

distant coloring [3]. These results motivated us to study the

possibility of constructing families of regular graphs that ad-

mit a 2-distant coloring with ∆+ 1 colors.

In the section 3 of this paper, we introduce the concept of the

functional product of graphs, and we show that it is a gen-

eralization of the cartesian product of graphs, and we prove

some properties. In Section 4, we present an application of

the functional product of graphs, and we prove some results

that describe a method for obtaining harmonic graphs. We

are going to show that all harmonic graphs admit an equi-

table total coloring with at most ∆+2 colors (i.e. it satisfies

Wang’s conjecture [20]). In this text, the graphs are simple,

not oriented and without loops.
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2 Basic Definitions and Notations

Below, we list the notations to be used throughout this paper:

• {u, v} or uv denotes an edge of the graph G, in which

u and v are adjacent;

• dG(v) or d(v), if there is no ambiguity, denotes the

degree of a vertex v in the graph G;

• ∆(G) or ∆, if there is no ambiguity, denotes the maxi-

mum degree of the graph G;

• NG(v) or N(v), if there is no ambiguity, denotes the

set of all adjacent vertices to a vertex v in the graph G;

• F (X) denotes the set of all bijections of X in X;

• D(G) denotes the digraph obtained by replacing each

edge uv of the graph G by arcs (u, v) and (v, u) while

maintaining the same set of vertices;

• D denotes the set of digraphs that satisfy the following

conditions:

1. (u, v) is an arc of the digraph if and only if (v, u)
is also an arc of this digraph.

2. No two arcs are alike.

•
−→
G ∈ D,G(

−→
G) denotes the graph obtained by replac-

ing each pair of arcs (u, v) and (v, u) of
−→
G for the edge

uv while maintaining the same set of vertices;

• E(X) or E, if there is no ambiguity, denotes the set of

edges (arcs) of the graph (digraph) X ;

• V (X) or V , if there is no ambiguity, denotes the set of

vertices of the graph (digraph) X;

Definition 2.1. [4] Let G(V,E) be a graph, S ⊂ (E ∪ V )
be a set, k be a natural number, and C = {c1, c2, ..., ck}
be an arbitrary set whose elements are called colors. A col-

oring of the graph G with the colors of C is an application

f : S → C.

In the above definition, if S = V then f is a vertex coloring.

In the case that S = E, this is called an edge coloring. Fi-

nally, if S = (E ∪ V ), then f is called a total coloring. If

x ∈ S and f(x) = ci, for i ∈ {1, 2, ..., k}, then we say that

x owns or is colored with the color ci.

Definition 2.2. [4] Let G(V,E) be a graph, S ⊂ (E∪V ) be

a set, and C = {c1, c2, ..., ck} be a set of colors, in which k

is a natural number. A coloring f : S → C with colors from

C is called a proper coloring if for every pair x, y ∈ S with

x adjacent or incident to y, f(x) 6= f(y).

From now on, every coloring considered in this paper is go-

ing to be proper and surjective unless it is explicitly stated

otherwise.

Definition 2.3. [21] Let G(V,E) be a graph, S ⊂ (E ∪ V )
be a set, and C = {c1, c2, ..., ck} be a set of colors, in

which k is a natural number. A coloring f : S → C of the

graph G with colors from C is called an equitable coloring

if for every pair i, j ∈ {1, 2, ..., k} we have that ||f−1(ci)| −
|f−1(cj)|| ≤ 1, in which |f−1(ci)| and |f−1(cj)| are the car-

dinalities of the sets of the elements of S that have the colors

ci and cj respectively.

Definition 2.4. [5] Let G(V,E) be a graph and C =
{c1, c2, ..., ck} be a set of colors, in which k is a natural

number, an application f : S → C is called a range ver-

tex coloring of order k of G. If for all v ∈ V , such that

d(v) < k, then |c(N(v))| = d(v); otherwise |c(N(v))| ≥ k,

in which |c(N(v))| is the cardinality of the set of colors used

in the neighborhood of v.

Observe that range coloring generalizes some known vertex

colorings. The usual vertex coloring of G is a range coloring

of order one. The equivalence of a range coloring of order ∆
and the two-distant coloring is showing in theorem 2.1.

Definition 2.5. [3] Let G(V,E) be a graph and C =
{c1, c2, ..., ck} be a set of colors, in which k is a natural num-

ber. A coloring f : V → C with colors from C is called a

two-distant coloring if every pair of vertices with distance 1

or 2 has different colors.

Theorem 2.1. [7] Let G(V,E) be a graph and C =
{c1, c2, ..., ck} be a set of colors, in which k is a natural num-

ber. A coloring f : V → C is a range coloring of order ∆ if

only if f is a two-distant coloring.

3 Functional Product of Graphs

The main objective of this section is to present the definition

of the functional product of graphs and to prove some prop-

erties of this new product. For this purpose, it is necessary to

define applications, called linking applications, that associate

each edge of a factor graph with a bijection defined on the set

of vertices of another. This bijection indicates the manner in

which the connection of the vertices of the product graph will

be performed. We are also going to show also that the carte-

sian product of graphs can be viewed as a particular case of

the functional product, in which all edges are associated to

the identity application.

Definition 3.1. The digraphs
−→
G1(V1, E1) and

−→
G2(V2, E2)

are functionally linked by applications f1 : E1 → F (V2)
and f2 : E2 → F (V1) if the following hold:

1. For all arc (u, v) ∈ E1, if (v, u) ∈ E1 then

f1((u, v)) = (f1((v, u)))
−1.

2. For all arc (x, y) ∈ E2, if (y, x) ∈ E2 then

f2((x, y)) = (f1((y, x)))
−1.
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3. For every pair of arcs (u, v) ∈ E1 and (x, y) ∈ E2,

we have that f2((x, y))(u) 6= v or f1((u, v))(x) 6= y.

The applications f1 and f2 are called linking applications.

Definition 3.2. Let G1(V1, E1) and G2(V2, E2) be graphs.

If D(G1) and D(G2) are functionally linked by applications

f1 : E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1),
then the graphs G1(V1, E1) and G2(V2, E2) are said to be

functionally linked through the same applications.

Definition 3.3. Let
−→
G1(V1, E1) and

−→
G2(V2, E2) be digraphs

that are functionally linked by applications f1 : E1 → F (V2)
and f2 : E2 → F (V1). The functional product of the digraph
−→
G1 with the digraph

−→
G2 through the applications f1 and f2,

denoted by (
−→
G1, f1) × (

−→
G2, f2), is the digraph G∗(V ∗, E∗)

defined as follows:

• V ∗ = V1 × V2.

• (u, x), (v, y) ∈ E∗ if and only if one of the following

conditions is true:

1. (u, v) ∈ E1 and f1((u, v))(x) = y;

2. (x, y) ∈ E2 and f2((x, y))(u) = v.

Definition 3.4. Let G1(V1, E1) and G2(V2, E2) be

graphs that are functionally linked by applications f1 :
E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1). The

functional product of the graph G1 by graph the G2, de-

noted by (G1, f1) × (G2, f2), is the graph G(
−→
G∗(V ∗, E∗)),

in which
−→
G∗(V ∗, E∗) = (D(G1), f1)× (D(G2), f2).

Figure 1 refers to definitions 3.1 and 3.7. From the origi-

nal graphs (G1 and G2), are generated the corresponding

digraphs (D(G1) and D(G2)) replacing each edge of the

graphs by a pair of opposing arcs.

Note that the cartesian product of graphs is a particular case

of the functional product of graphs defined above, in which

f1 and f2 assign the identity to all arcs of the corresponding

digraphs. Figures 4 and 5 exemplify this relation.

3.1 Properties

It is immediate from definition 3.3 that if identify isomor-

phic graphs, then the functional product has neutral element,

which consists of a single vertex without edges (the trivial

graph). The following theorem shows that the functional

product is commutative.

Theorem 3.1. [10] Let G1(V1, E1) and G2(V2, E2) be

graphs that are functionally linked by applications f1 :
E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1),
then the graphs G∗(V ∗, E∗) = (G1, f1) × (G2, f2)) and

G∗∗(V ∗∗, E∗∗) = (G2, f2) × (G1, f1) are isomorphic

graphs. In this sense, the functional product is commutative.

Proof. Let E′

1 = E(D(G1)) and E′

2 = E(D(G2)), we

are going to prove that given two vertices (u, x) ∈ V ∗ and

(v, y) ∈ V ∗, the edge {(u, x), (v, y)} ∈ E∗ if and only if

the edge {(x, u), (y, v)} ∈ E∗∗. Applying the definition of

functional product, we have that {(u, x), (v, y)} ∈ E∗ if and

only if:

1. (u, v) ∈ E′

1 and f1((u, v))(x) = y, and (v, u) ∈ E′

1

and f1((v, u))(y) = (f1((u, v))
−1(y) = x or

2. (x, y) ∈ E′

2 and f2((x, y))(u) = v, and (y, x) ∈ E′

2

and f2((y, x))(v) = (f2((x, y))
−1(v) = u.

Furthermore, (x, u), (y, v) ∈ E∗∗ if and only if

3. (x, y) ∈ E′

2 and f2((x, y))(u) = v, and (y, x) ∈ E′

2

and f2((y, x))(v) = (f2((x, y))
−1(v) = u; or

4. (u, v) ∈ E′

1 and f1((u, v))(x) = y, and (v, u) ∈ E′

1

and f1((v, u))(y) = (f1((u, v))
−1(y) = x.

Because 1 is equivalent to 4 and 2 is equivalent to 3, the the-

orem is proven.

The following result presents a characterization of the graphs

that can be obtained from functional product of other graphs.

Definition 3.5 (Graph orientation). Given a graph G(V,E),

the digraph
−→
G(V,E′) is a G orientation if it satisfies the fol-

lowing conditions:

1. For all uv ∈ E, (u, v) ∈ E′ or (v, u) ∈ E′.

2. For all (u, v) ∈ E′, uv ∈ E.

3. For all (u, v) ∈ E′, (v, u) 6∈ E′.

Note that every graph has an orientation just replace each

edge uv by exactly one and only one of the arcs (u, v) or

(v, u).

Definition 3.6. Let G1(V1, E1) and G2(V2, E2) be graphs,

f1 : E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1)
linking applications. f1 (respectively f2) is said to be

constant if exists an orientation
−→
G1(V1, E

′

1) (respectively
−→
G2(V2, E

′

2)) of G1 (respectively G2) such that for all pair

of arcs (u, v) and (x, y) in E′

1 (respectively E′

2) we have

that f1((u, v)) = f1((x, y)) (respectively f2((u, v)) =
f2((x, y))).

Definition 3.7. Let G(V,E), X1 ⊂ V andX2 ⊂ V . The sets

X1 and X2 are called matched if |X1| = |X2|, and there is

a matching P ⊂ E, such that every edge of P has an end in

X1 and another in X2, and P saturates both X1 and X2.

Theorem 3.2. Let G(V,E), G1(V1, E1) and G2(V2, E2)
be simple graphs. There are linking applications f1 :
E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1), such

that G = (G1, f1)× (G2, f2) if and only if exists a bijection

a : V1 × V2 → V that satisfies:
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1. For all v ∈ V1 × V2, d(v) = d(a(v)).

2. For all edge uv ∈ E1, the sets {a((u, x));x ∈ V2}
and {a((v, y)); y ∈ V2} are matched. For each edge

e ∈ E1, we denote by εe the corresponding matching.

3. For all edge xy ∈ E2, the sets {a((u, x));u ∈ V1}
and {a((v, y)); v ∈ V1} are matched. For each edge

e ∈ E2, we denote by εe the corresponding matching.

4. E = (
⋃

e∈E1

εe)
⋃

(
⋃

e∈E2

εe).

Proof. Let suppose that 1,2, 3and 4 are true.

Let
−→
G1(V1, E

′

1) and
−→
G2(V2, E

′

2) arbitrary orientations of G1

and G2 respectively, for each arc (u, v) ∈ E′

1, we defined

g(u,v) : V2 → V2 by g(u,v)(x) = y, in which y is such

that {a((u, x)), a((v, y))} ∈ εuv . Similarly, for each arc

(x, y) ∈ E′

2 we defined h(x,y) : V1 → V1 by h(x,y)(u) = v,

in which v is such that {a((u, x)), a((v, y))} ∈ εxy.

We defined:

f1 : E(D(G1)) → F (V2) by f1((u, v))(x) =
{

g(u,v)(x) if (u, v) ∈ E′

1

g−1
(v,u)(x) otherwise

f2 : E(D(G2)) → F (V1) by f2((x, y))(u) =
{

h(x,y)(u) if (x, y) ∈ E′

2

h−1
(y,x)(u) otherwise

Let G∗(V ∗, E∗) the graph defined by V ∗ = V1 × V2 and E∗

is such that {(u, x), (v, y)} ∈ E∗ if and only if one of the

following conditions is satisfied:

1. (u, v) ∈ V (D(G1)) and f1((u, v))(x) = y or

2. (x, y) ∈ V (D(G2)) and f2((x, y))(u) = v.

Initially, we are going to prove that G∗ is isomorphic to G.

Note that V ∗ = V1 × V2.

So, we define the bijection b : V ∗ → V by b(v) = a(v). Let

{(u, x), (v, y)} ∈ E∗, then:

• (u, v) ∈ E(D(G1)) and f1((u, v))(x) = y,

which means that {b((u, x)), b((v, y))} ∈ εuv, so

{b((u, x)), b((v, y))} ∈ E or

• (x, y) ∈ E(D(G2)) and f2((x, y))(u) = v,

which means that {b((u, x)), b((v, y))} ∈ εxy, so

{b((u, x)), b((v, y))} ∈ E.

On the other hand, because of 3, if {b((u, x)), b((v, y))} ∈
E, we have:

• {u, v} ∈ E1 and {b((u, x)), b((v, y))} ∈ εuv , so

f1((u, v))(x) = y and (f1((u, v)))
−1(y) = x or

f1((v, u))(x) = y and (f1((v, u)))
−1(y) = x. In both

cases {(u, x), (v, y)} ∈ E∗; or

• {x, y} ∈ E2 and {b((u, x)), b((v, y))} ∈ εxy , so

f2((x, y))(u) = v and (f2((x, y)))
−1(v) = u or

f2((y, x))(u) = v and (f2((y, x)))
−1(v) = u. In both

cases {(u, x), (v, y)} ∈ E∗.

So, G∗ is isomorphic to G.

It remains to prove that the applications f1 and f2 are link-

ing applications. In fact, f1 and f2 satisfy conditions 1 and 2
of the linking application definition because of the way that

they were defined. Now, if uv ∈ E1 and xy ∈ E2 are such

that f1((u, v))(x) = y and f2((x, y))(u) = v, then the edge

{(u, x), (v, y)} ∈ E∗ would be a double edge. It implies that

G∗ (and therefore G) is not simple and this fact contradicts

the hypotheses of the theorem. So, the applications f1 and f2
are linking applications.

Let suppose now that there are linking applications f1 :
E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1), such

that G(V,E) = (G1, f1)× (G2, f2). We take the application

a : V1 × V2 → V as identity. Let uv ∈ E1, then because

of definition of linking applications εuv = {(u, x)(v, y) ∈
E : y = f1((u, v))(x)} is a matching between the sets

{a((u, x));x ∈ V2} and {a((v, y)); y ∈ V2}. In a similar

way, we have the matching εxy for each xy ∈ E2.

To prove that E = (
⋃

e∈E1

εe)
⋃

(
⋃

e∈E2

εe), just note that

if {(u, x), (v, y)} ∈ εuv or {(u, x), (v, y)} ∈ εxy, then

{(u, x), (v, y)} ∈ E, and vice versa, if {(u, x), (v, y)} ∈
E, then {u, v} ∈ E1 and f1((u, v))(x) = y, in this

case, {(u, x), (v, y)} ∈ εuv , or {x, y} ∈ E2 and

f2((x, y)(u) = v, in this case {(u, x), (v, y)} ∈ εxy. So

E = (
⋃

e∈E1

εe)
⋃

(
⋃

e∈E2

εe), which is enough to prove the

theorem.

Theorem 3.3. Let G1(V1, E1), G2(V2, E2), G3(V3, E3) be

graphs, f1 : E(D(G1)) → F (V2), f2 : E(D(G1)) →
F (V3), g1 : E(D(G2)) → F (V1), g2 : E(D(G2)) →
F (V3), h1 : E(D(G3)) → F (V1) and h2 : E(D(G3)) →
F (V2) linking application between respective graphs. If

h3 : E(D(G3)) → F (V1 × V2) and t1 : E(D((G1, f1) ×
(G2, g1))) → F (V3) are defined by:

h3((u, v))(x, y) = (h1((u, v))(x), h2((u, v))(y))

t1(((u, x), (v, y))) =

{

f2((u, v)) if {(u, x), (v, y)} ∈ εuv, uv ∈ E1

g2((x, y)) if {(u, x), (v, y)} ∈ εxy, xy ∈ E2

Then, there are linking applications f3 : E(D(G1)) →
F (V2 × V3) and t2 : E(D((G2, g2) × (G3, h2))) → F (V1),
such that: ((G1, f1)× (G2, g1), t1)× (G3, h3) is isomorphic

(G1, f2)× ((G2, g2)× (G3, h2), t2).

Proof. Let G∗(V ∗, E∗) = ((G1, f1) × (G2, g1), t1) ×
(G3, h3) and G′(V ′, E′) = (G2, g2) × (G3, h2) be graphs.

We define the bijection a : V1 × V ′ → V ∗ such that

a((x, (y, z))) = ((x, y), z). We are going to show that G∗,
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G1, G′ satisfy the conditions of the theorem 3.2. From now

on, n1 = |V1|, n2 = |V2|, n3 = |V3|, V1 = {x1, · · · , xn1
},

V2 = {y1, · · · , yn2
} and V3 = {z1, · · · , zn3

}.

Let {xi1 , xi2} ∈ E1, with i1, i2 ∈ {1, · · ·n1}. Note that

the sets {(xi1 , yj)} and {(xi2 , yj)}, j ∈ {1, ..., n2} are

matched in (G1, f1)× (G2, g1) because {xi1 , xi2} ∈ E1 and

f1((xi1 , xi2 )) is a bijection of V2 in V2.

Fixing j1 ∈ {1, · · · , n2}, the edge {(xi1 , yj1), (xi2 ,

f1((xi1 , xi2 ))(yj1))} ∈ E((G1, f1)× (G2, g1)). As t1(e) =
f2((xi1 , xi2 )), if e ∈ εxi1

xi2
, then for each k ∈ {1, · · · , n3}

the edge {((xi1 , yj1), zk), ((xi2 , f1((xi1 , xi2))(yj1 )), zk)} ∈
E∗.

So, the sets {((xi1 , yj1), zk)} and {((xi2 , f1((xi1 , xi2))(yj1 )),
zk)}, k ∈ {1, · · · , n3}, are matched in G∗. Now, if we take

j2 ∈ {1, · · · , n2}, with j2 6= j1, then f1((xi1 , xi2))(yj1 ) 6=
f1((xi1 , xi2 ))(yj2) and the respective matchings have no

edges in common. This shows that {((xi1 , yj), zk)} and

{((xi2 , yj), zk)}, with j ∈ {1, ..., n2}, k ∈ {1, ..., n3} are

matched in G∗.

Let {(yi1 , zk1
), (yi2 , zk2

)} ∈ E(G′), we are going to analyze

two cases:

case 1. If (yj1 , yj2) ∈ E(D(G2)) and g2((yi1 , yi2))(zk1
) =

zk2
, then {(xi, yj1)} and {(f2((yj1 , yj2))(xi), yj2)},

with i ∈ {1, · · · , n1} are matched in (G1, f1) ×
(G2, g1). As t1(e) = g2((yi1 , yi2)), if e ∈
εyi1

yi2
, then for each i ∈ {1, · · · , n1}, the edge

{((xi, yj1), zk1
), ((xi, yj2), zk2

)} ∈ E∗. Therefore, the sets

{((xi, yj1), zk1
)} and {((xi, yj2), zk2

)} are matched.

case 2. If (zk1
, zk2

) ∈ E(D(G3)) and h2((zk1
, zk2

))(yj1) =
yj2 , just note that h3((zk1

, zk2
))(xi, yj1) =

(h1((zk1
, zk2

))(xi), h2((zk1
, zk2

))(yj1 )) =
(h1((zk1

, zk2
))(xi), yj2) for all i ∈ {1, · · · , n1}. It es-

tablishes a matching between sets and {((xi, yj1), zk1
)} e

{((xi, yj2), zk2
}.

Now, it remains to prove that every edge of G∗

is in any of the matchings. In fact, if the

{((xi1 , yj1), zk1
), ((xi2 , yj2), zk2

)} ∈ E∗, then one of the

conditions below is satisfied:

case 1. If (zk1
, zk2

) ∈ E(D(G3)) and h3((zk1
, zk2

))(xi1 , yj1)
= (xi2 , yj2), then {((xi1 , yj1), zk1

), ((xi2 , yj2), zk2
)} is in

the matching between {((xi, yj1), zk1
)} and {((xi, yj2), zk2

)},

with i ∈ {1, · · ·n1}.

case 2. If ((xi1 , yj1), (xi2 , yj2)) ∈ E(D((G1, f1)) ×
(G2, f2))) and t1(((xi1 , yj1), (xi2 , yj2)))(zk1

) = zk2
, we

have 2 subcases:

subcase 1. If (xi1 , xi2) ∈ E(D(G1)) and f1((xi1 , xi2))(yj1 )
= yj2 , then {(xi1 , yj1), (xi2 , yj2)} ∈ E((G1, f1)) ×
(G2, g1)), so {((xi1 , yj1), zk1

), ((xi2 , yj2), zk2
)} is in the

matching between {((xi1 , yj1), zk)} and {((xi2 , yj2), zk)},

with k ∈ {1, · · ·n3}.

subcase 2. If (yj1 , yj2) ∈ E(D(G2)) and g1((yj1 , yj2))(xi1 )
= xi2 , then {(xi1 , yj1), (xi2 , yj2)} ∈ E((G1, f1)) ×
(G2, g1)), so {((xi1 , yj1), zk1

), ((xi2 , yj2), zk2
)} is in the

matching between {((xi1 , yj1), zk)} and {((xi2 , yj2), zk)},

with k ∈ {1, · · ·n3}, which is enough to prove the theorem.

See that the associativity of the cartesian product of graphs

[2, 14] is a consequence of the theorem 3.3 because if the bi-

jections associated by the linking applications are always the

identity, they satisfy the conditions of the theorem.

3.2 Invariants

In this section, we prove that the maximum degree of the

product graph is the sum of the maximum degrees of the fac-

tor graphs, and we present conditions that ensure the connect-

edness of the product graph.

Theorem 3.4. [10] Let G1(V1, E1) and G2(V2, E2) be

graphs that are functionally linked by applications f1 :
E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1). For

every vertex (u, x) of the graph G∗(V ∗, E∗) = (G1, f1) ×
(G2, f2), we have that

dG∗(u, x) = dG1
(u) + dG2

(x).

Proof. For each (u, x) ∈ V ∗, we call EG∗((u, x)) the set of

edges that are incident on that vertex in the graph G∗. The

application hi : NG1
(u) → EG∗((u, x)) is constructed as

follows. Let h1(v) = (v, y)(u, x), in which y ∈ V2 is such

that f1((u, v))(x) = y, with (u, v) ∈ E(D(G1)), in which y

exists because f1((u, v)) is bijective. On the other hand, h1 is

injective because if v1, v2 ∈ NG1
(u) and v1 6= v2, then nec-

essarily (v1, y1)(u, x) 6= (v2, y2)(u, x) for any values of y1
and y2. Similarly, we construct h2 : NG2

(x) → EG∗(u, x).
If an edge is incident in (u, x) in the graph G∗, then it has

the form (u, x)(v, y). Then, it exists (u, v) ∈ E(D(G1)),
such that f1((u, v))(x) = y or (x, y) ∈ E(D(G2)) such that

f2((x, y))(u) = v. Due to construction h1 and h2, we have

that h1(NG1
(u)) ∪ h2(NG2

(v)) = EG∗(u, x). Otherwise, if

(u, x)(v, y) ∈ h1(NG1
(u)) and (u, x)(v, y) ∈ h2(NG2

(v)),
then there are arcs (u, v) ∈ E(D(G1)) and (x, y) ∈
E(D(G2)) such that f1((u, v))(x) = y and f2((x, y))(u) =
v. This contradicts condition 3 of the definition of linking ap-

plications, so it holds that h1(NG1
(u)) ∩ h2(NG2

(v)) = ∅.

Now, we can construct the bijection as follows:

h : (NG1
(u)) ∪ (NG2

(x)) → EG∗(u, v) defined by

h(a) =

{

h1(a), if a ∈ NG1
(u),

h2(a), if a ∈ NG2
(x).

This proves the theorem.

From the previous theorem, we immediately obtain the fol-

lowing corollary.
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Corollary 3.4.1. Let G1(V1, E1) and G2(V2, E2) be

graphs that are functionally linked by applications f1 :
E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1). Then,

the graph G∗ = (G1, f1) × (G2, f2) has maximum degree

∆(G∗) = ∆(G1) + ∆(G2).

In general, the functional product of connected graphs is not

necessarily connected, as it is showing in the next proposi-

tion.

Proposition 3.1. Let G1(V1, E1) and G2(V2, E2) be bipar-

tite graphs with partitions such that V1 = V11 ∪ V12 and

V2 = V21∪V22, with |V11| = |V12| and |V21| = |V22|. Let f1 :
E(D(G1)) → F (V2) and f2 : E(D(G2)) → F (V1) the re-

spective linking applications, such that if f1(e)(u) = v, then

u and v are in different partitions of G2 and if f2(e)(u) = v,

then u and v are in different partitions of G1. Then, the graph

G∗(V ∗, E∗) = (G1, f1)× (G2, f2) is disconnected.

Proof. Let V1 = {0, 1, 2, . . . , n − 1}, and V2 =
{0, 1, 2, . . . ,m − 1}, for i = 0, 1, 2, . . . , n − 1, and j =
0, 1, 2, . . . ,m − 1. Without loss of generality, suppose that

V11 = {0, 2, 4, . . . , n − 2}, V12 = {1, 3, 5, . . . , n − 1},

V21 = {0, 2, 4, . . . ,m− 2}, and V22 = {1, 3, 5, . . . ,m− 1}.

Let G∗(V ∗, E∗) = (G1, f1) × (G2, f2) be the functional

product graph.

Let’s prove that the edge {(i, j), (i′, j′)} ∈ E∗ if and only if

(i+ j) and (i′+ j′) have the same parity. By the definition of

functional product, {(i, j), (i′, j′)} ∈ E∗ if and only if one

of the following conditions is true:

1. (i, i′) ∈ E(D(G1)), and f2(j) = j′ or f−1
2 (j) = j′;

2. (j, j′) ∈ E(D(G2)), and f1(i) = i′ or f−1
1 (i) = i′.

In case 1, we have:

If i is even and j is even, then i′ is odd and j′ is odd.

If i is even and j is odd, then i′ is odd and j′ is even.

If i is odd and j is even, then i′ is even and j′ is odd.

If i is odd and j is odd, then i′ is even and j′ is even.

In all cases, the sum has the same parity.

In case 2, it is sufficient to proceed in a similar way to achieve

the desired result. So, G∗(V ∗, E∗) = (G1, f1) × (G2, f2)
is disconnected and G∗ has 2 connected components of the

same cardinality.

The following theorem gives a condition that ensures the con-

nectedness of a functional product graph if the factors are

connected. We are going to need two new concepts, namely

centered applications and centroids.

Definition 3.8. Let G(V,E) be a graph, W be an arbitrary

finite set, and f : E(D(G)) → F (W ) be an application,

it is said that f is centered if it exists x ∈ W , such that

f(e)(x) = x for all e ∈ E. Then, x is called a centroid of f .

Theorem 3.5. Given two graphs G1(V1, E1) and

G2(V2, E2) that are connected and functionally linked by ap-

plications f1 : E(D(G1)) → F (V2) and f2 : E(D(G2)) →
F (V1), if f1 or f2 is a centered application, then the func-

tional product G1 by G2, with respect to f1 and f2, is con-

nected.

Proof. Without loss of generality, suppose that f2 is cen-

tered, and let y ∈ E1 be the centroid of f2, G∗(V ∗, E∗) =
(G1, f1) × (G2, f2), and V2 = {u1, u2, . . . , un}. Be-

cause y is the centroid and G2 is connected, all vertices

(y, ui) ∈ V ∗, such that i ∈ {1, . . . n} are in the same

connected component of G∗. Now, let (x, ui0) ∈ V ∗

be arbitrary, because G1 is connected, there is a path

xx1x2 . . . xp, with xp = y linking x at y in G1. Let

ui1 = f2((x, x1))(ui0) . . . uip = f2((xp−1, xp))(uip−1
),

then the path (x, ui0)(x1, ui1) . . . (xp, uip) joins the vertex

(x, ui0) with (y, uip). This proves that all of the vertices of

G∗ are in the same connected component. Therefore, G∗ is

connected.

The cartesian product of graphs is connected if and only if

both factors are connected. For more details, one can refer to

[2, 14]. Note that this result is a consequence of the theorem

3.5 because, in the cartesian product of graphs, the linking

applications of f1 and f2 assign the identity to all arcs of the

corresponding digraphs, ie, both are centered applications.

4 Applications Functional Product of

Graphs

In this section, we present some results that show how gener-

ate harmonic graphs from any regular graph. As consequence

of theorem 4.2, the total coloring of those graphs is equitable

and, in consequence, it satisfies the Wang’s Conjecture. In

order to better understand the following results, we first state

two theorems, which appears in [21] and [11] respectively.

Definition 4.1. [11] A regular graph G is said to be har-

monic if it admits a range coloring of order ∆ (or equiva-

lently a two-distant coloring) with ∆+ 1 colors.

Theorem 4.1 (Petersen, 1891). [21] If G(V E) is a 2k-

regular graph, then G is two-factorizable.

Theorem 4.2. [11] Let G(V,E) be a regular graph and

c : V → C = {1, 2, 3, . . . ,
∆ + 1} a range coloring of order ∆ of G. Then, there is a

equitable total coloring of G with at most ∆+ 2 colors.

Theorem 4.3. For any regular graph G and its comple-

ment G′, there are linking applications f1 and f2, such that

G∗ = (G, f1)× (G′, f2) is a harmonic graph.

Proof. First note that for any regular graph G, either ∆(G)
or ∆(G′) is even. In fact, if ∆(G) is odd, then because n =
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|V (G)| is even, ∆(Kn) is odd and ∆(Kn) = ∆(G)+∆(G′),
it follows that ∆(G′) is even. Initially suppose that ∆(G′) is

even, by Theorem 4.1, there is a decomposition of G′ into

two-factors. For each two-factors F , replace each cycle by

an oriented cycle and define the application a : V (F ) −→
V (F ), such that if (u, v) ∈ E(F ), then a(u) = v and, clearly

a is a bijection.

The application f2 associates the bijection a to each arc of

the cycle and it associates the inverse bijection to each re-

verse oriented cycle. In the graph G, the application f1 as-

sociates the identity to all pairs of arcs associated to edges.

Now, if V (G) = v0, v1, v2, ..., vp, then in each vertex of the

form (x, vp), we apply the color p. By construction, the re-

sulting coloring of G∗ = (G1, f1) × (G2, f2) is a coloring

with range ∆ and it has ∆+ 1 colors. If ∆(G′) is odd, then

∆(G) is even and so one only needs to change the positions

of G and G′, in the previous reasoning, to obtain the desired

result. Therefore, G∗ = (G, f1) × (G′, f2) is a harmonic

graph.

Theorem 4.4. Let G be a regular graph and G′ be its com-

plement. If ∆(G′) is even, then for any graph H such that

∆(G′) = ∆(H) there are linking applications f1 and f2,

such that G∗ = (G, f1)× (H, f2) is a harmonic graph.

Proof. It is only necessary to note that both G′ and H can

be decomposed in the same number of two-factors and each

two-factor of G′ has an associated bijection of vertices of

G. Let F1, F2, F3, ..., Ft be the two-factors of the decom-

position of G′, let r1, r2, ..., rt be the associated bijections,

and let K1,K2, k3, ...,Kt be the two-factors of the decom-

position of H , which will be replaced by oriented cycles

O1, O2, ..., Ot, the application of f2 associates the bijections

ri to each arc Oi, and r−1
i to the reverse oriented cycle for all

i ∈ 1, 2, ..., t. The application of f1 associates the identity to

all edges of G. Now, if V (G) = v1, v2, ..., vp, then in each

vertex of the form (x, vp), we apply the color p. Then, by con-

struction, the resulting coloring of G∗ = (G1, f1)× (G2, f2)
is a coloring with range ∆ and it has ∆+1 colors. Therefore,

the graph is harmonic.

Figures 6, 7, 8, and 9 illustrate the proof of Theorem 4.3 us-

ing a 3-regular graph with eight vertices. Figures 10, 11, 12

and 13 illustrate the proof of Theorem 4.4 using two cycles,

C5 and C3. Figure 14 shows the equitable total coloring of

the harmonic graph, obtained as a consequence of theorem

4.2.

Figures 10, 11, 12 and 13 illustrate the proof of Theorem

4.4 using two cycles, C5 and C3. Figure 14 shows the eq-

uitable total coloring of the harmonic graph, obtained as a

consequence of theorem 4.2.

5 Conclusions

This paper presented the functional product of graph, which

is a generalization of the cartesian product of graphs. We

show that the functional product is commutative, it has a neu-

tral element, and associative under certain conditions. We

prove a result that offers a characterization of the product

graphs, ie. it shows how are graphs that can be obtained by

the functional product.

We studied some invariants. Initially, we proved that the max-

imum degree of the product graph is the sum of the maxi-

mum degrees of the factor graphs. In relation to connect-

edness, we showed that the functional product of connected

graphs is not necessarily connected. We proved a result that

gives some conditions in which the functional product of con-

nected graphs is disconnected. In addition, we presented a

condition that ensures the connectedness of a functional prod-

uct graph if the factors are connected.

On the other hand, the functional product has proved to be

efficient at constructing graphs that ”inherit” desirable prop-

erties from the factors as was shown in Section 4. As ap-

plication of the functional product, we proved two theorems

that ensure that harmonic graphs can be constructed using the

functional product of graphs and any regular graphs as basis.

In future work, it will be studied the behavior of other invari-

ants of graphs, for example chromatic number, connectivity,

dominance, and diameter. In addition, it will be studied the

possibility of recognizing families or subfamilies of graphs

that can be obtained by the functional product. For exam-

ple, the figures below 15 and 16 illustrate the Kneser graph

KG5,2 isomorphic to the Petersen Graph generated by the

functional product of a P2 and a C5.
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Figure 1: Graphs G1 and G2, respective digraphs D(G1) and D(G2), and applications f1 and f2.
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Figure 5: Functional Product (or Cartesian) between the graphs G1 and G2 according to f1 and f2.

(a) (b)

Figure 6: 3−regular graph and its complement.

Figure 7: Cycles obtained from the decomposition of two-factors from the graph in Figure 6(b) with an arbitrary orientation.
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0 → 2

1 → 6

2 → 5

3 → 0

4 → 1

5 → 7

6 → 3

7 → 4

0 → 6

1 → 5

2 → 7

3 → 1

4 → 2

5 → 0

6 → 4

7 → 3

Figure 8: Bijections associated with the cycles of Figure 7.
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Figure 9: The start of the construction process of harmonic graphs, only the connections of the vertex (v0, v0), (v1, v0) and

(v7, v0) have been designed.
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Figure 10: Graph G (C5), its complement G′, and graph H (C3).
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Figure 11: Cycle obtained from the decomposition of two-factors from the graph G′ with an arbitrary orientation.
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Figure 12: Bijection associated with the cycle of Figure 11.
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Figure 13: Range coloring of order 4 with 5 colors of the Harmonic Graph.

Figure 14: Equitable total coloring with 5 colors of the Harmonic Graph.
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Figure 15: Graphs P2 and C5 with their associated bijections f and g.
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Figure 16: Petersen Graph generated by the functional product of a P2 and a C5 according to f1 and f2.
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