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Abstract— This research formulates some dispersion equations with formulating procedure similar to the 

one in formulating dispersion equation of the small amplitude and long wave theory, i.e. by applying 

velocity potential equation on the Bernoulli surface equation and Kinematic Free Surface Boundary 

Condition equation. 

Furthermore, this research uses non-linear term of the Bernoulli equation, whereas the Kinematic Free 

Surface Boundary Condition equation is applied with two scenarios, i.e. neglected non-linear term and not-

neglected non-linear term  

Wave length from various dispersion equations that are obtained are then compared with breaker length of 

the breaker index equation. 

This research aims only to show that using similar governing equations can be obtained some dispersions 

equations to produce different wave length.  
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I. INTRODUCTION 

Wave length is an important parameter of a water wave. 

Various phenomena in a water wave that are determined by 

wave length are among others shoaling and breaking, 

refraction and diffraction, wave force on a structure, and 

sediment transportation by a wave. Therefore, a dispersion 

equation that produces an appropriate wave length is 

needed.  

Dean (1991) formulated dispersion equation an equation to 

calculate wave length, using two basic equations, i.e. 

Bernoulli equation at the surface and Kinematic Free 

Surface Boundary Condition (KFSBC) equation. In both 

equations, the non-linear term is neglected, by applying an 

assumption of small amplitude and long wave. 

In this research, dispersion equation is formulated using 

similar governing equation, i.e. Bernoulli surface equation 

and KFSBC equation by keep applying the small amplitude 

wave assumption but without applying the long wave 

assumption. The non-linear term at the Bernoulli equation 

is still used, whereas the KFSBC is applied in two 

scenarios, i.e. the neglected non-linear term and the not 

neglected non-linear term. In the scenario where KFSBC 

equation is not neglected, the formulation is applied with 

two different approaches.  

The wave length from the resulting dispersion equation is 

compared with breaker length calculated by breaker index 

equations from Komar and Gaughan (1972), Mc. Cowan 

(1894) and Miche (1944). Breaker height is calculated 

using equation from Komar and Gaughan (1972), using 

input breaker height breaker depth is calculated 

withMc.Cowan (1894) equation, using input breaker height 

and breaker depth, breaker length is calculated using Miche 

(1944) equation.  

 

II. VELOCITY POTENTIAL EQUATION 

By completing Laplace equation with variable separation 

method, Dean (1991) obtained the following velocity 

potential equation, 

 

𝛷(𝑥, 𝑧, 𝑡) = 𝐴𝑐𝑜𝑠𝑘𝑥 (𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧)𝑠𝑖𝑛(𝜎𝑡) 

+𝐵𝑠𝑖𝑛𝑘𝑥(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧)𝑠𝑖𝑛(𝜎𝑡) ....(1) 

This equation has two components, i.e. 𝑐𝑜𝑠𝑘𝑥component 

and 𝑠𝑖𝑛𝑘𝑥  component. Hutahaean (2019) shows that both 

components have similar wave constant, where (1) can be 

written as,  

𝛷(𝑥, 𝑧, 𝑡) = 𝐴(𝑐𝑜𝑠𝑘𝑥 + 𝑠𝑖𝑛𝑘𝑥)(𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧) 

𝑠𝑖𝑛(𝜎𝑡) .....(2) 
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The𝑐𝑜𝑠𝑘𝑥and𝑠𝑖𝑛𝑘𝑥functions have an intersection point 

where the two functions have similar values, so at that 

point the velocity potential equation can be written as, 

 

𝛷(𝑥, 𝑧, 𝑡) = 2𝐴𝑐𝑜𝑠𝑘𝑥 (𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧)𝑠𝑖𝑛(𝜎𝑡) 

A new constant is defined, i.e. 𝐴 = 2𝐴 

𝛷(𝑥, 𝑧, 𝑡) = 𝐴𝑐𝑜𝑠𝑘𝑥 (𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧)𝑠𝑖𝑛(𝜎𝑡) 

  ....(3) 

This velocity potential (3) is an equation at the 

characteristic point i.e. 𝑘𝑥point where𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥. The 

formulation of 𝐴, 𝐶, 𝐷constants using (3) will produce a 

constant value at the characteristic point, where the 

constant value applies at all points at the wave curve. 

 

At the formulation 𝐴, 𝐶, 𝐷constants with (3), flat bottomis 

used (Dean (1991), i.e.by applying the bottom water 

kinematic boundary condition, where at the flat bottom 
𝑑ℎ

𝑑𝑥
= 0 applies where ℎ(𝑥)is water depth. Hence, the 

bottom water kinematic boundary condition in the form of  

𝑤 = −𝑢
𝑑ℎ

𝑑𝑥
becomes𝑤 = 0, or

Ƌ𝛷

Ƌ𝑧
= 0at 𝑧 = −ℎ. The 

following is obtained  

 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠ℎ(ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡   ......(4) 

Where wave constant  𝐺 = 2𝐴𝐷𝑒𝑘ℎis defined. The detail 

of the formulation can be seen in Dean (1991).  

 

III. DISPERSION EQUATION OF THE LINEAR 

WAVE THEORY  

3.1.Water Surface Equation of the Linear Wave Theory  

In this section dispersion equation of linear wave theory or 

small amplitude and long wave theory is formulated with a 

procedure corresponds to the one in Dean (1991). 

 

3.1. Applying Bernoulli Equation at the Surface, 

 

The Bernoulli equation at the surface is,  

−
Ƌ𝛷𝜂

Ƌ𝑡
+

1

2
(𝑢𝜂

2 + 𝑤𝜂
2) + 𝑔𝜂 +

𝑝𝜂

𝜌
= 𝐶(𝑡) ......(5) 

 

By applying an assumption that the wave amplitude is very 

small then 𝜂, where𝜂is the water surface elevation vis-à-vis 

still water level,  will also be very small, so that the surface 

pressure can be considered as equal on the entire surface 

and if the reference is the atmospheric pressure then 𝑝𝜂 =

0. 

By applying an assumption that the wave amplitude is very 

small, then the velocity of particles 𝑢and𝑤 are also very 

small number so that in Bernoulli equation the second term 

is much smaller than the third term and therefore can be 

neglected.  

−
Ƌ𝛷𝜂

Ƌ𝑡
+ 𝑔𝜂 = 𝐶(𝑡) 

Substitute the potential flow equation, water surface 

equation is obtained, i.e., 

 

𝜂(𝑥, 𝑡) =
𝐺𝜎

𝑔
𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠𝑘(ℎ + 𝜂)𝑐𝑜𝑠𝜎𝑡 +

𝐶(𝑡)

𝑔
 

or 

𝜂(𝑥, 𝑡) =
𝐺𝜎

𝑔
𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠𝑘ℎ (1 +

𝜂

ℎ
) 𝑐𝑜𝑠𝜎𝑡 +

𝐶(𝑡)

𝑔
 

For a very small wave amplitude 𝐴, then
𝜂

ℎ
≪ 1, therefore 

the last equation becomes,  

𝜂(𝑥, 𝑡) =
𝐺𝜎

𝑔
𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠𝑘ℎ𝑐𝑜𝑠𝜎𝑡 +

𝐶(𝑡)

𝑔
 

𝜂(𝑥, 𝑡)has an average value against time that is equal to 

zero, then 𝐶(𝑡) = 0, the water surface equation becomes,  

𝜂(𝑥, 𝑡) =
𝐺𝜎𝑐𝑜𝑠𝑘ℎ

𝑔
𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠𝜎𝑡 

or 

𝜂(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠𝜎𝑡  ......(6) 

It is defined that  

𝐴 =
𝐺𝜎𝑐𝑜𝑠𝑘ℎ

𝑔
          .....(7) 

where 𝐴is the wave amplitude.  (6) can be written to be an 

equation for 𝐺, i.e. 

 

𝐺 =
𝐴𝑔

𝜎𝑐𝑜𝑠ℎ𝑘ℎ
           .....(8) 

 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡 ........(9) 

 

(9) is velocity potential equation of the linear wave theory. 

The velocity particle equation in the horizontal direction at 

the surface for small amplitude and long wave is   

 

𝑢𝜂 = −
Ƌ𝛷

Ƌ𝑥
⌉

𝑧=𝜂
= 𝐺𝑘𝑠𝑖𝑛𝑘𝑥 𝑐𝑜𝑠ℎ𝑘ℎ𝑠𝑖𝑛𝜎𝑡  

........(10) 

Whereas the particle velocity in the vertical direction at the 

surface is  

𝑤𝜂 = −
Ƌ𝛷

Ƌ𝑧
⌉

𝑧=𝜂
= −𝐺𝑘𝑐𝑜𝑠𝑘𝑥 𝑠𝑖𝑛ℎ𝑘ℎ𝑠𝑖𝑛𝜎𝑡  

........(11) 

To ease the writing, constant 𝐺is still used with the value 

as in (8). 

 

3.2. Applying the Surface Kinematic Boundary Condition  

 

The next constant to be formulated its equation is wave 

number 𝑘, which will be formulated using surface 

kinematic boundary condition equation, i.e., 
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𝑤𝜂 =
Ƌ𝜂

Ƌ𝑡
+ 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
       ....(12) 

For small amplitude andlong wave,  
Ƌ𝜂

Ƌ𝑥
is a very small 

number and can be neglected, hence (9) becomes 

 

𝑤𝜂 =
Ƌ𝜂

Ƌ𝑡
    ...(13) 

Substitute (11) and (6),  

−𝐺𝑘𝑐𝑜𝑠𝑘𝑥 𝑠𝑖𝑛ℎ𝑘ℎ𝑠𝑖𝑛𝜎𝑡 = −
𝐺𝜎2𝑐𝑜𝑠𝑘ℎ

𝑔
𝑐𝑜𝑠𝑘𝑥 𝑠𝑖𝑛𝜎𝑡 

A relation is obtained, i.e.  

𝜎2 = 𝑔𝑘 𝑡𝑎𝑛ℎ𝑘ℎ  ....(14) 

This equation is a dispersion equation of linear wave 

theory to calculate wave number 𝑘, whereas wave length 

can be calculated with a relation 𝐿 =
2𝜋

𝑘
. 

In deep water, the relation𝑡𝑎𝑛𝑘ℎ = 1 applies, hence, 

dispersion equation becomes, 

𝜎2 = 𝑔𝑘  

From this equation, wave number in the deep water is 

obtained, i.e.  

 

𝑘0 =
𝜎2

𝑔
      ....(15) 

 

IV. DISPERSION EQUATION OF SHORT 

WAVE 

In this section, the formulation of dispersion equation will 

be done using Bernoulli equation at the surface and 

KFSBC equation as in the formulation of dispersion 

equation of linear wave theory. However, the long wave 

assumption is not applied and a complete Bernoulli 

equation is used instead.  

 

4.1. Water Surface Equation of a Complete Bernoulli 

Equation  

In this section, water surface equation will be formulated 

using a complete Bernoulli equation i.e. (5). Substitute (9), 

(10) and (11) to (5), using𝐶(𝑡) = 0, 

 

𝜂(𝑥, 𝑡) =
𝐺𝜎

𝑔
𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠ℎ𝑘ℎ𝑐𝑜𝑠𝜎𝑡 

−
𝐺2

2𝑔
𝑘2𝑠𝑖𝑛2𝑘𝑥 𝑐𝑜𝑠ℎ2𝑘ℎ𝑠𝑖𝑛2𝜎𝑡 

−
𝐺2

2𝑔
𝑘2𝑐𝑜𝑠2𝑘𝑥 𝑠𝑖𝑛ℎ2𝑘ℎ𝑠𝑖𝑛2𝜎𝑡 ...(16) 

 

(16) is non-linear water surface equation for small 

amplitude wave. Time differential from (16) is, 

 

Ƌ𝜂

Ƌ𝑡
= −

𝐺𝜎2

𝑔
𝑐𝑜𝑠𝑘𝑥 𝑐𝑜𝑠ℎ𝑘ℎ𝑠𝑖𝑛𝜎𝑡 

−
𝐺2

𝑔
𝑘2𝜎𝑠𝑖𝑛2𝑘𝑥 𝑐𝑜𝑠ℎ2𝑘ℎ𝑠𝑖𝑛𝜎𝑡𝑐𝑜𝑠𝜎𝑡 

−
𝐺2

𝑔
𝑘2𝜎𝑐𝑜𝑠2𝑘𝑥 𝑠𝑖𝑛ℎ2𝑘ℎ𝑠𝑖𝑛𝜎𝑡𝑐𝑜𝑠𝜎𝑡 

........(17) 

 

4.2. Applying KFSBC Equation  

As with the formulation of dispersion equation in the 

previous section, dispersion equation is formulated using 

KFSBC equation, i.e. (12). Substitute (9) and (10) to (12),  

 
Ƌ𝜂

Ƌ𝑡
= −𝐺𝑘𝑐𝑜𝑠𝑘𝑥 𝑠𝑖𝑛ℎ𝑘ℎ − 𝐺𝑘𝑠𝑖𝑛𝑘𝑥 𝑐𝑜𝑠ℎ𝑘ℎ

Ƌ𝜂

Ƌ𝑥
  ....(18) 

By equalizing (17) with (18) and applying it at the 

characteristic point, where𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥and the 

characteristic point is also applied at domain time 𝑡, 

i.e.𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡, the following is obtained 

 

−
𝜎2

𝑔
𝑐𝑜𝑠ℎ𝑘ℎ −

𝐺

2𝑔
𝑘2𝜎 (𝑐𝑜𝑠ℎ2𝑘ℎ +  𝑠𝑖𝑛ℎ2𝑘ℎ) = 

−𝑘 𝑠𝑖𝑛ℎ𝑘ℎ − 𝑘 𝑐𝑜𝑠ℎ𝑘ℎ
Ƌ𝜂

Ƌ𝑥
 

.....(19) 

 

4.2.1. KFSBC linearand𝐺 linear 

In this section, the long wave assumption is applied where 

the second term in the right side (19) is very small 

compared to the first term, and  relation𝐺i.e. (8)isused to 

obtain dispersion equation in other form, i.e. ,  

 

𝜎2 = 𝑔𝑘 𝑡𝑎𝑛ℎ𝑘ℎ −
𝑔𝐴

2
𝑘2(1 +  𝑡𝑎𝑛ℎ2𝑘ℎ)  ...(20) 

Equation (20) shows that wave number or wave length is 

also determined by wave amplitude.  

 

4.2.2. KFSBC nonlinear, 𝐺 linear, 
Ƌ𝜂

Ƌ𝑥
  linear 

In (19),𝐺of (8) is substituted to (19) whereas 
Ƌ𝜂

Ƌ𝑥
is 

substituted with (6) and was applied at the characteristic 

point to obtain 

 

𝜎2 = 𝑔𝑘 𝑡𝑎𝑛ℎ𝑘ℎ −
𝑔𝐴

2
𝑘2(2 +  𝑡𝑎𝑛ℎ2𝑘ℎ) ...(21) 

(21) is another form of dispersion equation,  where the 

wave amplitude is the parameter, so that the resulting wave 

length is also determined by wave amplitude. 

 

4.2.3. KFSBC nonlinear,  𝐺and
Ƌ𝜂

Ƌ𝑥
  nonlinear. 

Substitute
Ƌ𝜂

Ƌ𝑥
to (19)   with differential (16) against 

horizontal 𝑥 axisand apply to the characteristic point , the 

following equation is obtained  
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𝐺𝑘2𝜎 (𝑐𝑜𝑠ℎ2𝑘ℎ +  𝑠𝑖𝑛ℎ2𝑘ℎ) = 

−2𝜎2𝑐𝑜𝑠ℎ𝑘ℎ + 2𝑔𝑘 𝑠𝑖𝑛ℎ𝑘ℎ 

− (𝐺𝜎𝑘 2𝑐𝑜𝑠ℎ2𝑘ℎ +
𝐺2

2
𝑘4𝑐𝑜𝑠𝑘ℎ).......(22) 

 

The water surface elevation 𝜂of (6) at the characteristic 

point is, 

 

𝜂 =
𝐴

2
     ......    (23) 

Then (16) is applied to the characteristic point and is 

equalized with (23), and the following equation is 

obtained, 

 

𝑔𝐴 = 𝐺𝜎 𝑐𝑜𝑠ℎ𝑘ℎ −
𝐺2

4
𝑘2(𝑐𝑜𝑠ℎ2𝑘ℎ + 𝑠𝑖𝑛ℎ2𝑘ℎ) 

   ......(24) 

 

(22) and (24) are two simultaneous equations with 

unknown wave constant  𝐺and wave number 𝑘. With input 

wave amplitude 𝐴, water depth ℎand wave period 

𝑇where𝜎 =
2𝜋

𝑇
, wave contant 𝐺and wave number 𝑘can be 

calculated with (22) and (24). 

 

The result of wave length calculation with (14), (20), (21) 

and with the system of equation (22) and (24) is presented 

in table (1). On that table,𝐿14is the wave length calculated 

with (14), 𝐿20is the wave length calculated with (20), and 

so forth 

 

Table 1. Wave Length from four dispersion equations 

ℎ 

(m) 

Wave length 𝐿 (m) 

𝐿14 

 

𝐿20 

 

𝐿21 

 

𝐿22+24 

 

20 88,79 83,66 80,43 80,42 

19 87,63 82,57 79,36 79,39 

18 86,35 81,38 78,19 78,26 

17 84,96 80,07 76,88 77,01 

16 83,45 78,63 75,45 75,63 

15 81,79 77,04 73,87 74,11 

14 79,98 75,31 72,12 72,42 

13 78,01 73,4 70,19 70,56 

12 75,85 71,3 68,07 68,49 

11 73,49 68,98 65,71 66,21 

10 70,9 66,43 63,1 63,66 

 

Table (1), presents the result of wave length calculation 

with  (14), (20), (21) and ((22)+(24)) using a wave with 

wave period 𝑇 = 8seconds and wave amplitude 𝐴 = 1.0 

m. The result of the calculation shows that𝐿14is the 

longest, whereas, 𝐿21and𝐿22+24is more or less equal 

although 𝐿21 is relatively shorter. In addition, there is a 

constraint at ((22)+(24)), i.e. it cannot be used in a shallow 

water. Henceforth, ((22)+(24)) can no longer be used. 

 

Wave length calculation is then done with wave period 

𝑇 = 8seconds and wave amplitude 𝐴 = 1.0 m in a shallow 

water, with the result of the calculation as presented in 

table (2), where𝛿 =
𝐿.14−𝐿21

𝐿.14
𝑥100%. 

 

Table 2.Comparison of wave length in a shallow water.  

ℎ 

(m) 

Wave length 𝐿 (m) 𝛿 

(%) 𝐿14 𝐿20 𝐿21 

20 88,79 83,66 80,43 9,42 

18 86,35 81,38 78,19 9,46 

16 83,45 78,63 75,45 9,58 

14 79,98 75,31 72,12 9,83 

12 75,85 71,3 68,07 10,26 

10 70,9 66,43 63,1 11 

8 64,9 60,47 56,94 12,27 

6 57,5 52,98 49,08 14,65 

4 48,01 43,14 38,38 20,04 

2 34,69 28,5 19,34 44,24 

 

In the deep water, the difference between 𝐿14and𝐿21could 

reach 9.5 %, whereas in shallow water the difference could 

reach 44 %.   

Furthermore, the effect of wave amplitude A on (21) will 

be studied using a wave with wave period of 𝑇 = 8 sec., 

with various wave amplitudes, i.e. 0.20 m, 0.60 m and 1.0 

m, with the result of the calculation as presented in 

table(3). It shows that the larger the wave amplitude the 

shorter the wave length. It can be concluded that wave 

amplitude is to shorten the wave length.  

 

Table.3: Wave Length from (21) at various wave amplitude 

values 

ℎ 

(m) 

Wave Length 𝐿 (m) 

𝐴 = 0.2 

(m) 

𝐴 = 0.6 

(m) 

𝐴 = 1.0 

(m) 

20 87,28 84,04 80,43 
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18 84,88 81,72 78,19 

16 82 78,91 75,45 

14 78,56 75,52 72,12 

12 74,45 71,44 68,07 

10 69,5 66,49 63,1 

8 63,48 60,42 56,94 

6 56,02 52,8 49,08 

4 46,37 42,75 38,38 

2 32,6 27,66 19,34 

 

To see the effect of the difference in wave length, particle 

velocity in the direction of horizontal 𝑥is used with the 

result of the calculation as presented in table (4), using a 

wave with wave period 𝑇 = 8 sec., wave amplitude 𝐴 =

1.0 m, and velocity calculated at 𝑧 = −0.25 h. The 

calculation of the wave number is done using (14), (20) 

and (21). In table (4) t 𝑢14is the particle velocity 

calculated using wave number from (14), and so forth, 

whereas𝛿 =
𝑢21−𝑢14

𝑢14
𝑥100 %. 

 

Table.4. Particle velocity in the direction of horizontal 𝑥, 𝑢 

ℎ 

(m) 

𝑢14 

(m/sec) 

𝑢20 

(m/sec 

𝑢21 

(m/sec 

𝛿 

(%) 

20 0,66 0,68 0,69 5,66 

18 0,7 0,72 0,74 6,02 

16 0,74 0,77 0,79 6,47 

14 0,8 0,83 0,86 7,05 

12 0,87 0,91 0,94 7,84 

10 0,96 1,01 1,04 8,97 

8 1,08 1,14 1,19 10,76 

6 1,25 1,34 1,43 13,98 

4 1,55 1,7 1,88 21,55 

2 2,2 2,64 3,73 69,64 

 

The difference between𝑢14 and𝑢21is quite large where the 

shallower the water the greater the difference.  

 

 

V. COMPARISON WITH BREAKERINDEXES. 

As a comparator of wave length produced by dispersion 

equation, breaker length of breaker Indexesare used. The 

procedure of calculating the breaker length using breaker 

indexes is as follows 

 

Breaker height  that is calculated with the Komar and 

Gaughan equation (1972) is 

𝐻𝑏

𝐻0
= 0.56 (

𝐻0

𝐿0
)

−1
5⁄
 .......(24) 

𝐻𝑏is breaker height, 𝐻0is deep water wave height and𝐿0 is 

deep water wave length calculated with (15). 

 

Breaker depth that is calculated with McCowan (1894) 

equation is 
𝐻𝑏

ℎ𝑏
= 0.78      ......(25) 

ℎ𝑏is breaker depth, whereas breaker height 𝐻𝑏is obtained 

from  (24). 

 

Breaker length that is calculated using Miche (1944) 

equation is 
𝐻𝑏

𝐿𝑏
= 0.142𝑡𝑎𝑛ℎ (

2𝜋ℎ𝑏

𝐿𝑏
)  ....(26) 

 

𝐿𝑏is breaker length. Breaker height 𝐻𝑏was obtained from  

(24) whereas breaker depth ℎ𝑏was obtained from (25). 

 

The calculation of breaker height with (24) requires an 

input of deep water wave height  𝐻0and wave period 𝑇for 

the calculation of deep water wave length 𝐿0. Those two 

parameters were obtained by applyingWiegel equation 

(1949,1964). 

 

By establishing a wave period 𝑇, deep water wave height 

𝐻0is calculated using Wiegel equation (1949,1964), i.e. 

 

𝑇 = 15.6√
𝐻0

𝑔
        .....(27) 

or 

𝐻0 =
𝑔𝑇2

15.62          ......(28) 

Where𝑔is gravitational velocity (9.81 𝑚
𝑠𝑒𝑐2⁄ ), 

deepwater wave height 𝐻0is in meter unit.The result of the 

calculation of the breaker length with this procedure is 

presented in table (5). 

 

Table.5: Breaker length 𝐿𝑏in various wave periods. 

𝑇 

(sec.) 

𝐻0 

(m) 

𝐻𝑏  

(m) 

ℎ𝑏 

(m) 

𝐿𝑏 

(m) 

6 1,45 1,69 2,16 20,41 

7 1,98 2,3 2,95 27,78 

8 2,58 3 3,85 36,28 

9 3,27 3,8 4,87 45,92 

10 4,03 4,69 6,01 56,69 
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11 4,88 5,68 7,28 68,6 

12 5,8 6,75 8,66 81,63 

 

Furthermore, with breaker depth ℎ𝑏and with an assumption 

of sinusoidal wave where𝐴 =
𝐻𝑏

2
, wave length is calculated 

with  (14), (20) and (21), with the result as presented in 

table (6), where on the  table,𝐿14is wave length of (14), 

𝐿20is wave length of (20) and𝐿21is wave length of(21). 

 

Table.6: The comparison of wavelength of dispersion 

equation with breaker length 𝐿𝑏 

𝑇 

(sec.) 

𝐿𝑏 

(m) 

𝐿14 

(m) 

𝐿20 

(m) 

𝐿21 

(m) 

6 20,41 26,53 22,05 15,67 

7 27,78 36,11 30,02 21,33 

8 36,28 47,17 39,21 27,86 

9 45,92 59,7 49,62 35,26 

10 56,69 73,7 61,26 43,54 

11 68,6 89,18 74,13 52,68 

12 81,63 106,13 88,22 62,7 

 

Table (6) shows that 𝐿20is the closest to𝐿𝑏. However, if it 

is viewed based on wavesteepness criteria of Michell 

(1893) where
𝐻

𝐿
= 0.142, then the one that makes wave 

steepness to be closer to critical wave steepness is𝐿21, as 

presented in table (7). 

 

Table.7: Comparison of wave steepness 

𝑇 

(sec.) 

𝐻𝑏

𝐿𝑏

 
𝐻𝑏

𝐿14

 
𝐻𝑏

𝐿20

 
𝐻𝑏

𝐿21

 

6 0,083 0,064 0,077 0,108 

7 0,083 0,064 0,077 0,108 

8 0,083 0,064 0,077 0,108 

9 0,083 0,064 0,077 0,108 

10 0,083 0,064 0,077 0,108 

11 0,083 0,064 0,077 0,108 

12 0,083 0,064 0,077 0,108 

 

VI. CONCLUSION 

As a conclusion, from a governing equation can be 

obtained e some dispersion equations that produce various 

wave lengths. The higher the level of the precision, the 

shorter the wave length. Even using an assumption of small 

amplitude wave,  dispersion equation with wave amplitude 

as its parameter can be resulted. The influence of wave 

amplitude is to shorten the wave length.  

Variety of dispersion equations producing variety of wave 

lengths require a criteria on the appropriate wave length. 

One of the criteria that can be used is critical wave 

steepness,   

Further research needed is formulating dispersion without 

applying an assumption of small amplitude wave and by 

taking into account the criteria of critical wave steepness. 
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