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Abstract— In this study, the Taylor series is formulated with a weighted 

coefficient to time step and spatial interval. With the weighted Taylor 

series, the weighted total acceleration is formulated on Euler’s momentum 

equation and the Kinematic Free Surface Boundary Condition (KFSBC). 

The final part is the development of a time series water wave model using 

the weighted momentum Euler equation and the weighted KFSBC. 

 

 
I. INTRODUCTION 

Hydrodynamicequationsinclude continuityequationand 

Euler’s momentum equation formulated using the Taylor 

series 𝑂(𝛿1) (Dean (1991). Meanwhile, KFSBC is a total 

velocity equation of the movement of the water surface in 

the direction of vertical axis that can be formulated using 

the Taylor series. 

Analytical solutions to Laplace’s equation using the 

separation of variables produce a sinusoidal wave equation 

(Dean (1991). Thus, the formulation of the equations for 

the water wave mechanics should be based on the nature of 

the sinusoidal function. Time step and spatial interval in 

the Taylor series for sinusoidal equations are correlated 

with phase speed (Courant (1928)), not with particle 

velocity. Hence, it is necessary to formulate a Taylor series 

in which time step and spatial intervals correlate with the 

water particle velocity. Thus, it can be used in the 

formulation of basic equations of hydrodynamics that are 

the basic equations of water wave mechanics. 

The first step of this research was formulating the Taylor 

series for sinusoidal functions where the time step and 

spatial interval can be correlated with the water particle 

velocity. At this stage, the weighted Taylor series was 

produced, that is, the Taylor series in which, there is a 

weighted coefficient on the time step and spatial interval. 

 

Next, with the weighted Taylor series, the basic 

equations of hydrodynamics were formulated. They are 

namely the continuity equation, the Euler’s momentum 

equation,and KFSBC containing a weighted coefficient. 

With the basic equations of hydrodynamicscontaining the 

weighted coefficient, the time series water wave model 

was formulated. 

 

II. THE FORMULATION OF THE WEIGHTED 

TAYLOR SERIES 

This chapter examining the meaning of 
𝛿𝑥

𝛿𝑡
in a sinusoidal 

function and the meaning of 
𝛿𝑧

𝛿𝑡
in the hyperbolic functions 

considering the solution of Laplace’s equation which is the 

multiplication of a sinusoidal function with a hyperbolic 

function (Dean (1991). This chapter is a rewrite of 

Hutahaean (2021), considering that this section is the basis 

of the theory developed and at the same time is a 

correction of typos in Hutahaean (2021). 

2.1. An Overview of the Solution of Laplace's equation 

Solution of Laplace’s equation (Dean (1991) is, 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡.....(1) 

Particle velocity in the direction of horizontal axis−𝑥is,  

𝑢 = −
Ƌ𝛷

Ƌ𝑥
= 𝐺𝑘𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡......(2) 
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The velocity in the direction of vertical axis-𝑧is 

𝑤 = −
Ƌ𝛷

Ƌ𝑧
= −𝐺𝑘𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡...(3) 

𝑘 ∶ wave number =
2𝜋

𝐿
 (m-1) 

𝐿 ∶ wavelength (m) 

𝜎 ∶ angular frequency =
2𝜋

𝑇
  (sec-1 ) 

𝑇 ∶ wave period (sec.) 

ℎ ∶ water depth (m) 

From Laplace’s equation, 
𝛿𝑥

𝛿𝑡
in the Taylor series for a 

sinusoidal water wave equation is not the water particle 

velocity, it should be the wave celerity or wave phase 

speed. Meanwhile 
𝛿𝑧

𝛿𝑡
is also a function of wave celerity that 

is described in the following section. 

 

2.2. A function of a single variable 

The first step was examining the characteristics of 𝛿𝑡, 𝛿𝑥in 

the sinusoidal function and 𝛿𝑧in the hyperbolic function in 

the Taylor series, in a function of a single variable.The 

formula of the Taylor series for a function with one 

variable is: 

𝑓(𝑥 + 𝛿𝑥) = 𝑓(𝑥) + 𝛿𝑥
𝑑𝑓

𝑑𝑥
+

𝛿𝑥2

2!

𝑑2𝑓

𝑑𝑥2
+

𝛿𝑥3

3!

𝑑3𝑓

𝑑𝑥3
 

+
𝛿𝑥4

4!

𝑑4𝑓

𝑑𝑥4 + ⋯ … … . +
𝛿𝑥𝑛

𝑛!

𝑑𝑛𝑓

𝑑𝑥𝑛  .....(4) 

a. 𝑓(𝑡) = cos 𝜎𝑡 

The first single-variable of sinusoidal function 

examinedwas f (t) = cosσt. In his function, the value of 

δtwas examined, in which the Taylor series can be used 

with only one derivative. This study was carried out using 

the Taylor series third order, 

𝑓(𝑡 + 𝛿𝑡) = 𝑓(𝑡) + 𝛿𝑡
𝑑𝑓

𝑑𝑡
+

𝛿𝑡2

2!

𝑑2𝑓

𝑑𝑡2 +
𝛿𝑡3

3!

𝑑3𝑓

𝑑𝑡3…(5) 

The second and third differential terms can be ignored if 

the sum of the two terms is much smaller than the first 

term: 

|
𝛿𝑡2

2!

𝑑2𝑓

𝑑𝑡2 +
𝛿𝑡3

3!

𝑑3𝑓

𝑑𝑡3

𝛿𝑡
𝑑𝑓

𝑑𝑡

| ≤ 𝜀…..(6) 

The fourth term, fifth term, and so on can be used. 

However, considering that 𝛿𝑡 is a very small number, the 

fourth and higher differential term is a very small number 

that can be ignored. Equation (6) is hereinafter referred to 

as the optimization equation. In (6), the variable to be 

calculated is 𝛿𝑡. While 𝜀 is a very small number which will 

determine the level of accuracy. 𝛿𝑡 in the denominator 

with the numerator cancel each other out, 

|
𝛿𝑡

2!

𝑑2𝑓

𝑑𝑡2 +
𝛿𝑡2

3!

𝑑3𝑓

𝑑𝑡3

𝑑𝑓

𝑑𝑡

| ≤ 𝜀          .......(7) 

The derivatives of the function are 

𝑑𝑓

𝑑𝑡
= −𝜎𝑠𝑖𝑛𝜎𝑡 ;   

𝑑2𝑓

𝑑𝑡2 = −𝜎2𝑐𝑜𝑠𝜎𝑡 dan  
𝑑3𝑓

𝑑𝑡3 = 𝜎3𝑠𝑖𝑛𝜎𝑡. 

The substitution of the derivative of the function in (7), 

|

𝛿𝑡

2
(−𝜎2𝑐𝑜𝑠𝜎𝑡) +

𝛿𝑡2

6
(𝜎3𝑠𝑖𝑛𝜎𝑡)

−𝜎𝑠𝑖𝑛𝜎𝑡
| ≤ ɛ 

This equation is valid for any value of 𝜎𝑡 as long as it is 

not equal to zero. It is easier to use the value of 𝜎𝑡where 

𝑠𝑖𝑛𝜎𝑡 = 𝑐𝑜𝑠𝜎𝑡.This is called the characteristic point. The 

final equation is: 

|𝜎
𝛿𝑡

2
− 𝜎2

𝛿𝑡2

6
| ≤ ɛ 

For very small 𝛿𝑡, the term in the absolute value sign will 

be positive. Thus, the absolute sign can be omitted, 

𝜎
𝛿𝑡

2
− 𝜎2

𝛿𝑡2

6
≤ ɛ 

By using an equal sign, 

−
𝜎2

6
𝛿𝑡2 +

𝜎

2
𝛿𝑡 − ɛ = 0         .....(8) 

Equation (8) is for calculating 𝛿𝑡 where the Taylor series 

can be used only with the first differential. 

b. 𝑓(𝑥) = cos 𝑘𝑥 

Next, 𝛿𝑥was calculated in the function𝑓(𝑥) = cos 𝑘𝑥. In 

the same way,the obtained formula is, 

−
𝑘2

6
𝛿𝑥2 +

𝑘

2
𝛿𝑥 − 𝜀 = 0….(9) 

Equation (9) is for calculating 𝛿𝑥 where the Taylor series 

can be used only with the first differential. 

c. 𝑓(𝑧) = cosh 𝑘(ℎ + 𝑧) 

The function of the next variable is𝑓(𝑧) = cosh 𝑘(ℎ + 𝑧). 

In the same way,the obtained formula is, 

𝑘2

6
𝛿𝑧2 +

𝑘

2
𝛿𝑧 − 𝜀 = 0…..(10) 

With (10),𝛿𝑧, can be calculated, where the Taylor series 

can be used only with the first differential. 

In Table (1), it is presented the calculation result of𝛿𝑡, 𝛿𝑥, 

and 𝛿𝑧, with (8), (9), and (10), in which wave number 

𝑘calculated using the dispersion equation of the linear 

wave theory, at waterdepth of ℎ =10 m.The dispersion 

equation of the linear wave theory (Dean (1991) is, 

𝜎2 = 𝑔𝑘 tanh 𝑘ℎ       ……(11) 

𝑔 ∶gravitational force 
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Table.1: The calculation results of𝛿𝑡, 𝛿𝑥, and 𝛿𝑧 

𝑇 

(sec.) 

𝛿𝑡 

(sec.) 

𝛿𝑥 

(m) 

𝛿𝑧 

(m) 

6 0,00191 0,01542 0,0154 

7 0,00223 0,01905 0,01903 

8 0,00255 0,02258 0,02255 

9 0,00287 0,02603 0,026 

10 0,00319 0,02942 0,02938 

11 0,0035 0,03277 0,03273 

12 0,00382 0,03609 0,03604 

13 0,00414 0,03938 0,03933 

14 0,00446 0,04265 0,04259 

15 0,00478 0,04591 0,04585 

 

With𝛿𝑡, 𝛿𝑥, and 𝛿𝑧inTable (1),
𝛿𝑥

𝛿𝑡
and

𝛿𝑧

𝛿𝑡
was calculated and 

wave celerity 𝐶 =
𝜎

𝑘
 was calculated. The calculation results 

are presented in Table (2). 

Tabel.2: The value of
𝛿𝑥

𝛿𝑡
and

𝛿𝑧

𝛿𝑡
,  and wave celerity 𝐶 =

𝜎

𝑘
 

𝑇 

(sec.) 

𝛿𝑥

𝛿𝑡
 

(m/sec) 

𝛿𝑧

𝛿𝑡
 

(m/sec) 

𝐶 =
𝜎

𝑘
 

(m/sec) 

6 8,0677 8,05695 8,0677 

7 8,54589 8,5345 8,54589 

8 8,86229 8,85049 8,86229 

9 9,08074 9,06864 9,08074 

10 9,23739 9,22508 9,23739 

11 9,35337 9,34091 9,35337 

12 9,44158 9,429 9,44158 

13 9,51022 9,49754 9,51022 

14 9,56465 9,5519 9,56465 

15 9,60854 9,59574 9,60854 

 

It is interesting that
𝛿𝑥

𝛿𝑡
=

𝛿𝑧

𝛿𝑡
= 𝐶.This correlation does not 

only occur for dispersion equations (11). If (11) is 

changed, it becomes: 

𝛾2𝜎2 = 𝑔𝑘 tanh 𝑘ℎ 

Where𝛾is a positive number greater than one, wavelength 

resulted will be shorter and the relation of 
𝛿𝑥

𝛿𝑡
=

𝛿𝑧

𝛿𝑡
= 𝐶 is 

obtained. 

 

2.3. A function of two variables 𝑓(𝑥, 𝑡) = cos 𝑘𝑥 cos 𝜎𝑡 

The form of Taylor Serieswith two variables with 

variables(𝑥, 𝑡), to ease the writing, it can be written: 

𝑓(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥) = 𝑓(𝑡, 𝑥) + 𝑠1 + 𝑠2 + 𝑠3 … + 𝑠𝑛 

...(12) 

𝑠1is the first differential term, 𝑠2is the second differential 

term,and so on 

Next, the optimization equation is made: 

|
𝑠2+𝑠3

𝑠1
| ≤ 𝜀…(13) 

Function𝑓(𝑥, 𝑡) = cos 𝑘𝑥 cos 𝜎𝑡, is substituted to𝑠1, 𝑠2, 

and 𝑠3to (13) and made at a characteristic point 

wherecos 𝑘𝑥 = sin 𝑘𝑥 = cos 𝜎𝑡 = sin 𝜎𝑡.  The polynomial 

equation for𝛿𝑥is: 

𝑐0 + 𝑐1𝛿𝑥 + 𝑐2𝛿𝑥2 + 𝑐3𝛿𝑥3 = 0….(14) 

𝑐0 = 𝜎2
𝛿𝑡2

2
− 𝜎3

𝛿𝑡3

6
− 𝜎𝛿𝑡𝜀 

𝑐1 = − (𝜎2
𝛿𝑡2

2
+ 𝜎 𝛿𝑡 + 𝜀) 𝑘 

𝑐2 = (1 − 𝜎𝛿𝑡)
𝑘2

2
 

𝑐3 =
𝑘3

6
 

The equation can be written into an equation for𝛿𝑡, 

However, in this study, the equation is made with input 

𝛿𝑡to calculate𝛿𝑥, where𝛿𝑡is calculated with (8). Table (3) 

shows the calculation results of  wave number 𝑘calculated 

by the dispersion equation of the linear wave theory (11), 

with water depth ofℎ =10 m. 

Table.3 :The results for the calculation of𝛿𝑡and𝛿𝑥 with 

(14) 

𝑇 

(sec.) 

𝛿𝑡 

(sec.) 

𝛿𝑥 

(m) 

6 0,00191 0,04628 

7 0,00223 0,05719 

8 0,00255 0,06778 

9 0,00287 0,07813 

10 0,00319 0,08831 

11 0,0035 0,09836 

12 0,00382 0,10831 

13 0,00414 0,11819 

14 0,00446 0,12801 

15 0,00478 0,13779 
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With𝛿𝑡and𝛿𝑥in Table (3), 
𝛿𝑥

𝛿𝑡⁄

𝐶
is calculated with the 

calculation in Table (4). 

 

Table.4: The value of
𝛿𝑥

𝛿𝑡⁄

𝐶
 

𝑇 

(sec) 

𝛿𝑥

𝛿𝑡
 

(m/sec) 

𝐶 =
𝜎

𝑘
 

(m/sec) 

𝛿𝑥
𝛿𝑡⁄

𝐶
 

6 24,2138 8,0677 3,00133 

7 25,649 8,54589 3,00133 

8 26,5987 8,86229 3,00133 

9 27,2543 9,08074 3,00133 

10 27,7245 9,23739 3,00133 

11 28,0726 9,35337 3,00133 

12 28,3373 9,44158 3,00133 

13 28,5433 9,51022 3,00133 

14 28,7067 9,56465 3,00133 

15 28,8384 9,60854 3,00133 

 

In contrast to the results of separatecalculations, using 

equations derived from equations𝑓(𝑥, 𝑡)it was obtained 

that 
𝛿𝑥

𝛿𝑡
= 3.00133 𝐶,this fits the criteria of Courant (1928) 

that 
𝛿𝑥

𝛿𝑡
= 3 𝐶. 

1.4. A function with threevariables 

,𝑓(𝑥, 𝑧, 𝑡) = cos 𝑘𝑥 cos 𝜎𝑡 cosh 𝑘(ℎ + 𝑧) 

The Taylor series for a function with three variables up to 

the third derivative is𝑓(𝑡 + 𝛿𝑡, 𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧) =

𝑓(𝑡, 𝑥, 𝑧) + 𝑠1 + 𝑠2 + 𝑠3 

with 𝑠1, 𝑠2, and 𝑠3in Table (5) 

Table.5: Element 𝑠1, 𝑠2and𝑠3 

𝑠1 𝑠2 𝑠3 

𝛿𝑡
𝜕𝑓

𝜕𝑡
 

𝛿𝑡2

2

𝜕2𝑓

𝜕𝑡2
 

𝛿𝑡3

6

𝜕3𝑓

𝜕𝑡3
 

+𝛿𝑥
𝜕𝑓

𝜕𝑥
 +𝛿𝑡𝛿𝑥

𝜕2𝑓

𝜕𝑡𝜕𝑥
 +

𝛿𝑡2

2
𝛿𝑥

𝜕3𝑓

𝜕𝑡2𝜕𝑥
 

+𝛿𝑧
𝜕𝑓

𝜕𝑧
 +𝛿𝑡𝛿𝑧

𝜕2𝑓

𝜕𝑡𝜕𝑧
 +

𝛿𝑡2

2
𝛿𝑧

𝜕2𝑓

𝜕𝑡2𝜕𝑧
 

 
+

𝛿𝑥2

2

𝜕2𝑓

𝜕𝑥2
 +𝛿𝑡

𝛿𝑥2

2

𝜕3𝑓

𝜕𝑡𝜕𝑥2
 

 
+𝛿𝑥𝛿𝑧

𝜕2𝑓

𝜕𝑥𝜕𝑧
 +𝛿𝑡𝛿𝑥𝛿𝑧

𝜕3𝑓

𝜕𝑡𝜕𝑥𝜕𝑧
 

 
+

𝛿𝑧2

2

𝜕2𝑓

𝜕𝑧2
 +𝛿𝑡

𝛿𝑧2

2

𝜕3𝑓

𝜕𝑡𝜕𝑧2
 

  
+

𝛿𝑥3

6

𝜕3𝑓

𝜕𝑥3
 

  
+

𝛿𝑥2

2
𝛿𝑧

𝜕3𝑓

𝜕𝑥2𝜕𝑧
 

  
+𝛿𝑥

𝛿𝑧2

2

𝜕3𝑓

𝜕𝑥𝜕𝑧2
 

Substitution, 

𝑓(𝑥, 𝑧, 𝑡) = cos 𝑘𝑥 cos 𝜎𝑡 cosh 𝑘(ℎ + 𝑧) 

to𝑠1, 𝑠2and𝑠3and optimization equation done at 

characteristic points and in conditionscosh 𝑘(ℎ + 𝑧) =

sinh 𝑘(ℎ + 𝑧), equations for𝛿𝑧 was obtained, where𝛿𝑡and 

𝛿𝑥as input, 𝛿𝑡was calculated using  (8) while 𝛿𝑥was 

calculated using (14),  

𝑐0 + 𝑐1𝛿𝑧 + 𝑐2𝛿𝑧2 + 𝑐3𝛿𝑧3 = 0….(15) 

With elements of𝑐0, 𝑐1, 𝑐2and𝑐3in Table (6) 

The condition coshk (h + z) = sinhk (h + z) can be 

obtained in deep water. However, it does not mean that the 

obtained equation only applies to deep waters, it also 

applies to shallow waters. This is considering the 

conservation law of the wave number (Hutahaean (2020): 

𝜕𝑘(ℎ+𝑧)

𝜕𝑥
= 0 ……..(16) 

Table.6: Elementsof 𝑐0, 𝑐1, 𝑐2, and 𝑐3 

𝑐0 𝑐1 𝑐2 𝑐3 

𝜀𝜎𝛿𝑡 −𝜀𝑘 𝑘2

2
 

𝑘3

6
 

+𝜀𝑘𝛿𝑥 −𝜎𝑘𝛿𝑡 
−

𝜎𝑘2

2
𝛿𝑡 

 

−𝜎2
𝛿𝑡2

2
 

−𝑘2𝛿𝑥 
−

𝑘3

2
𝛿𝑥 

 

+𝜎𝑘𝛿𝑡𝛿𝑥 
−𝜎2𝑘

𝛿𝑡2

2
 

  

−𝑘2
𝛿𝑥2

2
 

+𝜎𝑘2𝛿𝑡𝛿𝑥   

+𝜎3
𝛿𝑡3

6
 −𝑘3

𝛿𝑥2

2
 

  

+𝜎2𝑘
𝛿𝑡2

2
𝛿𝑥 

   

+𝜎𝑘2𝛿𝑡
𝛿𝑥2

2
 

   

+𝑘3
𝛿𝑥3

6
 

   

 

Table (7) shows the calculation resultsof 𝛿𝑡, 

𝛿𝑥,and𝛿𝑧where𝑘was calculated by the dispersion equation 
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of the linear wave theory (11), with the water depth 

ofℎ =10 m. 

Table.7: The calculation results of 𝛿𝑡, 𝛿𝑥and𝛿𝑧 

𝑇 𝛿𝑡 𝛿𝑥 𝛿𝑧 

6 0,00191 0,04628 0,13914 

7 0,00223 0,05719 0,17195 

8 0,00255 0,06778 0,20379 

9 0,00287 0,07813 0,23491 

10 0,00319 0,08831 0,26551 

11 0,0035 0,09836 0,29573 

12 0,00382 0,10831 0,32566 

13 0,00414 0,11819 0,35536 

14 0,00446 0,12801 0,38489 

15 0,00478 0,13779 0,41427 

 

With𝛿𝑡, 𝛿𝑥and𝛿𝑧in Table (7), 
𝛿𝑥

𝛿𝑡
and

𝛿𝑧

𝛿𝑡
was calculated with 

the results presented in Table (8) 

Table.8: The calculation results of
𝛿𝑥

𝛿𝑡
and

𝛿𝑧

𝛿𝑡
and𝐶 

𝑇 

(sec) 

𝛿𝑥

𝛿𝑡
 

(m/sec) 

𝛿𝑧

𝛿𝑡
 

(m/sec) 

𝐶 =
𝜎

𝑘
 

(m/sec) 

6 24,2138 72,8026 8,0677 

7 25,649 77,1177 8,54589 

8 26,5987 79,9729 8,86229 

9 27,2543 81,9442 9,08074 

10 27,7245 83,3578 9,23739 

11 28,0726 84,4044 9,35337 

12 28,3373 85,2004 9,44158 

13 28,5433 85,8197 9,51022 

14 28,7067 86,311 9,56465 

15 28,8384 86,7071 9,60854 

With
𝛿𝑥

𝛿𝑡
and

𝛿𝑧

𝛿𝑡
 dan 𝐶in Table (8) 

𝛿𝑥
𝛿𝑡⁄

𝐶
, 

𝛿𝑧
𝛿𝑡⁄

𝐶
and

𝛿𝑧

𝛿𝑥
was 

calculated with the results presented in Table (9). 

Table.9: The calculation results of 
𝛿𝑥

𝛿𝑡⁄

𝐶
, 

𝛿𝑧
𝛿𝑡⁄

𝐶
and 

𝛿𝑧

𝛿𝑥
 

𝑇 

(sec) 

𝛿𝑥
𝛿𝑡⁄

𝐶
 

𝛿𝑧
𝛿𝑡⁄

𝐶
 

𝛿𝑧

𝛿𝑥
 

6 3,00133 9,02395 3,00665 

7 3,00133 9,02395 3,00665 

8 3,00133 9,02395 3,00665 

9 3,00133 9,02395 3,00665 

10 3,00133 9,02395 3,00665 

11 3,00133 9,02395 3,00665 

12 3,00133 9,02395 3,00665 

13 3,00133 9,02395 3,00665 

14 3,00133 9,02395 3,00665 

15 3,00133 9,02395 3,00665 

Referring to the calculation resultsin Table (9) relations 

can be formulated: 

𝛿𝑥 =
𝜎

𝑘
 𝛾 𝛿𝑡…..(17) 

𝛿𝑧 =
𝜎

𝑘
𝛾2 𝛿𝑡 …….(18) 

With separate claculation as a function of single variable, 
𝛿𝑥

𝛿𝑡
=

𝛿𝑧

𝛿𝑡
= 𝐶 was obtained, or𝛾 = 1 whereas with the 

simultaneous calculation 
𝛿𝑥

𝛿𝑡
= 3𝐶and

𝛿𝑧

𝛿𝑡
= 9𝐶is obtained 

or𝛾 = 3, all are related to wave celerity 𝐶.Thus,to make 
𝛿𝑥

𝛿𝑡
 

closer to horizontal velocity 𝑢 and 
𝛿𝑧

𝛿𝑡
  closer to vertical 

velocity 𝑤, Weighted Taylor series 𝑂(𝛿1)on sinusoidal 

function 𝑓(𝑥, 𝑡)should be in the form,  

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝛿𝑡
𝜕𝑓

𝜕𝑡
+ 𝛿𝑥

𝜕𝑓

𝜕𝑥
.(19)   

Where the total acceleration obtained, 

𝐷𝑓

𝑑𝑡
= 𝛾

𝜕𝑓

𝜕𝑡
+ 𝑢

𝜕𝑓

𝜕𝑥
 ……(20) 

Meanwhile, for the function𝑓(𝑥, 𝑧, 𝑡), the form of Taylor 

series 𝑂(𝛿1)is, 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 

𝑓(𝑥, 𝑧, 𝑡) + 𝛾2𝛿𝑡
𝜕𝑓

𝜕𝑡
+ 𝛾𝛿𝑥

𝜕𝑓

𝜕𝑥
+ 𝛿𝑧

𝜕𝑓

𝜕𝑧
…(21)   

With total acceleration, 

𝐷𝑓

𝑑𝑡
= 𝛾2 𝜕𝑓

𝜕𝑡
+ 𝛾𝑢

𝜕𝑓

𝜕𝑥
+ 𝑤

𝜕𝑓

𝜕𝑧
…..(22) 
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III. WEIGHTED CONTINUITY EQUATION, 

EULER’S MOMENTUM EQUATION,AND 

KFSBC  

3.1. Weighted Continuity Equation. 

 

Fig.1: Control Volume for the Continuity 

 

Equation Formulation 

At 𝑡 = 𝑡, thus (22) can be written, 

a. For constant𝑧 

𝑓(𝑥 + 𝛿𝑥, 𝑧, 𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝛾𝛿𝑥
𝜕𝑓

𝜕𝑥
....(23) 

b. For constant𝑥 

𝑓(𝑥, 𝑧 + 𝛿𝑧, 𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝛿𝑧
𝜕𝑓

𝜕𝑧
…...(24) 

The law of conservation of mass for the volume of a 

constant control volume (Fig. (1) and for incompressible 

flow, 

𝐼 − 𝑂 = 0 

𝐼 = 𝜌𝑢(𝑥, 𝑧, 𝑡) 𝛿𝑧 + 𝜌𝑤(𝑥, 𝑧, 𝑡) 𝛿𝑥  

𝑂 = 𝜌 (𝑢(𝑥, 𝑧, 𝑡) + 𝛾𝛿𝑥
𝜕𝑢

𝜕𝑥
) 𝛿𝑧 

+𝜌 (𝑤(𝑥, 𝑧, 𝑡) + 𝛿𝑧
𝜕𝑤

𝜕𝑧
) 𝛿𝑥 

Subtraction and equation are divided by𝜌𝛿𝑥𝛿𝑧, weighted 

continuity eqation is obtained, 

𝛾
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0    …….(25) 

 

3.2.Weighted Euler’s Momentum Equation 

Using (22), weighted Euler’s Momentum Equation in the 

direction of the direction of horizontal axis-𝑥and in the 

vertical axis-𝑧are 

𝛾2 Ƌ𝑢

Ƌ𝑡
+ 𝛾𝑢

Ƌ𝑢

Ƌ𝑥
+ 𝑤

Ƌ𝑢

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑥
 ……..(26) 

𝛾2 Ƌ𝑤

Ƌ𝑡
+ 𝛾𝑢

Ƌ𝑤

Ƌ𝑥
+ 𝑤

Ƌ𝑤

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑧
− 𝑔….(27) 

 

3.3. Weighted KFSBC.  

The known KFSBC (Dean (1991) is, 

𝑤𝜂 =
𝜕𝜂

𝜕𝑡
+ 𝑢𝜂

𝜕𝜂

𝜕𝑥
 

𝑤𝜂is the water particle velocity on the surface which is the 

total velocity of the water level elevation𝜂(𝑥, 𝑡) =

cos 𝑘𝑥 cos 𝜎𝑡, while theweighted total acceleration of 

water level elevation with(20) is 

𝐷𝜂

𝑑𝑡
= 𝛾

𝜕𝜂

𝜕𝑡
+ 𝑢𝜂

𝜕𝜂

𝜕𝑥
 

Thus, wigthed KFSBC is, 

𝑤𝜂 = 𝛾
𝜕𝜂

𝜕𝑡
+ 𝑢𝜂

𝜕𝜂

𝜕𝑥
…..(28) 

 

 

IV. THE APPLICATION INTIME SERIES  WATER 

WAVE MODELING 

In this section, the governing equations for time series 

modeling  water wavesare formulated. The governing 

equations  consists of two equations, they are the water 

surface elevation equation and the particle velocity 

equation. The variable of particle velocity in this equation 

is the depth-averaged velocity. 

a. Water surface elevation equation  

The Continuity equation (25)is multiplied by Ƌ𝑧and 

integrated with water depth.  . Integration of the first term 

is completed with the Leibniz integral (Protter, Murray,  

Morrey, Charles, 1985).KFSBC and bottom boundary 

condition were calculated, 

 

𝛾
𝜕

𝜕𝑥
∫ 𝑢

𝜂

−ℎ
 𝑑𝑧 − (𝛾 − 1)𝑢𝜂

𝜕𝜂

𝜕𝑥
+ 𝛾

𝜕𝜂

𝜕𝑡
= 0…(29) 

 

The integration of the left-hand first term is solved by 

using the particle velocity equation for the solution of 

Laplace’s equation (2). From (2), the relation of the 

direction of horizontal axis of particle velocity at an 

elevation 𝑧 to the horizontal velocity at elevation η is 

 

𝑢 =
cosh 𝑘 (ℎ + 𝑧)

cosh 𝑘(ℎ + 𝜂)
𝑢𝜂 

Left hand integration (29) becomes, 

 

∫ 𝑢
𝜂

−ℎ

𝑑𝑥 = ∫
cosh 𝑘 (ℎ + 𝑧)

cosh 𝑘(ℎ + 𝜂)
 𝑑𝑧 

𝜂

−ℎ

𝑢𝜂 

 

Integration is completed using 𝜂 =
𝐴

2
and defined by 𝐻 =

ℎ +
𝐴

2
 and calculated in deep water depth 

wheretanh 𝑘 (ℎ + 𝜂) = 1, 
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∫ 𝑢
𝜂

−ℎ

𝑑𝑥 =
𝑢𝜂

𝑘
 

 

Conservationlaw of the wave number (Hutahaean (2020) 

is, 

Ƌ𝑘 (ℎ +
𝐴

2
)

Ƌ𝑥
= 0 

or 

𝑘 (ℎ +
𝐴

2
) = 𝑘0 (ℎ0 +

𝐴0

2
) 

 

In deep water tanh 𝑘0 (ℎ0 +
𝐴0

2
) = 1where𝑘0 (ℎ0 +

𝐴0

2
) =

𝜃𝜋, a relation is obtained 

 

𝑘 =
𝜃𝜋

(ℎ +
𝐴

2
)

=
𝜃𝜋

𝐻
 

 

The final result of integration is, 

 

∫ 𝑢
𝜂

−ℎ

𝑑𝑥 =
𝑢𝜂𝐻

𝜃𝜋
 

 

Substitute to (29),  

 
𝜕𝜂

𝜕𝑡
= −

1

𝜃𝜋

𝜕𝑢𝜂𝐻

𝜕𝑥
+

(𝛾−1)

𝛾
𝑢𝜂

𝜕𝜂

𝜕𝑥
…..(30) 

 

As mentioned earlier, the modeling uses depth-averaged 

velocity. The horizontal depth average velocity 𝑈is 

defined as the particle velocity at the leevation𝑧 =

𝑧0below the SWL, where𝑧0is a negative number. From (2): 

 

𝑢𝜂

𝑈
=

cosh 𝑘 𝐻

cosh 𝑘(ℎ + 𝑧0)
 

 

Is defined: 

 

𝛼 =
cosh 𝑘𝐻

cosh 𝑘(ℎ+𝑧0)
    ……(31) 

Thus, the relation of horizontal surface velocity with  

horizontaldepth-averaged velocityis: 

 

𝑢𝜂 = 𝛼𝑈                                                           ……(32)   

 

Substitute to (30) 
𝜕𝜂

𝜕𝑡
= −

𝛼

𝜃𝜋

𝜕𝑈𝐻

𝜕𝑥
+

(𝛾−1)

𝛾
𝛼𝑈

𝜕𝜂

𝜕𝑥
…..(33) 

 

𝑧0is calculated by the following equation, 

 

1

𝑈𝐻
∫ 𝑢

𝐴
2⁄

−ℎ

 𝑑𝑧 = 1 

 

From (2) and the definition ofdepth-averaged velocity,  

 

𝑢 =
cosh 𝑘 (ℎ + 𝑧)

cosh 𝑘(ℎ + 𝑧0)
𝑈 

 

The characteristic of𝑧0is, 

 

1

𝑈𝐻
∫

cosh 𝑘 (ℎ + 𝑧)

cosh 𝑘(ℎ + 𝑧0)

𝐴
2⁄

−ℎ

 𝑑𝑧 𝑈 = 1 

 

From this equation the equation for 𝑧0is formulated: 

 

𝑘𝐻 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧0) − sinh 𝑘𝐻 = 0…(34) 

 

The calculation of𝛼in (31)and in the calculation of𝑧0 (34), 

in the deep water depth,requires deep water depth depth 

value  ℎ0. wave number 𝑘0is calculated bydeep-water 

weighted linear wave dispersion equation, 

 

𝑘0 =
𝛾2𝜎2

𝑔
 

As  deepwater depth: 

ℎ0 =
𝜃𝜋

𝑘0

−
𝐴0

2
 

Deep water depth is used to calculate𝛼.Considering 

conservation law of the wave number, the value of 𝛼is 

constant. 

 

b. Horizontal velocity equation 

 

Weighted horizontal surface momentum equation 

(Hutahaean (2021), is,  

𝛾2
Ƌ𝑢𝜂

Ƌ𝑡
+

1

2

Ƌ

Ƌ𝑥
(𝛾𝑢𝜂𝑢𝜂 + 𝑤𝜂𝑤𝜂) = −𝑔

Ƌ𝜂

Ƌ𝑥
 

By substituting surface velocity with (32) andby 

neglecting convective acceleration, 
Ƌ𝑈

Ƌ𝑡
= −

𝑔

𝛼𝛾2

Ƌ𝜂

Ƌ𝑥
….(35) 

 

c. Model Results 

The Finite Difference Method for spatial differentials uses 

numerical solutions, while time differentials are solved by 

the predictor-corrector method for numerical integration 

(Hutahaean, 2019). The time step 𝛿𝑡was determined with 

(8), using 𝜀 = 0.005, while the grid size of𝛿𝑥was 

calculated with (17).The model executiom was made using 

weighting coefficient 𝛾 = 3.0, deep water coefficient 𝜃 =

2.0,  tanh 𝜃𝜋 = 0.99999. 

As the first case, the model was done on a channel with a 

constant depth ℎ = ℎ0 = 14 m. In the channel there are 

sinusoidal waves with wave period𝑇 = 8 sec. and wave 
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amplitude 𝐴 = 1.0 m. The model results are presented in 

Fig. (2). Fig (2) shows that the model can simulate well the 

short waves with large amplitudes. 

 

Fig.2: Model Results on Flat Bottom 

 

In the next case, the model was made on a sloping bottom 

with a bottom slope 
𝑑ℎ

𝑑𝑥
= −

13

200
. Downstream water depth 

is ℎ0 = 14 m, while upstream water depth is 1.0 m. The 

incoming wave of sinusoidal wave with the wave period  

of𝑇 = 8 sec. and wave amplitude of𝐴 = 0.8 m. The model 

results are presented in Fig.(3). 

 

Fig.3: Model Results on Sloping Bottom. 

 

The model results show that initially shoaling occurred, 

then the waves became unstable at  waterdepth of 4 m and 

then the breaking peak occurs at a water depth of 2.60 m. 

 

V. CONCLUSION 

Some conclusions are drawn from this study. The first is 

that the application of the Taylor series to the sinusoidal 

wave equation should use time step and spatial intervals 

correlated with phase speed. Thus, it can be correlated 

with the water particle velocity, a weighting coefficient 

must be obtained. The Taylor series with the weighting 

coefficient is hereinafter referred to as the weighted Taylor 

series that only uses the first derivative. 

The formulation of hydrodynamic equations with the 

weighted Taylor series produces equations with the 

weighting coefficient, including the weighted continuity 

equation, the weighted Euler’s momentum equation,and 

the weighted KFSBC. 

The next conclusion is that by using the weighted 

equations, the time series of the wave equation is obtained 

to simulate a shortwave where short wavelengths are 

produced and there is a breaking phenomenon. 

The determination of the time step and gridsize in 

numerical modeling using the Finite difference method can 

use the equations formulated in this study. 
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