
 International Journal of Advanced Engineering Research and

Science (IJAERS)

ISSN: 2349-6495(P) | 2456-1908(O)

Vol-8, Issue-1; Jan, 2021

Journal Home Page Available: https://ijaers.com/

Journal DOI: 10.22161/ijaers

Article DOI: https://dx.doi.org/10.22161/ijaers.81.35

www.ijaers.com Page | 254

Calibration of the SLEUTH urban simulation model using

NOMAD and Genetic Algorithms

André Koscianski, Leonardo Pedrozo Amaral

Department of Informatics, Universidade Tecnológica Federal do Paraná (UTFPR), Ponta Grossa, Brasil

Received: 21 Nov 2020;

Received in revised form:

14 Jan 2021;

Accepted: 20 Jan 2021;

Available online: 30 Jan 2021

©2021 The Author(s). Published by AI

Publication. This is an open access article

under the CC BY license

(https://creativecommons.org/licenses/by/4.0/).

Keywords— Optimization, NOMAD,

Genetic Algorithms, Sleuth, Urban

Simulation.

Abstract— Computer simulations often entail an optimization problem,

corresponding to the calibration of model parameters to ensure a precise

representation of a given scenario. Many complex phenomena such as urban

growth have characteristics that make optimization harder; this can be

exemplified by the lack of an analytical formulation, presence of nonlinearity,

discontinuities, and nondeterminism. SLEUTH is a long-established urban

simulator, used to compute forecasts of city evolution. The tool is controlled by

five parameters that span a search space of the order of 10 billion

combinations, with a calibration procedure that is CPU-intensive and not

compatible with gradient-descent methods. In this work we compare the

efficiency of a genetic-algorithm version of the simulator with the use of the

optimization library NOMAD. Different alternatives for the integration of the

library are suggested. The experiments are analyzed using data profiles, a

technique designed to handle cases with a limited number of function

evaluations. The results confirm interest in NOMAD, and reveal more

information than traditional comparisons of number of iterations or final

optimization results. The methodology of the study can be applied to similar

situations and is not restricted to simulators implementing urban models.

I. INTRODUCTION

Simulation is a fundamental tool in science and

technology, in fields as different as medicine, astronomy,

economics, and engineering. The execution of simulation

models makes it possible to compare alternative

explanations to a phenomenon, make projections, and

refine designs in contexts as research and development of

new technological products, or administration of complex

systems. Urban simulation is a comparatively recent field,

and it encompasses several aspects of the study of cities,

such as mobility, waste management, microclimate and

urban growth.

A critical point of simulation studies is to guarantee a

match between computed results and actual data [1-3]. In

other terms, given a physical system, a model should be

capable of reproducing its behavior within a tolerance.

This can be assessed by monitoring variables of the model

and comparing them against reference values, examining

qualitative or behavioral characteristics of the simulator, or

possibly, conducting the analysis of both types of

information [4,5]. In a broad context, finding the correct

values for physical parameters that match a phenomenon is

generally known as an inverse problem [6]. Computer

software may also require calibration of variables that do

not directly represent physical properties, but control

simulation behavior; this is often the case with complex

systems [5].

Models of urban growth, or more generally, models of

land use and cover change, require Geographical

Information Systems data, which are generally represented

as tables of values or 2D images [5]. A common technique

to implement urban simulation is Cellular Automata [7,8],

where each cell represents a square area of land.

Calibration of such models is based on global statistics

https://ijaers.com/
https://dx.doi.org/10.22161/ijaers.81.35
http://www.ijaers.com/
https://creativecommons.org/licenses/by/4.0/

André Koscianski et al. International Journal of Advanced Engineering Research and Science, 8(1)-2021

www.ijaers.com Page | 255

(e.g., urbanized area) and local information (e.g.,

morphology of the urban footprint) [7].

The SLEUTH simulator is a long-established model of

urban growth [9,10]. The calibration procedure adjusts the

values of five parameters that control the simulation. The

parameters take integer values between 0 and 100,

meaning that the search space has 1015 combinations.

Calibrating SLEUTH corresponds to finding the extreme

of a metric. The original method is based on a brute-force

strategy, conducted manually; processing times of the

order of six months were reported ten years ago [10]. The

software has support for parallel execution via MPI

(Message Passing Interface), but this translates to pushing

further to the hardware the inefficiency of the search. One

attempt to address the problem was the implementation of

a genetic algorithm, tailored to this software [10,11].

Studies of model calibration can be found in many fields;

cellular automata models of urban growth constitutes part

of the literature of the problem, and some references are

[12-16].

It has been documented that the SLEUTH model

exhibits high sensitivity to temporal locality of data [17];

in our experience, the opposite happens with its control

parameters. By inspecting the output of metrics it can be

observed the presence of a pattern of plateaus. Other

characteristics of the model, as strong nonlinearity, and

discontinuity, prompt the use of zero-order optimization

methods [18].

In this work, we modify the SLEUTH simulator by

coupling it with the optimization toolkit NOMAD [19],

capable of handling characteristics as non-convexity and

noise. The software connection was implemented using

named sockets. The technique of data profiles was used to

analyze the results. The performance of NOMAD was

compared with the original method of the simulator and

also with another version of the tool, GA-SLEUTH, which

implements a genetic algorithm for calibration.

II. MATERIALS AND METHODS

2.1 THE SLEUTH MODEL

The software SLEUTH implements a model of urban

growth based on the technique of Cellular Automata [8-

10]. Each cell obeys a set of rules that determines whether

a location becomes urbanized or not, depending on the

state of neighbor cells and on five layers of data that give

the software its name: Slope, Land Use, Excluded Areas,

Urbanization, and Hillshade. The model implements

heuristic and stochastic rules that are controlled by five

parameters that vary in the range 0 ≤ p ≤ 100 ; they are:

⚫ diffusion: controls the generation of new cells

scattered on the matrix;

⚫ bread: controls the expansion of new city fragments;

⚫ spread: controls the generation of new cells around

areas that are already urbanized;

⚫ slope: controls to which extent the city can advance

over steep terrains; and

⚫ road gravity: controls the generation of new urban

cells along of roads.

These five parameters are dubbed ‘SLEUTH DNA’;

they are proposed as a means to characterize the dynamics

of a city according to the model [20].

Before calculating a forecast, SLEUTH must be

calibrated to replicate the historical evolution of a city.

This task employs images depicting the past of the area,

and a comparison metric. The original procedure is based

on an exhaustive search, following the logic on Fig. 1. The

simulator is executed with images of increasing finer

resolution and smaller parameter grids, producing logs of

statistics that are manually inspected [9].

Fig. 1: Original SLEUTH calibration process.

The brute force method scans the search space using

five nested loops, with ranges configured by the user. The

documentation suggests three calibration rounds, each time

doubling image resolution. Each simulation run iterates an

internal Monte-Carlo process to average random effects

implemented in the model [9,10,21].

The algorithm in Fig. 1 explores contiguous regions

and, in principle, does not handle disjoint subsets of

parameters. This incurs the risk of losing an extreme point,

possibly a global one. To the best of our knowledge, this

aspect seems to be overlooked by the literature.

Fig. 2 shows a typical output of one of SLEUTH

statistics, obtained in our experiments.

http://www.ijaers.com/

André Koscianski et al. International Journal of Advanced Engineering Research and Science, 8(1)-2021

www.ijaers.com Page | 256

Fig. 2: Output pattern of SLEUTH calibration.

Fig. 2 shows a plot of the metric Lee-Sallee [22],

which measures the match between a reference map of

urban/non-urban pixels, and the simulator output. Another

metric consists of a product of several statistics and is

known as OSM (Optimal SLEUTH Metric) [23]. It

exhibits much more noise but also has a pattern-like

structure. This metric is hardcoded in the genetic version,

GA-SLEUTH [10,11]. Both metrics have values between 0

(worst) and 1 (best).

2.2 OPTIMIZATION TOOLS

Direct search methods stand out for their capability to

perform optimization without requiring derivatives, and

handling nonconvexity and discontinuities [18]. Since such

methods make little or no assumptions regarding the

behavior of functions, they are also known as black-box

optimization algorithms [24,25].

Possibly one of the most famous direct search methods

is the one proposed by Nelder and Mead in 1965, which

scans the search space using a simplex [26]. A simplex is a

polytope with n+1 vertices, where n is the dimension of

the search space. Since its introduction, this algorithm has

been studied and recast in different forms, including

methods to handle constraints and discrete grids [25,27].

NOMAD is a library written in C++ that implements

black-box optimization algorithms. It is capable of

handling discontinuities, constrained optimization, and

functions of discrete variables [28-30]. The algorithm it

implements can be divided into two parts [29]:

⚫ search: evaluates f for a set of points that radiate to

directions D;

⚫ poll: if the search step fails to improve the

function, the grid size is adjusted and a different

set of directions D’ is used to generate candidates.

The implementation allows to modify the default

values of parameters and even to change aspects of

execution; for instance, the Nelder-Mead algorithm can be

chosen as the search step [29]. There are two basic ways to

use the NOMAD toolkit, illustrated in Fig. 3.

Fig. 3: Two methods to use the NOMAD tool.

The code, in the form of a library, can be linked with

an objective function provided by the user; the result is a

stand-alone executable that calculates the objective

function and runs the optimization. This form can be

exploited using compiled languages, but there are

interfaces for Matlab and Python. Another alternative is to

have the objective function implemented in a separate

application, that will be called by a sort of NOMAD driver

that sends command line parameters and collects output

from stdout [29].

In the case of SLEUTH, the first method requires

incorporating the library into the simulator, and the second

is not compatible with the high latency of its start-up code.

In this study, a third alternative was devised. We modified

the simulator to receive parameters using Unix domain

sockets [30]. A small application embedding the NOMAD

library was implemented, replacing the terminal-based

driver, as shown in Fig. 4.

Fig. 4: Our implementation of NOMAD with SLEUTH.

Other alternatives to the architecture shown in Fig. 4.

include the use of file and memory sharing, and named

pipes. In the case of file and memory sharing it would be

necessary to implement a synchronization scheme [31],

signaling the moment when each of the endpoints -

SLEUTH and NOMAD - would have finished computing

metrics and parameters, respectively. Named pipes

implement synchronization in a transparent way, and could

be used in place of Unix domain sockets.

2.3 ANALYSIS CRITERIA

Calibration of SLEUTH and of many other cellular

automata models of urban growth is a difficult process

[10,12-16]. The key issue is to extract a maximum of

http://www.ijaers.com/

André Koscianski et al. International Journal of Advanced Engineering Research and Science, 8(1)-2021

www.ijaers.com Page | 257

information from a minimum number of simulation runs.

Optimization must aim at reducing the number of tested

configurations, but at the same time, it must also guarantee

a certain level of quality of results.

The performance of optimization algorithms is

evaluated in terms of convergence rates, which, in the case

of non-gradient methods, relates to decreasing lengths of

the search step [18,32]. Usually, the results are represented

on graphs showing target values as a function of the

number of iterations, a concept similar to the technique of

time-to-target plot [33].

Generally, it is preferable to use a large set of points to

perform this type of comparison. In the present case,

however, the simulation of different regions requires

geographical data, and obtaining that information and

preparing the files is a lengthy task per se [34]. In addition

to that, long processing times limit the number of data

points available for analysis [24,25].

Performance profiles are an instrument to compare the

relative efficiency of optimization algorithms [35]. The

method takes the best value found by the algorithms as a

reference, and then computes a distribution function of the

results. Plots of distributions are a means to depict the

relative performance of optimizers. When the evaluation of

the cost function is too expensive, a technique developed

later, data profiles, is a better alternative [36]. The main

difference between the two is that performance profiles

compute a ratio based on the number of problems solved

within a given threshold, while data profiles are calculated

with respect to the number of function evaluations.

In this paper data profiles were used, with an

adjustment that corresponds to selecting the full range of

values to compute a distribution [36]. We begin by

recording the whole set of trial points Xk = {xk
1 ... xk

n(k)}

and respective function values for each optimization

algorithm k=1,... and also recording the best result r* =

min { f(x) } , among all tests. Then we calculate:

, where the symbol | stands for cardinality of a set and α

varies between 0 and 1. The curve dk indicates the number

of times a method k produces results which are at least α

percent as good as r*. By plotting dk we get a visual

description of the relative efficiency of an optimization

method to explore the search space.

Here, the objective function f was the same metric

implemented in the genetic version of SLEUTH: OSM.

This choice does not mean an endorsement of this metric

for calibration of the model, but analyzing this matter is

not part of the scope of this study.

2.4 SIMULATION SETUP AND DATA COLLECTION

Preparing layers of geographical data for SLEUTH is a

demanding task, and this kind of data is not readily

publicly available. In this work, two datasets, D1 and D2,

were employed with the three optimization methods: brute

force; genetic algorithm; and NOMAD.

The first set of data layers, D1, were the same used in

[20]. All images had 1242 x 1339 pixels, corresponding to

a scale of 30 meters. The data layers included:

⚫ a slope layer, representing in gray scale the

steepness of terrain as a percentage;

⚫ an exclusion layer, black and white, identifying

areas where urbanization is not allowed;

⚫ a set of urban footprints, black and white, in

intervals of 3 years, between 1984 and 2017.

⚫ road maps, in gray scale, for the years 1984, 1996

and 2017;

Sample images are shown in Fig. 4. At the left, an

urban footprint; white pixels represent urban areas. At the

right of Fig. 4, a road map; the brighter the pixel, the

greater the importance of the road.

Fig. 4: Example of SLEUTH input layers.

The second dataset, D2, was composed of the images

used in [37]. It includes layers for slope, exclusion, and

hillshade; and images in 5-years intervals, from 2000 to

2015, depicting roads and urban footprints. Images were

square, with 1116 pixels of edge and corresponding to

approximately 71.5 meters per pixel.

SLEUTH supports two types of simulation: a binary-

mode where the state of each cell is either urban or not;

and a category-mode with different classes of land use. We

chose the binary-mode simulation.

In the brute-force approach, we opted for not following

the long procedure suggested in the documentation of

SLEUTH, and shown in Fig 1. It was decided to make a

single pass using images of full resolution; the

configuration file was set to scan the search space through

all the range 0 to 100 in increments of 25. This produced a

total of 55 = 3125 iterations, each of which was internally

repeated 2 times by the Monte-Carlo process. In a classic

application of Monte-Carlo this would be a small value,

http://www.ijaers.com/

André Koscianski et al. International Journal of Advanced Engineering Research and Science, 8(1)-2021

www.ijaers.com Page | 258

but the regularity of the simulator output, depicted in Fig.

2, indicated that noise levels were not pronounced.

For the genetic version of SLEUTH, the default

parameters of the tool were used; following the

instructions found in the documentation, the population

was set to 55 individuals, the mutation rate was 13%, and

the number of generations was set to 100.

Finally, for the optimization using NOMAD, the

programming interface exposes several parameters that can

be adjusted by means of special function calls. However,

the user guide makes recommendations only in response to

difficulties with the optimization process. This way, the

various parameters of the library were also left with their

default values.

III. RESULTS

The simulation scenarios presented contrasting

characteristics. Calibration of dataset D1 was harder to

achieve, with lower values for OSM and also for Lee-

Sallee. A possible cause might be the fine temporal

resolution of 3 years between images [17,20]. The second

dataset required less cycles and had higher values for the

metrics. Table 1 summarizes the main results.

Table.1: Summary of optimization results.

Se

t

Method Cycle

s

Best Point @ cycle

D

1

B.F. 3165 0.0045

5

[1 50 1 100 1] @ 270

G.A. 8024 0.0047

2

[8 99 95 100

91]@7544

NOMA

D

7999 0.0046

5

[8 96 73 99 41] @

2818

D

2

B.F. 3165 0.6837

0

[100 75 50 1 1] @

2925

G.A. 929 0.6696

5

[66 66 57 1 48] @

914

NOMA

D

780 0.6404

8

[21 100 90 1 1] @

150

The worst value for both datasets was 0. The best result

r* for dataset D1 was found at iteration 7544 by the GA

optimization. The Brute-Force method found its best value

at iteration 270, but this is not a fast result since, by

design, the algorithm blindly scans the whole search space.

NOMAD came in second place with less than half the

effort of GA to reach 98.5% of r*.

For the second dataset, NOMAD was by far the fastest

algorithm; the best value for OSM was found after 150

iterations only, although the method executed additional

cycles to ascertain that no further improvement was

possible. On the other hand, NOMAD also had the lowest

global result, behind G.A. in second place and Brute-Force

in the first position.

The G.A. implemented in SLEUTH selects initial

points along of a diagonal that traverses the search grid,

with coordinates (0+∆, 0+∆, 0+∆, 0+∆, 0+∆) for increasing

values of ∆. NOMAD utilises a variation of a simplex-

based algorithm, and is likely to be more sensitive to the

choice of the starting point. NOMAD was tested with

points (0, 0, 0, 0, 0) and (50, 50, 50, 50, 50), but the

second choice caused the algorithm to obtain worst

results. A plot of the optimization trajectories provides an

intuitive comparison of G.A. and NOMAD. This is shown

in Fig. 5, for the dataset D1 (with similar characteristics

found for D2).

Fig. 5: Optimization history of NOMAD and G.A.

Fig. 5 shows that NOMAD succeeds in escaping a

region of low values and, subsequently, it searches for

areas with high values. However, sporadically it touches

points of bad quality. The algorithm G.A. implemented in

SLEUTH, by comparison, seems to be more elitist and

avoids low points altogether.

It is interesting to note that the graphs on Fig. 5 were

created from simulator logs and show all the points

evaluated. This way, they offer a general view of the

heuristics followed by each algorithm.

The concept of data profiles allows us to draw a more

detailed comparison. The question to address is the relative

efficiency of the algorithms to yield results, instead of

comparing only peak values, or number of function

evaluations. This is more relevant in the present context,

because of low parameter sensitivity (which leads to slow

progression), and the difficulty to find a global maximum.

The Fig. 6 shows a data profile graph for dataset D1.

We use the same perspective as [31] and plot d-1(α); this

way the data profiles illustrate the relative computation

effort to attain a minimum αr*.

http://www.ijaers.com/

André Koscianski et al. International Journal of Advanced Engineering Research and Science, 8(1)-2021

www.ijaers.com Page | 259

Fig. 6: Plot of d-1(α) for dataset D1.

To exemplify how to interpret the plot in Fig 6, let’s

chose α=0.3. The graph shows that approximately 2000

function evaluations of NOMAD (1964 to be exact)

produced values equal or better to 30% of the best result

r*= 0.00472 . The genetic algorithm version of SLEUTH

comes close, with 1927 evaluations. By comparison, in the

Brute-Force approach, only 11 function evaluations

attained the same mark. Moreover, along the interval 0.2 <

α < 0.8, the exhaustive search shows a low probability of

finding an adequate set of parameters. Fig. 6 also shows

that, for values of α above 0.5, G.A. obtained slightly

better results than NOMAD.

The results for dataset D2 are shown in Fig 7.

Fig. 7: Plot of d(α) for dataset D2.

Once again, NOMAD and G.A. obtained significant

savings in the number of function evaluations, orienting

the search towards regions of good potential. In this test

NOMAD jumped ahead of G.A. for values α ≥ 40%.

A main difference between NOMAD and G.A. comes

from the fact that the first follows a trajectory while

exploring the space, whereas the latter is more flexible and

can take random jumps. In theory, G.A. has a greater

chance of finding a global extreme, while NOMAD has the

potential to converge faster; this was the case with dataset

D2.

As a last verification, it was evaluated the relative

distance between solutions found by each optimization

algorithm. As it was mentioned, the five parameters

control the results of the simulation and are utilised to

characterize and compare trends of city growth [20]. If the

calibration returns points that are too far from each other,

this might be a sign that local solutions were found.

Table.2: Distance between the 20 best solutions.

 radius of hyperball

Dataset NOMAD G.A.

D1 20.3004 45.8189

D2 2.9580 45.3927

The values in Table 2 correspond to the radius of a

hyperball containing the 20 best 5-dimensional points

produced by each optimization algorithm. The radius was

determined using the algorithm described in [38]. It can be

seen that NOMAD tested more points around the same

neighborhood, in comparison to G.A. This is another

indication that, comparatively, if NOMAD might converge

faster, G.A. might cover a more extensive area.

IV. CONCLUSION

The outputs of a computer simulation can be treated in

certain contexts as functions of input parameters. An

example of this is the calibration of models of urban

growth, where a function indicates the quality of the

simulated results. In the case of SLEUTH, characteristics

as nondeterminism, discontinuities, and nonlinearity make

it harder to optimize parameters. In addition to these

aspects, the execution of the model has a high

computational cost. This negatively impacts studies that

aim to contrast scenarios and perform what-if analysis, and

justifies the interest in accelerating the calibration process.

This study used named sockets to couple SLEUTH to

the NOMAD optimization library. This choice ensures fast

communication, and required minimal changes in the

simulator code.

The number of function evaluations in the experiments

was limited in the brute force approach, if compared with

the standard calibration procedure described in SLEUTH

documentation. Nevertheless, the volume of data generated

was sufficient to provide a baseline.

In the first dataset, genetic-algorithms and NOMAD

presented close results. The two methods showed a near-

linear relation between the number of function evaluations

and the improvement of results in 50% of the points tested

(0.2 < α < 0.7). It must be emphasized that the analysis

http://www.ijaers.com/

André Koscianski et al. International Journal of Advanced Engineering Research and Science, 8(1)-2021

www.ijaers.com Page | 260

refers to the relative computational effort spent to optimize

the calibration, and not the convergence speed. As

indicated on Fig 2., both the GA version of SLEUTH and

NOMAD spend some effort trying to escape from local

minima during the search.

For the second dataset, the optimization was a lot

faster, and NOMAD was more efficient than GA. For

instance, the library provided 675 parameter

configurations within 70% of r*, the double of points

found by the genetic algorithm. The G.A. version obtained

the best result, but the corresponding f was only 4.5%

better than NOMAD.

The SLEUTH parameters in Table 1 show a certain

disagreement between methods. This is in accordance with

the fact that the cost function has several minima.

However, large deviations of values would conflict with

the idea of using the five parameters to characterize the

growth of a city. We estimated the coherence of results by

computing the smallest hyper-ball holding the 20 best

points found by each optimization algorithm. The results

in Table 2 indicate that, while NOMAD tries to find global

optima, it also refines the search around points of greater

potential. The genetic version of SLEUTH exhibited a less

pronounced tendency in this sense.

Overall, NOMAD has proven to be a good solution

for SLEUTH calibration, and potentially better than the

genetic version of that simulator. The library can handle

characteristics as non-linearity, noisy and discontinuous

functions of real and integer parameters, present in many

simulation models. As a consequence, this study with

NOMAD and the technique of data profiles can be applied

in similar situations, involving calibration of urban models

but also other computer simulations that include an

optimization task.

REFERENCES

[1] Kennedy, M. C., & O'Hagan, A. (2001). Bayesian

calibration of computer models. Journal of the Royal

Statistical Society: Series B (Statistical Methodology),

63(3), 425-464.

[2] Tscheikner-Gratl, F., Zeisl, P., Kinzel, C., Leimgruber, J.,

Ertl, T., Rauch, W., & Kleidorfer, M. (2016). Lost in

calibration: why people still do not calibrate their models,

and why they still should–a case study from urban drainage

modelling. Water Science and Technology, 74(10), 2337-

2348.

[3] Sargent, R. G., & Balci, O. (2017). History of verification

and validation of simulation models. In 2017 Winter

Simulation Conference (WSC) (pp. 292-307). IEEE.

[4] Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N.

(2003). A review of process fault detection and diagnosis:

Part II: Qualitative models and search strategies. Computers

& chemical engineering, 27(3), 313-326.

[5] Rocha, F. J. P. S. P. (2012). Sistemas complexos, modelação

e geosimulação da evolução de padrões de uso e ocupação

do solo. University of Lisboa. PhD Thesis.

[6] Tarantola, A. (2005). Inverse problem theory and methods

for model parameter estimation. Society for Industrial and

Applied Mathematics.

[7] Wu, F. (2002). Calibration of stochastic cellular automata:

the application to rural-urban land conversions. International

journal of geographical information science, 16(8), 795-818.

[8] Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010).

Cellular automata models for the simulation of real-world

urban processes: A review and analysis. Landscape and

Urban Planning, 96(2), 108-122.

[9] Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a

cellular automaton model and GIS: long-term urban growth

prediction for San Francisco and Washington/Baltimore.

International journal of geographical information science,

12(7), 699-714.

[10] Clarke-Lauer, M. D., & Clarke, K. C. (2011, July). Evolving

simulation modeling: Calibrating SLEUTH using a genetic

algorithm. In Proceedings of the 11th International

Conference on GeoComputation, London, UK (Vol. 2022,

pp. 20-22).

[11] Goldstein, N. C. (2004). Brains versus brawn-comparative

strategies for the calibration of a cellular automata-based

urban growth model. GeoDynamics, 249-272.

[12] Wu, F. (2002). Calibration of stochastic cellular automata:

the application to rural-urban land conversions. International

journal of geographical information science, 16(8), 795-818.

[13] Straatman, B., White, R., & Engelen, G. (2004). Towards an

automatic calibration procedure for constrained cellular

automata. Computers, Environment and Urban Systems,

28(1-2), 149-170.

[14] Al-Ahmadi, K., See, L., Heppenstall, A., & Hogg, J. (2009).

Calibration of a fuzzy cellular automata model of urban

dynamics in Saudi Arabia. Ecological complexity, 6(2), 80-

101.

[15] Newland, C. P., Maier, H. R., Zecchin, A. C., Newman, J.

P., & van Delden, H. (2018). Multi-objective optimisation

framework for calibration of Cellular Automata land-use

models. Environmental modelling & software, 100, 175-

200.

[16] Roodposhti, M. S., Hewitt, R. J., & Bryan, B. A. (2020).

Towards automatic calibration of neighbourhood influence

in cellular automata land-use models. Computers,

Environment and Urban Systems, 79, 101416.

[17] Candau, J. T. (2002). Temporal calibration sensitivity of the

SLEUTH urban growth model (Doctoral dissertation,

University of California, Santa Barbara).

[18] Kolda, T. G., Lewis, R. M., & Torczon, V. (2003).

Optimization by direct search: New perspectives on some

classical and modern methods. SIAM review, 45(3), 385-

482.

[19] Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear

optimization with the MADS algorithm. ACM Transactions

on Mathematical Software (TOMS), 37(4), 1-15.

http://www.ijaers.com/

André Koscianski et al. International Journal of Advanced Engineering Research and Science, 8(1)-2021

www.ijaers.com Page | 261

[20] Roth, E. C. W., & Koscianski, A. (2020). Improving

Forecasts of Land Use with regionalized maps in the

SLEUTH model. GeoFocus. Revista Internacional de

Ciencia y Tecnología de la Información Geográfica, (25),

153-174.

[21] Silva, E. A., & Clarke, K. C. (2002). Calibration of the

SLEUTH urban growth model for Lisbon and Porto,

Portugal. Computers, environment and urban systems,

26(6), 525-552.

[22] Lee D. R. & Sallee G. T. (1970).A method of measuring

shape. Geographical Review, 60(4), 555–563.

[23] Dietzel, C., & Clarke, K. C. (2007). Toward optimal

calibration of the SLEUTH land use change model.

Transactions in GIS, 11(1), 29-45.

[24] Audet, C. (2014). A survey on direct search methods for

blackbox optimization and their applications. In

Mathematics without boundaries (pp. 31-56). Springer, New

York, NY.

[25] Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J.

(2016). Simulation optimization: a review of algorithms and

applications. Annals of Operations Research, 240(1), 351-

380.

[26] Wright, M. H. (2010). Nelder, Mead, and the other simplex

method. Documenta Mathematica, 7, 271-276.

[27] Audet, C., Le Digabel, S., & Tribes, C. (2019). The mesh

adaptive direct search algorithm for granular and discrete

variables. SIAM Journal on Optimization, 29(2), 1164-1189.

[28] Audet, C., & Dennis Jr, J. E. (2006). Mesh adaptive direct

search algorithms for constrained optimization. SIAM

Journal on optimization, 17(1), 188-217.

[29] Le Digabel, S., & Tribes, C. (2009). NOMAD User Guide:

Version 3.5 (pp. 1-45). Groupe d'études et de recherche en

analyse des décisions.

[30] Stevens, W. R., Rudoff, A. M., & Fenner, B. (2003). UNIX

Network Programming Volume 1: The Sockets Networking

API (Vol. 3). Addison-Wesley Professional.

[31] Deitel, H. M., Deitel, P. J., & Choffnes, D. R. (2003).

Operating systems. Pearson.

[32] Torczon, V. (1991). On the convergence of the

multidirectional search algorithm. SIAM journal on

Optimization, 1(1), 123-145.

[33] Aiex, R. M., Resende, M. G., & Ribeiro, C. C. (2007). TTT

plots: a perl program to create time-to-target plots.

Optimization Letters, 1(4), 355-366.

[34] Roth, E. C. W. (2019). Urban growth forecast using

segmented and complete maps with the SLEUTH simulator

(Master's thesis, Universidade Tecnológica Federal do

Paraná).

[35] Dolan, E. D., & Moré, J. J. (2002). Benchmarking

optimization software with performance profiles.

Mathematical programming, 91(2), 201-213.

[36] Moré, J. J., & Wild, S. M. (2009). Benchmarking derivative-

free optimization algorithms. SIAM Journal on

Optimization, 20(1), 172-191.

[37] Liu, Y., Li, L., Chen, L., Cheng, L., Zhou, X., Cui, Y., Li,

H. & Liu, W. (2019). Urban growth simulation in different

scenarios using the SLEUTH model: A case study of Hefei,

East China. Plos one, 14(11), e0224998.

[38] Gärtner, B. (1999, July). Fast and robust smallest enclosing

balls. In European symposium on algorithms (pp. 325-338).

Springer, Berlin, Heidelberg.

http://www.ijaers.com/

