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Abstract— Computer simulations often entail an optimization problem, 

corresponding to the calibration of model parameters to ensure a precise 

representation of a given scenario. Many complex phenomena such as urban 

growth have characteristics that make optimization harder; this can be 

exemplified by the lack of an analytical formulation, presence of nonlinearity, 

discontinuities, and nondeterminism. SLEUTH is a long-established urban 

simulator, used to compute forecasts of city evolution. The tool is controlled by 

five parameters that span a search space of the order of 10 billion 

combinations, with a calibration procedure that is CPU-intensive and not 

compatible with gradient-descent methods. In this work we compare the 

efficiency of a genetic-algorithm version of the simulator with the use of the 

optimization library NOMAD. Different alternatives for the integration of the 

library are suggested. The experiments are analyzed using data profiles, a 

technique designed to handle cases with a limited number of function 

evaluations. The results confirm interest in NOMAD, and reveal more 

information than traditional comparisons of number of iterations or final 

optimization results. The methodology of the study can be applied to similar 

situations and is not restricted to simulators implementing urban models. 

 

I. INTRODUCTION 

Simulation is a fundamental tool in science and 

technology, in fields as different as medicine, astronomy, 

economics, and engineering. The execution of simulation 

models makes it possible to compare alternative 

explanations to a phenomenon, make projections, and 

refine designs in contexts as research and development of 

new technological products, or administration of complex 

systems. Urban simulation is a comparatively recent field, 

and it encompasses several aspects of the study of cities, 

such as mobility, waste management, microclimate and 

urban growth. 

A critical point of simulation studies is to guarantee a 

match between computed results and actual data [1-3]. In 

other terms, given a physical system, a model should be 

capable of reproducing its behavior within a tolerance. 

This can be assessed by monitoring variables of the model 

and comparing them against reference values, examining 

qualitative or behavioral characteristics of the simulator, or 

possibly, conducting the analysis of both types of 

information [4,5]. In a broad context, finding the correct 

values for physical parameters that match a phenomenon is 

generally known as an inverse problem [6]. Computer 

software may also require calibration of variables that do 

not directly represent physical properties, but control 

simulation behavior; this is often the case with complex 

systems [5]. 

Models of urban growth, or more generally, models of 

land use and cover change, require Geographical 

Information Systems data, which are generally represented 

as tables of values or 2D images [5]. A common technique 

to implement urban simulation is Cellular Automata [7,8], 

where each cell represents a square area of land. 

Calibration of such models is based on global statistics 
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(e.g., urbanized area) and local information (e.g., 

morphology of the urban footprint) [7]. 

The SLEUTH simulator is a long-established model of 

urban growth [9,10]. The calibration procedure adjusts the 

values of five parameters that control the simulation. The 

parameters take integer values between 0 and 100, 

meaning that the search space has 1015 combinations. 

Calibrating SLEUTH corresponds to finding the extreme 

of a metric. The original method is based on a brute-force 

strategy, conducted manually; processing times of the 

order of six months were reported ten years ago [10]. The 

software has support for parallel execution via MPI 

(Message Passing Interface), but this translates to pushing 

further to the hardware the inefficiency of the search. One 

attempt to address the problem was the implementation of 

a genetic algorithm, tailored to this software [10,11]. 

Studies of model calibration can be found in many fields; 

cellular automata models of urban growth constitutes part 

of the literature of the problem, and some references are 

[12-16]. 

It has been documented that the SLEUTH model 

exhibits high sensitivity to temporal locality of data [17]; 

in our experience, the opposite happens with its control 

parameters. By inspecting the output of metrics it can be 

observed the presence of a pattern of plateaus. Other 

characteristics of the model, as strong nonlinearity, and 

discontinuity, prompt the use of zero-order optimization 

methods [18]. 

In this work, we modify the SLEUTH simulator by 

coupling it with the optimization toolkit NOMAD [19], 

capable of handling characteristics as non-convexity and 

noise. The software connection was implemented using 

named sockets. The technique of data profiles was used to 

analyze the results. The performance of NOMAD was 

compared with the original method of the simulator and 

also with another version of the tool, GA-SLEUTH, which 

implements a genetic algorithm for calibration.  

 

II. MATERIALS AND METHODS 

2.1 THE SLEUTH MODEL 

The software SLEUTH implements a model of urban 

growth based on the technique of Cellular Automata [8-

10]. Each cell obeys a set of rules that determines whether 

a location becomes urbanized or not, depending on the 

state of neighbor cells and on five layers of data that give 

the software its name: Slope, Land Use, Excluded Areas, 

Urbanization, and Hillshade. The model implements 

heuristic and stochastic rules that are controlled by five 

parameters that vary in the range 0 ≤ p ≤ 100 ; they are: 

⚫ diffusion: controls the generation of new cells 

scattered on the matrix; 

⚫ bread: controls the expansion of new city fragments; 

⚫ spread: controls the generation of new cells around 

areas that are already urbanized; 

⚫ slope: controls to which extent the city can advance 

over steep terrains; and 

⚫ road gravity: controls the generation of new urban 

cells along of roads. 

These five parameters are dubbed ‘SLEUTH DNA’; 

they are proposed as a means to characterize the dynamics 

of a city according to the model [20]. 

Before calculating a forecast, SLEUTH must be 

calibrated to replicate the historical evolution of a city. 

This task employs images depicting the past of the area, 

and a comparison metric. The original procedure is based 

on an exhaustive search, following the logic on Fig. 1. The 

simulator is executed with images of increasing finer 

resolution and smaller parameter grids, producing logs of 

statistics that are manually inspected [9]. 

 

Fig. 1: Original SLEUTH calibration process. 

 

The brute force method scans the search space using 

five nested loops, with ranges configured by the user. The 

documentation suggests three calibration rounds, each time 

doubling image resolution. Each simulation run iterates an 

internal Monte-Carlo process to average random effects 

implemented in the model [9,10,21]. 

The algorithm in Fig. 1 explores contiguous regions 

and, in principle, does not handle disjoint subsets of 

parameters. This incurs the risk of losing an extreme point, 

possibly a global one. To the best of our knowledge, this 

aspect seems to be overlooked by the literature. 

Fig. 2 shows a typical output of one of SLEUTH 

statistics, obtained in our experiments. 
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Fig. 2: Output pattern of SLEUTH calibration. 

 

Fig. 2 shows a plot of the metric Lee-Sallee [22], 

which measures the match between a reference map of 

urban/non-urban pixels, and the simulator output. Another 

metric consists of a product of several statistics and is 

known as OSM (Optimal SLEUTH Metric) [23]. It  

exhibits much more noise but also has a pattern-like 

structure. This metric is hardcoded in the genetic version, 

GA-SLEUTH [10,11]. Both metrics have values between 0 

(worst) and 1 (best). 

2.2 OPTIMIZATION TOOLS 

Direct search methods stand out for their capability to 

perform optimization without requiring derivatives, and 

handling nonconvexity and discontinuities [18]. Since such 

methods make little or no assumptions regarding the 

behavior of functions, they are also known as black-box 

optimization algorithms [24,25]. 

Possibly one of the most famous direct search methods 

is the one proposed by Nelder and Mead in 1965, which 

scans the search space using a simplex [26]. A simplex is a 

polytope with n+1 vertices, where n is the dimension of 

the search space. Since its introduction, this algorithm has 

been studied and recast in different forms, including 

methods to handle constraints and discrete grids [25,27]. 

NOMAD is a library written in C++ that implements 

black-box optimization algorithms. It is capable of 

handling discontinuities, constrained optimization, and 

functions of discrete variables [28-30]. The algorithm it 

implements can be divided into two parts [29]: 

⚫ search: evaluates f for a set of points that radiate to 

directions D; 

⚫ poll: if the search step fails to improve the 

function, the grid size is adjusted and a different 

set of directions D’ is used to generate candidates. 

The implementation allows to modify the default 

values of parameters and even to change aspects of 

execution; for instance, the Nelder-Mead algorithm can be 

chosen as the search step [29]. There are two basic ways to 

use the NOMAD toolkit, illustrated in Fig. 3.  

 

Fig. 3: Two methods to use the NOMAD tool. 

 

The code, in the form of a library, can be linked with 

an objective function provided by the user; the result is a 

stand-alone executable that calculates the objective 

function and runs the optimization. This form can be 

exploited using compiled languages, but there are 

interfaces for Matlab and Python. Another alternative is to 

have the objective function implemented in a separate 

application, that will be called by a sort of NOMAD driver 

that sends command line parameters and collects output 

from stdout [29]. 

In the case of SLEUTH, the first method requires 

incorporating the library into the simulator, and the second 

is not compatible with the high latency of its start-up code. 

In this study, a third alternative was devised. We modified 

the simulator to receive parameters using Unix domain 

sockets [30]. A small application embedding the NOMAD 

library was implemented, replacing the terminal-based 

driver, as shown in Fig. 4. 

 

Fig. 4: Our implementation of NOMAD with SLEUTH. 

 

Other alternatives to the architecture shown in Fig. 4. 

include the use of file and memory sharing, and named 

pipes. In the case of file and memory sharing it would be 

necessary to implement a synchronization scheme [31], 

signaling the moment when each of the endpoints - 

SLEUTH and NOMAD - would have finished computing 

metrics and parameters, respectively. Named pipes 

implement synchronization in a transparent way, and could 

be used in place of Unix domain sockets. 

2.3 ANALYSIS CRITERIA 

Calibration of SLEUTH and of many other cellular 

automata models of urban growth  is a difficult process 

[10,12-16]. The key issue is to extract a maximum of 
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information from a minimum number of simulation runs. 

Optimization must aim at reducing the number of tested 

configurations, but at the same time, it must also guarantee 

a certain level of quality of results. 

The performance of optimization algorithms is 

evaluated in terms of convergence rates, which, in the case 

of non-gradient methods, relates to decreasing lengths of 

the search step [18,32]. Usually, the results are represented 

on graphs showing target values as a function of the 

number of iterations, a concept similar to the technique of 

time-to-target plot [33]. 

Generally, it is preferable to use a large set of points to 

perform this type of comparison. In the present case, 

however, the simulation of different regions requires 

geographical data, and obtaining that information and 

preparing the files is a lengthy task per se [34]. In addition 

to that, long processing times limit the number of data 

points available for analysis [24,25]. 

Performance profiles are an instrument to compare the 

relative efficiency of optimization algorithms [35]. The 

method takes the best value found by the algorithms as a 

reference, and then computes a distribution function of the 

results. Plots of distributions are a means to depict the 

relative performance of optimizers. When the evaluation of 

the cost function is too expensive, a technique developed 

later, data profiles, is a better alternative [36]. The main 

difference between the two is that performance profiles 

compute a ratio based on the number of problems solved 

within a given threshold, while data profiles are calculated 

with respect to the number of function evaluations. 

In this paper data profiles were used, with an 

adjustment that corresponds to selecting the full range of 

values to compute a distribution [36]. We begin by 

recording the whole set of trial points Xk = {xk
1 ... xk

n(k)} 

and respective function values for each optimization 

algorithm k=1,... and also recording the best result r* = 

min { f(x) } , among all tests. Then we calculate: 

   

, where the symbol | stands for cardinality of a set and α  

varies between 0 and 1. The curve dk indicates the number 

of times a method k produces results which are at least α 

percent as good as r*. By plotting dk we get a visual 

description of the relative efficiency of an optimization 

method to explore the search space. 

Here, the objective function f was the same metric 

implemented in the genetic version of SLEUTH: OSM. 

This choice does not mean an endorsement of this metric 

for calibration of the model, but analyzing this matter is 

not part of the scope of this study. 

2.4 SIMULATION SETUP AND DATA COLLECTION 

Preparing layers of geographical data for SLEUTH is a 

demanding task, and this kind of data is not readily 

publicly available. In this work, two datasets, D1 and D2, 

were employed with the three optimization methods: brute 

force; genetic algorithm; and NOMAD. 

The first set of data layers, D1, were the same used in  

[20]. All images had 1242 x 1339 pixels, corresponding to 

a scale of 30 meters. The data layers included: 

⚫ a slope layer, representing in gray scale the 

steepness of terrain as a percentage; 

⚫ an exclusion layer, black and white, identifying 

areas where urbanization is not allowed; 

⚫ a set of urban footprints, black and white, in 

intervals of 3 years, between 1984 and 2017. 

⚫ road maps, in gray scale, for the years 1984, 1996 

and 2017; 

Sample images are shown in Fig. 4. At the left, an 

urban footprint; white pixels represent urban areas. At the 

right of Fig. 4, a road map; the brighter the pixel, the 

greater the importance of the road.  

   

Fig. 4: Example of SLEUTH input layers. 

 

The second dataset, D2, was composed of the images 

used in [37]. It includes layers for slope, exclusion, and 

hillshade; and images in 5-years intervals, from 2000 to 

2015, depicting roads and urban footprints. Images were 

square, with 1116 pixels of edge and corresponding to 

approximately 71.5 meters per pixel. 

SLEUTH supports two types of simulation: a binary-

mode where the state of each cell is either urban or not; 

and a category-mode with different classes of land use. We 

chose the binary-mode simulation. 

In the brute-force approach, we opted for not following 

the long procedure suggested in the documentation of 

SLEUTH, and shown in Fig 1. It was decided to make a 

single pass using images of full resolution; the 

configuration file was set to scan the search space through 

all the range 0 to 100 in increments of 25. This produced a 

total of 55 = 3125 iterations, each of which was internally 

repeated 2 times by the Monte-Carlo process. In a classic 

application of Monte-Carlo this would be a small value, 
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but the regularity of the simulator output, depicted in Fig. 

2, indicated that noise levels were not pronounced. 

For the genetic version of SLEUTH, the default 

parameters of the tool were used; following the 

instructions found in the documentation, the population 

was set to 55 individuals, the mutation rate was 13%, and 

the number of generations was set to 100. 

Finally, for the optimization using NOMAD, the 

programming interface exposes several parameters that can 

be adjusted by means of special function calls. However, 

the user guide makes recommendations only in response to 

difficulties with the optimization process. This way, the 

various parameters of the library were also left with their 

default values. 

 

III. RESULTS 

The simulation scenarios presented contrasting 

characteristics. Calibration of dataset D1 was harder to 

achieve, with lower values for OSM and also for Lee-

Sallee. A possible cause might be the fine temporal 

resolution of 3 years between images [17,20]. The second 

dataset required less cycles and had higher values for the 

metrics. Table 1 summarizes the main results. 

Table.1: Summary of optimization results. 

Se

t 

Method Cycle

s 

Best Point @ cycle 

D

1 

B.F. 3165 0.0045

5 

[1 50 1 100 1] @ 270 

G.A. 8024 0.0047

2 

[8 99 95 100 

91]@7544 

NOMA

D 

7999 0.0046

5 

[8 96 73 99 41] @ 

2818 

D

2 

B.F. 3165 0.6837

0 

[100 75 50 1 1] @ 

2925 

G.A. 929 0.6696

5 

[66 66 57 1 48] @ 

914 

NOMA

D 

780 0.6404

8 

[21 100 90 1 1] @ 

150 

 

The worst value for both datasets was 0. The best result 

r* for dataset D1 was found at iteration 7544 by the GA 

optimization. The Brute-Force method found its best value 

at iteration 270, but this is not a fast result since, by 

design, the algorithm blindly scans the whole search space. 

NOMAD came in second place with less than half the 

effort of GA to reach 98.5% of r*. 

For the second dataset, NOMAD was by far the fastest 

algorithm; the best value for OSM was found after 150 

iterations only, although the method executed additional 

cycles to ascertain that no further improvement was 

possible. On the other hand, NOMAD also had the lowest 

global result, behind G.A. in second place and Brute-Force 

in the first position. 

The G.A. implemented in SLEUTH selects initial 

points along of a diagonal that traverses the search grid, 

with coordinates (0+∆, 0+∆, 0+∆, 0+∆, 0+∆) for increasing 

values of ∆. NOMAD utilises a variation of a simplex-

based algorithm, and is likely to be more sensitive to the 

choice of the starting point. NOMAD was tested with 

points (0, 0, 0, 0, 0) and (50, 50, 50, 50, 50), but the 

second choice caused the algorithm to obtain  worst 

results. A plot of the optimization trajectories provides an 

intuitive comparison of G.A. and NOMAD. This is shown 

in Fig. 5, for the dataset D1 (with similar characteristics 

found for D2). 

 

Fig. 5: Optimization history of NOMAD and G.A. 

 

Fig. 5 shows that NOMAD succeeds in escaping a 

region of low values and, subsequently, it searches for 

areas with high values. However, sporadically it touches 

points of bad quality. The algorithm G.A. implemented in 

SLEUTH, by comparison, seems to be more elitist and 

avoids low points altogether. 

It is interesting to note that the graphs on Fig. 5 were 

created from simulator logs and show all the points 

evaluated. This way, they offer a general view of the 

heuristics followed by each algorithm. 

The concept of data profiles allows us to draw a more 

detailed comparison. The question to address is the relative 

efficiency of the algorithms to yield results, instead of 

comparing only peak values, or number of function 

evaluations. This is more relevant in the present context, 

because of low parameter sensitivity (which leads to slow 

progression), and the difficulty to find a global maximum. 

The Fig. 6 shows a data profile graph for dataset D1. 

We use the same perspective as [31] and plot d-1(α); this 

way the data profiles illustrate the relative computation 

effort to attain a minimum αr*. 
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Fig. 6: Plot of d-1(α) for dataset D1. 

 

To exemplify how to interpret the plot in Fig 6, let’s 

chose α=0.3. The graph shows that approximately 2000 

function evaluations of NOMAD (1964 to be exact) 

produced values equal or better to 30% of the best result 

r*= 0.00472 . The genetic algorithm version of SLEUTH 

comes close, with 1927 evaluations. By comparison, in the 

Brute-Force approach, only 11 function evaluations 

attained the same mark. Moreover, along the interval 0.2 < 

α < 0.8, the exhaustive search shows a low probability of 

finding an adequate set of parameters. Fig. 6 also shows 

that, for values of α above 0.5, G.A. obtained slightly 

better results than NOMAD. 

The results for dataset D2 are shown in Fig 7.  

 

Fig. 7: Plot of d(α) for dataset D2. 

 

Once again, NOMAD and G.A. obtained significant 

savings in the number of function evaluations, orienting 

the search towards regions of good potential. In this test 

NOMAD jumped ahead of G.A. for values α ≥ 40%. 

A main difference between NOMAD and G.A. comes 

from the fact that the first follows a trajectory while 

exploring the space, whereas the latter is more flexible and 

can take random jumps. In theory, G.A. has a greater 

chance of finding a global extreme, while NOMAD has the 

potential to converge faster; this was the case with dataset 

D2. 

As a last verification, it was evaluated the relative 

distance between solutions found by each optimization 

algorithm. As it was mentioned, the five parameters 

control the results of the simulation and are utilised to 

characterize and compare trends of city growth [20]. If the 

calibration returns points that are too far from each other, 

this might be a sign that local solutions were found. 

Table.2: Distance between the 20 best solutions. 

 radius of hyperball 

Dataset NOMAD G.A. 

D1 20.3004 45.8189 

D2 2.9580 45.3927 

 

The values in Table 2 correspond to the radius of a 

hyperball containing the 20 best 5-dimensional points 

produced by each optimization algorithm. The radius was 

determined using the algorithm described in [38]. It can be 

seen that NOMAD tested more points around the same 

neighborhood, in comparison to G.A. This is another 

indication that, comparatively, if NOMAD might converge 

faster, G.A. might cover a more extensive area. 

 

IV. CONCLUSION 

The outputs of a computer simulation can be treated in 

certain contexts as functions of input parameters. An 

example of this is the calibration of models of urban 

growth, where a function indicates the quality of the 

simulated results. In the case of SLEUTH, characteristics 

as nondeterminism, discontinuities, and nonlinearity make 

it harder to optimize parameters. In addition to these 

aspects, the execution of the model has a high 

computational cost. This negatively impacts  studies that 

aim to contrast scenarios and perform what-if analysis, and 

justifies the interest in accelerating the calibration process. 

This study used named sockets to couple SLEUTH to 

the NOMAD optimization library. This choice ensures fast 

communication, and required minimal changes in the 

simulator code. 

The number of function evaluations in the experiments 

was limited in the brute force approach, if compared with 

the standard calibration procedure described in SLEUTH 

documentation. Nevertheless, the volume of data generated 

was sufficient to provide a baseline. 

In the first dataset, genetic-algorithms and NOMAD 

presented close results. The two methods showed a near-

linear relation between the number of function evaluations 

and the improvement of results in 50% of the points tested 

(0.2 < α < 0.7). It must be emphasized that the analysis 
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refers to the relative computational effort spent to optimize 

the calibration, and not the convergence speed. As 

indicated on Fig 2., both the GA version of SLEUTH and 

NOMAD spend some effort trying to escape from local 

minima during the search. 

For the second dataset, the optimization was a lot 

faster, and NOMAD was more efficient than GA. For 

instance, the library provided 675 parameter 

configurations within 70% of r*, the double of points 

found by the genetic algorithm. The G.A. version obtained 

the best result, but the corresponding f was only 4.5% 

better than NOMAD. 

The SLEUTH parameters in Table 1 show a certain 

disagreement between methods. This is in accordance with 

the fact that the cost function has several minima. 

However, large deviations of values would conflict with 

the idea of using the five parameters to characterize the 

growth of a city. We estimated the coherence of results by 

computing the smallest hyper-ball holding the 20 best 

points found by each optimization algorithm. The results 

in Table 2 indicate that, while NOMAD tries to find global 

optima, it also refines the search around points of greater 

potential. The genetic version of SLEUTH exhibited a less 

pronounced tendency in this sense. 

Overall, NOMAD has proven to be a good solution 

for SLEUTH calibration, and potentially better than the 

genetic version of that simulator. The library can handle 

characteristics as non-linearity, noisy and discontinuous 

functions of real and integer parameters, present in many 

simulation models. As a consequence, this study with 

NOMAD and the technique of data profiles can be applied 

in similar situations, involving calibration of urban models 

but also other computer simulations that include an 

optimization task. 
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