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Abstract—In order to schedule the load generation and distribution, operators of energy markets rely on 

short-term load forecasts, especially those made for the next few hours. Since it is not feasible to store a 

large energy amount for compensating unbalances between supply and demand, what lacks or remains 

must be exchanged with an interconnected system, at the latest time price quotation. One of the new inter-

ests in this research field is the hierarchical load forecasting. The latest smart grid systems made possible 

to monitor real-time load at various levels of aggregation, from households to the whole system, which 

brought interest to forecasting from the whole system to a sole household. Some levels may comprise large 

geographical zones, on which more than one weather station may be located, and that raises a question: 

how to combine data from more than one weather station, and use the combination as input for load fore-

casting models? On this paper, we combine data from several weather stations by giving more weight to 

those stations closer to the centroid of the load zone. We experiment on data from a load zone in the state 

of New York and 11 weather stations spread throughout the state, using the combined data as input for 

neural networks. In our datasets, the proposed combinations lead to better results than those from neural 

networks that use of any of the 11 stations individually. Also, the proposed method outperforms several sta-

tistical time series benchmarks. 

Keywords—hierachical load forecasting, load forecasting, neural networks, time series, weather varia-

bles combination. 

 

I. INTRODUCTION 

For many years, electrical energy markets have been 

structured as vertically integrated monopolies, where a 

single agent (usually the local government) was responsi-

ble for all generation, transmission, and distribution opera-

tions. However, in the decade of the 1980s, a worldwide 

process of liberalization started on these markets, with the 

goals of promoting efficiency gains, stimulating technical 

innovation and leading to efficient investment [1]. 

One of the most important features of today’s liberal-

ized markets is that the energy prices are determined by a 

formal quotation mechanism, strongly influenced by the 

balance between supply and demand. Because of today’s 

technological standards, it is not feasible to store large 

amounts of electrical load for compensating unbalance, 

therefore supply and demand must be matched by selling 

or buying the difference [1]. 

Transactions of energy are made on day-ahead markets, 

with hourly-based prices, where clients buy or sell, in 

closed auctions, the amount needed for the next 24 hours 

[1,2]. For this reason, hourly-based day-ahead load fore-

casts provide vital information for all the stakeholders of 

energy markets, from the system operators, who must 

schedule from generation to distribution, to the sharehold-

ers, whose bidding also influences the prices [1]. Hourly-

based load forecasts made for the next 24 hours, often 

called short-term load forecasts [3] are the subject of this 

work. 

The short-term behavior of electrical load is known to 

be seasonal and influenced by the weather. Usually, loads 

are higher during business hours within a day, and during 

business days within a week, patterns which are periodical-

ly repeated. Also, loads are highly correlated to weather 

variables, mostly the air temperature (for example, higher 

temperatures usually lead to the use of air-conditioning 

systems, raising the load levels). 

Load forecasting has been a subject of great debate in 

the literature for decades. The first book solely devoted to 

the theme is a collection of papers describing methods used 

by the industry [4]. According to this volume, the practi-

tioner’s toolbox at that time consisted mostly of statistical 
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and numerical methods, such as linear regression, exponen-

tial smoothing, polynomial curve fitting and trigonometric 

series. These techniques have the advantages of robustness 

and interpretability. However, the functional form of mod-

els must be pre-defined, which can make the inclusion of 

the nonlinear relationships between weather and load a 

challenge. 

Statistical and numerical methods are still used by the 

industry. For example, [5] describes a Box & Jenkins auto-

regressive model, currently used by Spanish Transmission 

System Operator. 

The evolution of computer hardware made possible to 

try more computationally demanding methods, such as 

neural networks, support-vector machines, neural-fuzzy 

systems, and biological inspired metaheuristics. Because 

they make possible to capture more specific relationships 

between load and weather with no need to pre-define a 

functional form, such methods may reduce the average 

forecasting errors. However, since these relationships may 

be too complex, some caution must be taken to avoid over-

fitting or, equivalently, poor generalization for unseen data. 

A broad review and critique on feedforward neural 

networks, still worth reading, may be found in [6]. More 

recently, many experiments are being reported using deep 

learning neural networks (which are even more computa-

tionally demanding), such as [7], whichuses pooling deep 

recurrent networks for household data, and [8], whichuses 

convolutional neural networks for Greek electrical systems 

load data. 

There does not seem to exist a ‘best’ technique for load 

forecasting. Let us look for instance at the best results for 

2012 edition of Global Energy Competition (GEFCom). 

GEFCom is an initiative of the Institute of Electrical and 

Electronics Engineers (IEEE) that invites participants from 

all over the world to work on solutions for energy forecast-

ing problems. Amongst the best ranked solutions for short-

term load forecasting in 2012 were linear regression, poly-

nomial regression, gradient boosting, and neural networks 

[9]. This reinforces the idea that various techniques may 

lead to suitable results, and good predictions may depend 

more on the practitioner’s expertise and its adequacy to the 

data than on the technique itself. 

Despite the wide literature on how to produce load 

forecasts, new challenges still emerge because of the dy-

namic nature of energy markets. Some posed problems for 

the future of energy markets are, according to [2] 

1. The impact on climate change on electricity 

demand, supply and price 

2. Share, costs and subsidies to renewables in 

electricity production 

3. The effort to make the electricity sector 

“smarter”, at different levels of the Electricity 

Supply Chain, mainly distribution and usage. 

All these themes are somehow related to short-term 

load forecasting and so motivate research on the improve-

ment of existing techniques, the creation of new ones, the 

solution of new issues, and so on. 

One of the main goals of the substitution of old systems 

by smart grids, mentioned in item (3) of the list above, is 

the possibility of monitoring the load at various levels of 

the grid, such as individual transformers, substations, cit-

ies, regions and countries. From that follows the need of 

forecasting not just the load for all the system anymore, but 

for all individual levels, and for aggregations of them; a 

paradigm called “hierarchical load forecasting” [10]. As 

the grid usually covers a vast geographical area, it is possi-

ble that, for some zones, data from more than oneweather 

stations will be available. When that is the case, how can 

we select the sources of data and combine them? 

Little attention has been devoted to strategies for 

weather station selection until now. The most relevant 

works are [11] and [12]. The first introduced a heuristic for 

ranking 𝑁weather stations and, then, combining the best 1 

to 𝑁 by using a simple average. The latter tested the same 

heuristics but experimented various types of weighted 

averages for combining the best stations. 

Both papers are valuable contributions, since they 

brought to the table an important practical matter that was 

overlooked until now. However, there is still much to be 

developed. For example, testing the heuristic with other 

forecasting models (both papers only tried linear regres-

sion), incorporating to the combining process practical 

aspects such the localization of the weather stations and the 

characteristics of the weather data, and trying the proposed 

selection heuristic on different data. 

In this study, we continue the investigations by intro-

ducing three new methods for combining weather stations: 

averages weighted by the distance of the weather station to 

the load zone, by the difference of the altitudes between the 

weather station and the load zone and by the intensity of 

the nonlinear correlation between the weather station and 

the load datasets. We experiment on temperature data from 

11 weather stations in the state of New York, and load data 

from a zone of the New York Independent System Opera-

tor (NYISO). 
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II. MATERIAL 

The data we used for our experiments consist of one se-

ries of electrical loads (in MW) and 11 series of dry bulb 

air temperature (inºC). The measurements correspond to 

the period from January 1, 2015 to December 31, 2018, 

adding up to 35,064 hourly observations. The load series, 

available on the NYISO’s website [13], refers to a load 

zone of the state of New York called GENESE, which 

comprises the region of Rochester and surroundings. The 

temperature series are measurements of the actual tempera-

ture, reported from 11 weather stations spread through the 

state of New York. These data are available on the Nation-

al Oceanic and Atmospheric Administration’s (NOAA) 

website [14]. In Fig. 1, we see the geographical locations 

of the load zone and the weather stations: 

 

Fig. 1: Borders for the load zone GENESE (highlight-

ed), and locations for 11 weather stations [15]. 

 

Despite the GENESE load zone being formed by two 

disjoint regions, the NYISO treats it as one, and records the 

loads in a single data set, which accounts for the total load 

for both areas. 

The 11 weather stations, all located in airports, are la-

beled on the map by their International Air Transport As-

sociation (IATA) codes. We will use these codes to refer to 

the stations from now on. The NOAA provides data from 4 

more weather stations (ELM, MSV, POU, SWF). We 

chose not to use them because their data contained a signif-

icant amount of missing values. 

The two main characteristics of load series can be ob-

served in our data: the seasonality and the influence of the 

weather. 

In Fig. 2, we have a line plot for two typical fortnights 

of winter and summer loads, sampled by convenience. 

The line plot suggests that two seasonal patterns occur: 

an intraday pattern, with higher loads in the middle of the 

day; and an intraweek pattern, with lower loads on the 

weekends. The plotted data also indicates that the mean 

level of the load is higher in the winter than in the summer. 

 

Fig. 2: Typical loads for two fortnights in summer and 

winter, data for GENESE load zone; data from[13]. 

 

In Fig. 3, the scatterplots show the relationship between 

load and temperature data. For the temperature, we picked 

the ALB station for convenience, but the pattern is quite 

similar for all weather stations. 

 

Fig. 3: Scatterplots for loads versus temperatures, by 

season of the year, for GENESE load zone and ALB weath-

er station; data from[13, 14]. 

 

The plots suggest that, for our data, load and tempera-

ture are correlated. The highest loads generally occur as we 

approach the extreme temperatures, what probably happens 

because of the use of air heating and cooling systems in 

these cases. In each season, it seems there is a positive 

linear relationship for summer loads (the higher the tem-

perature, the higher the load) and a negative linear correla-

tion for winter loads (the higher the temperature, the lower 

the load), while a seemingly nonlinear correlation may be 

noted for spring and autumn loads (higher loads both asso-

ciated with lower and higher temperatures). 

The patterns for spring and autumn look like a compo-

sition of the two other seasons, which we think is due to 
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these seasons being a sort of a transition between the other 

two. 

Almost no treatment was needed for the data. Just a few 

missing values for the temperature needed to be replaced 

by imputed values, which we have done by using polyno-

mial interpolation. 

 

III. METHODS 

For all the following methods, we will denote the actual 

and forecasted loads respectively by 𝑦𝑡  and 𝑦̂𝑡, where 𝑡 is 

the instant of time. For our work, we are interested in com-

puting, at the last hour of a day, the forecasts𝑦̂𝑡+𝑘, for 𝑘 =

1, … 24. In other words, at the 24th hour of a day, we fore-

cast all the hourly loads for the following day. 

3.1SELECTION AND COMBINATION OF 

WEATHER STATIONS 

3.1.1A heuristic for selection and combination 

To rank and select the weather stations, we use a heu-

ristic introduced in [11]. Let the temperature series of the𝑖-

th weather station be denoted by 𝑊𝑖, and 𝑛 be the number 

of weather stations.The heuristic follows the five steps 

enlisted in Table 1: 

Table 1. Heuristics for ranking and selecting weather-

stations [11, adapted] 

# Step description 

1 

For 𝑖 = 1, … , 𝑁 produce in-sample forecasts using 

the series 𝑊𝑖. Also, at each step, calculate an eval-

uation measure (the mean absolute percentage 

error, for example) for these forecasts. 

2 
Rank the error measures calculated in the previous 

step in ascending order. 

3 

For 𝑘 = 1, … , 𝑛, generate an artificial weather 

station by combining the temperature series from 

the first 𝑘 stations (which can be done, for exam-

ple, by using a simple average), and produce in-

sample forecasts. At each step, calculate an evalua-

tion measure for these forecasts.  

4 
Rank the error measures calculated in the previous 

step in ascending order. 

5 

The 𝑘 corresponding to the first position in the 

previous step’s rank will be number of stations to 

be combined. The first 𝑘 stations in step 2’s rank-

ing will be the ones to be combined. 

 

We have made one little adjustment to this heuristic. In 

both steps #1 and #3, the forecasts are produced for the in-

sample data set. We think that, to assure better generaliza-

tion, the evaluation for step 3 could be for the post-sample 

data – and that is how we proceeded in our work. 

3.1.2A novel method for combining weather stations 

[11] uses just a simple average for combining the 

weather stations. In [12], weighted averages are tested. 

Although we think it is reasonable to assign different 

weights to different stations, the methods proposed in [12] 

are purely algebraic and mainly based in the forecast errors 

(more weight is given to the stations that produce more 

accurate forecasts), leaving out practical issues, such as the 

geographical location of the station. In this work we intro-

duce a novel method for combining weather stations, based 

in geographic information. 

Be𝑑𝑖 the distance from the weather station 𝑖 to the cen-

troid of the load zone. The combination of the first 𝑘 

weather stations (step #3 from Table 1) will be given by 

Eq. (1):   

𝑊𝑘 = ∑
𝑑𝑖

−1𝑊𝑖

𝑑𝑖
−1

𝑘

𝑖=1

 (1) 

For our method, the closer the station from the centroid 

of the load zone, the higher its weight. 

The distance between the weather station location and 

the centroid of the load zone may be calculated by using 

the haversine formula [16], which results in the great-circle 

distance between two points on a sphere, given their longi-

tudes and latitudes. 

Being 𝜑 = (𝜑1, 𝜑2) and 𝜆 = (𝜆1, 𝜆2), respectively, the 

latitude and longitude coordinates, Δ𝜑 = 𝜑2 − 𝜑1 and 

Δ𝜆 = 𝜆2 − 𝜆1, and 𝑅 the radius of the Earth (approximate-

ly 6371 km), the distance 𝑑 between two points on a sphere 

by the haversine formula is given by the set of equations 

from Eq. (2.1) to Eq. (2.3):  

𝑎 = sin²(∆𝜑/2) + cos 𝜑1 ∙ cos 𝜑2 ∙ sin²(Δ𝜆/2) (2.1) 

𝑐 = 2 ∙ atan2 (√𝑎, √(1 − 𝑎)) (2.2) 

𝑑 = 𝑅 ∙ 𝑐 (2.3) 

 

3.2 FORECASTING METHODS 

In the following sections we describe the forecasting 

method we propose and the ones we use for benchmarking. 

3.2.1Feed Forward Neural Networks (FFNN) 

Feed forward neural networks (FFNN) arethe main 

forecasting method in the work. Thefollowing introduction 

is based in [17], which the reader may look for more de-

tails. 
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We can define a neural network as a function composi-

tion like in Eq. (3): 

𝑦 = 𝑓𝑁𝑁(𝐱) (𝑓3 (𝒇2(𝒇𝟏(𝐱)))) (3) 

Eq. (3) is an example of a three-layer neural network. 

𝒇𝟐 and 𝒇𝟏 are vector functions of the form shown in Eq. 

(4). 

𝒇𝑙(𝐳) ≝ 𝒈𝒍(𝐀𝒍𝐳 + 𝐛𝒍) (4) 

  

In Eq. (4), 𝑙 is the index for the layer of the network, an 

integer greater than or equal to 1. The function 𝒈𝑙, usually 

nonlinear, is called activation function. The values 𝐀𝑙and 

𝐛𝑙are respectively called weights and biases of the lay-

er𝑙;these values are calculated (or “learned”, as in neural 

networks’ practitioner’s language) based on the data. The 

learning process occurs byusing a proper optimization 

algorithm. 

Fig. 4 shows an example ofa neural network in the form 

of a directed graph, a common visual representation: 

 

Fig. 4: FFNN with two inputs, two hidden layers and one 

output. Adapted from [17]. 

 

The architecture depicted in Fig. 4is called feed for-

ward, in the sense that information flows exclusively one-

way (in this illustration, from left to right). The rectangles 

represent the units called neurons, which are organized in 

layers. In this example, there is an input layer, which re-

ceives a dimensional vector𝐱;two hidden (i.e. intermediate) 

layers that perform mathematical operations on the inputs; 

and an output layer, which returns a value𝑦as the result of 

the previous calculations. 

By using the universal approximation theorem, [18] 

shows that a FFNN with one hidden layer and a finite 

number of neurons is capable of approximating continuous 

functions, since the activation functions 𝒈𝑙follows some 

prerequisites, such as being differentiable. This capability 

makes FFNN attractive for load forecasting because the 

networks canmodel the complex nonlinear relationship 

between load and temperature with noneed to specify a 

functional form. 

To produce our forecasts, we propose a FFNN with one 

hidden layer and the following groups of inputs: 24 loads 

for day 𝑑; 24 loads for day 𝑑 − 1; 7 dummy variables for 

the days of the week; 4 dummy variable for the seasons of 

the year; 24 temperatures for day 𝑑; and 24 temperatures 

for day 𝑑 − 1; 24 temperatures for day 𝑑 + 1. 

The first three groups model the recent trend of the load 

curve and, the following two, the daily and weekly season-

al factors. The last three groups model the effect of the 

temperature on the load. 

One may note that although we use the temperatures of 

the day 𝑑 + 1 in our model, we do not have access to these 

data in practice: in fact, because the forecasts are made at 

the day 𝑑, the temperature series for the next day does not 

even exists at this point. In practice we would use tempera-

ture forecasts, instead of the actual temperatures. Since 

temperature forecasts contain errors, we also made a sensi-

tivity analysis by injecting various levels of noise to the 

temperature data to see how the errors in temperature data 

would affect the performance of our model. 

Another thing that is important to highlight is how we 

proceeded for the first phase of the implementation of the 

FFNN: the hyperparameter tuning.  

We adopted the strategy suggested by [19]: start by de-

ciding which hyper parameters we are willing to tune 

(which may be limited in number, according to time and 

computational power issues) and fix the values for the 

others. For all the hyper parameters that will be tuned, 

from the most important to the least, try a number (defined 

by the user) of random values for the parameter while 

fixing the others. Pick the value that leads to the best re-

sults, make it fixed and go to the next hyper parameter. 

[19] points that this random search has proven more effec-

tive than a grid search for hyper parameter tuning. In the 

order of importance, we have chosen to tune the following 

hyper parameters: learning rate, batch size, number of 

hidden units and number of iterations. Some other hyper 

parameters (and their fixed values) were: number of hidden 

layers (1), learning algorithm (Adam) and activation func-

tion (ReLU). 

A common practice when tuning the hyper parameters 

of a FFNN in a limited data sample is using a resample 

technique such as cross-validation, with the goal to assure 

better generalization. One of the most common forms of 

cross-validation is the 𝑘-fold cross validation. For this 

method, data is first randomly shuffled, then split in 𝑘 

groups. For each group, its data is taken as an out-of-

sample (or validation) set while the rest is taken as an in-

sample set. The model is fit using the in-sample data and 
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evaluated for the out-of-sample data. The final evaluation 

is done by summarizing the performance for all 𝑘 groups. 

We must be careful, though, if there is time depend-

ence: shuffling the data may cause us to use future data for 

fitting the model and past data for evaluating. Since us-

ingthe future to predict the past would seem rather unfair, 

we should look for a more suitable strategy. 

We used the strategy usually called “rolling forecasting 

origin”. In this approach, the validation sets all consist of 

one observation; the related training sets will be all the 

observations that occurred before [20]. 

Fig. 5 illustrates how this procedure works: the blue 

dots represent the training sets and the red dots the valida-

tion sets. The diagram makes clears that no future observa-

tion is used during the training. 

 

Fig. 5: Diagram for the general rolling forecasting 

origin method [20] 

 

Although our data is limited, we still have some thou-

sands of points. Because of that, we defined the validation 

sets to comprise a month of observations, instead of a sin-

gle observation. Also, for each new validation set, we in-

cluded six more months instead of only one - what we 

think that makes more sense, since our data is seasonal. 

The final segmentation we used for validating the 

FFNN models is shown in Table 4. 

Table 3. Adapted rolling forecasting origin segmentation 

Set In-sample months Validation month 

1 [1,5] 6 

2 [1,11] 12 

3 [1,17] 18 

4 [1,23] 24 

5 [1,29] 30 

6 [1,35] 36 

7 [1,41] 42 

8 [1,47] 48 

 

3.2.2Benchmark I: Seasonal naïve method 

A naïve method, possible the simplest class of forecast-

ing methods, considers that the forecasting equals the last 

observed value. 

Our data is seasonal, so it is reasonable to use a varia-

tion called seasonal naïve [21]. The formulation can be 

read in the Eq. (6): 

𝑦̂𝑡 = 𝑦𝑡−𝑚 (6) 

In Eq. (6), 𝑚 is the seasonal period. As the data is hour-

ly and we have two seasonal periods, with 𝑚 = 24 hours 

(intraday) and 𝑚 = 168hours (intraweek), we experiment-

ed two seasonal naïve forecasters. 

3.3.3Benchmark II: Double-seasonal exponential 

smoothing 

A more sophisticated time series method is the exten-

sion of the classical Holt-Winters exponential smoothing, 

proposed by [22] to accommodate two seasonal factors. 

The double-seasonal exponential smoothing (also called 

Holt-Winters-Taylor exponential smoothing, or HWT) is 

given by the set Eq. (7.1) to (7.4): 

𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑑𝑡−𝑠1
− 𝑤𝑡−𝑠2

) + (1 − 𝛼)𝑙𝑡−1 (7.1) 

𝑑𝑡 = 𝛿(𝑦𝑡 − 𝑙𝑡 − 𝑤𝑡−𝑠2
) + (1 − 𝛿)𝑑𝑡−𝑠1

 (7.2) 

𝑤𝑡  = 𝜔(𝑦𝑡 − 𝑙𝑡 − 𝑑𝑡−𝑠1
) + (1 − 𝜔)𝑤𝑡−𝑠2

 (7.3) 

𝑦̂𝑡+𝑘 = 𝑙𝑡 + 𝑑𝑡−𝑠1+𝑘 + 𝑤𝑡−𝑠2+𝑘 

+  𝜙𝑘 (𝑦𝑡 − (𝑙𝑡−1 + 𝑑𝑡−𝑠1
+ 𝑤𝑡−𝑠2

)) 

(7.4) 

In the Eq. (7.1) to (7.4), 𝑙𝑡 is the level;𝑑𝑡 is the intraday 

seasonal factor; and𝑤𝑡  is the intraweek seasonal factor, for 

instant 𝑡. The forecast 𝑦̂𝑡+𝑘is a composition of the most 

recent updates of these components and a correction of the 

last forecast. 𝛼, 𝛿, and 𝜔 are constants for level, intraday 

seasonal factor, and intraweek seasonal factor. 𝜙 is a con-

stant for correcting the first order autocorrelation. The 

constants are real numbers, restricted to the interval [0,1]. 

Although relatively simple, this method has been 

proved surprisingly accurate for different time series, even 

shown to outperform more complex multivariate methods, 

as reported in [23, 24]. 

3.3.3 Benchmark III: Box & Jenkins models 

A last benchmark we have tried for our data was the 

class of models called Box & Jenkins models [25], which 

are an auto-regressive formulation for time series. 

An (𝑝, 𝑞) order auto-regressive (AR) moving average 

(MA) polynomial, denoted by 𝐴𝑅𝑀𝐴(𝑝, 𝑞), is written as in 

Eq. (8): 
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𝜙(𝐵)𝑦𝑡 = 𝜃(𝐵)𝜀𝑡 (8) 

,where 𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2−. . . −𝜙𝑝𝐵𝑝; 𝜃(𝐵) =

1 − 𝜃1𝐵 − 𝜃2𝐵2−. . . −𝜃𝑞𝐵𝑞; 𝐵ℎ is the backshift operator, 

which lags and observation by ℎ steps (that is, 𝐵ℎ𝑦𝑡 =

𝑦𝑡−ℎ); 𝜀𝑡~𝑁(0, 𝜎2); and 𝜙 and𝜃 are the model’s coeffi-

cients. 

We can derive a seasonal formulation for this model. 

Denoted by𝐴𝑅𝑀𝐴(𝑃, 𝑄)𝑠, the (𝑃, 𝑄) order seasonal for-

mulation with period 𝑠, is written as in Eq. (9): 

Φ(𝐵𝑠)𝑦𝑡 = Θ(𝐵𝑠)𝜀𝑡 (9) 

, where Φ(𝐵𝑠) = 1 − Φ1𝐵𝑠 − Φ2𝐵2𝑠−. . . −Φ𝑃𝐵𝑃𝑠; 

Θ(𝐵𝑠) = 1 − Θ1𝐵𝑠 − Θ2𝐵2𝑠−. . . −Θ𝑄𝐵𝑄𝑠; and Φ andΘ are 

constants. 

Finally, a mixed seasonal ARMA, denoted by 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) × 𝐴𝑅𝑀𝐴(𝑃, 𝑄)𝑠, a composition of both 

aforementioned models, is shown in Eq. (10): 

Φ(𝐵𝑠)𝜙(𝐵)𝑦𝑡 = Θ(𝐵𝑠)𝜃(𝐵)𝜀𝑡 (10) 

The formulations in Eq. (8) to (10) do not directly al-

low us to forecast for lead times ahead of  𝑡 + 1. To 

achieve our goal of forecasting for up to 24 hours ahead, 

we have adjusted 24 Box & Jenkins models – one for each 

hour of the day and used them to forecast the next hour. 

3.3 EVALUATION 

For evaluating the post-sample accuracy, we chose to 

calculate the mean absolute percentage error (MAPE), as it 

is a standard in the literature, and is easily interpretable. 

The MAPE is given by the following equation: 

MAPE =
1

𝑁
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡

|

𝑁

1

× 100 

 
(11) 

In Eq. (11), 𝑁 is the number of observations in the data 

set. 

3.4 COMPUTATIONAL RESOURCES 

All the experiments were run on a 3.70GHz Intel® 

Core™ i7-8700K CPU, with 32 GB of RAM, and a Nvidia 

GeForce 1080Ti GPU with 11 MB RAM. 

The implementations were written in R language [26]. 

We have used functions from the packages keras [27], for 

neural networks;forecast [28] for Box and Jenkins models; 

and geosphere [29] for haversine distance. 

For calculating the centroid of the load zone, we have 

used the coordinates of the outline map made available by 

[30,31]. 

 

 

IV. RESULTS AND DISCUSSION 

We used approximately 36 months, up to 31 December, 

2017, for our in-sample data. These data were used for 

optimizing the HWT constants, finding the Box & Jenkins 

models and training the FFNNs. 

The data for the final year, 2018, we used for post-

sample evaluation. 

4.1 BENCHMARKS 

First, we implemented the time series benchmark meth-

ods. We used the limited memory Broyden-Fletcher-

Goldfarb-Shano (l-BFGS) optimization algorithm [32] to 

find the constants that minimized the in-sample mean 

squared error. To find the order and the model’s coeffi-

cients for the Box & Jenkins models, we used the Hynd-

man-Kandakhar algorithm [33], which minimizes the 

Akaike Information Criterion (AIC), leading to more par-

simonious models. 

Table 2 shows the MAPE for the benchmark methods, 

for out-of-sample data. 

Table 2. MAPE for the benchmark methods (out-of-sample 

data) 

Method MAPE (%) 

HWT 4.15 

Box & Jenkins 5.31 

Seasonal naïve (𝑚 = 24) 6.64 

Seasonal naïve (𝑚 = 168) 8.75 

 

As we expected, the naïve forecasters perform worse 

than the other two methods. HWT produces more accurate 

forecasts than Box & Jenkins models, according to the 

MAPE, and is the best of the benchmarks. 

In Table 3 we show the constants for the model. While 

the constant for the level update,𝜆, is close to zero, which 

suggests that the average level is nearly constant for all the 

framed time period, the constant for adjustment of the first 

order autocorrelation, 𝜙, pays a great role in our data. As 

regards the intraday and intraweek seasonal factors, their 

constants, 𝛿 and 𝜔 indicate that both influence the fore-

casts with similar strength. 

Table 3. Constants calculated for HWT method 

𝜙 𝜆 𝛿 𝜔 

0.99 0.02 0.14 0.15 
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4.2 FFNN 

4.2.1 One weather station per FFNN 

We started by training 11 FFNNs, all with architecture 

mentioned in section 3.2.1. That is: the inputs were 24 

loads for day d; 24 loads for day d-1; 7 dummy variables 

for the days of the week; 4 dummy variable for the seasons 

of the year; 24 temperatures for day d; and 24 temperatures 

for day d-1; 24 temperatures for day d+1; and the outputs 

were the 24 loads for day d+1. 

As we mentioned before, although we have the data for 

observed temperatures for day d+1, in practice we have 

just forecasts for those. Because we aim at testing our 

method for a broad range of situations, we also evaluated 

the networks with noise added to the data, to simulate the 

temperature forecast errors. The level of noise 𝑟 added to a 

temperature data point in time instant 𝑡 is shown in Eq. 

(12). 

r𝑡 = rnorm(0, 𝑙 × 𝜇𝑇𝑀𝑃)  (12) 

In Eq. (12), the noise is given by a random number of 

the gaussian distribution (rnorm), with 0 mean and a 

standard deviation given by a constant 𝑙 times the mean of 

the temperature series. 

In short, for each weather station data set, we: 

1. Train 100 FFNNs (because initial random 

guesses in the training phase may cause the re-

sults to vary, and running more networks we 

can analyze the variability) 

2. Add noise to the out-of-sample data 

3. Calculate the median MAPE for the predic-

tions of the 100 FFNNs in the out-of-sample 

data. 

We have tried this algorithm for noise levels  l = 1%, 

2%, 3%, 4% and 5%, and also for data with no noise (l = 

0).  

The final evaluation of the post-sample accuracy was 

given by the median MAPE for the performance of the 

FFNN in all levels of noise – which we think coversthe 

wide range of possibilities that may come from the varia-

bility regarded to the initial guesses in the training phase, 

and also from the noise in the temperature data. 

Table 4 show the results for 11 FFNNs, each using data 

from a different weather station.We can also see the dis-

tance from each weather station to the centroid of the load 

zone. We mentioned in section II that GENESE load zone 

is formed by to disjoint geographical areas. Among other 

possible strategies, we calculated this distance as the aver-

age of the distance to the centroids of the two areas. 

 

Table 4.MAPEs for FFNNs (different stations) 

Weather station MAPE (%) 
distance 

(105 m) 

ROC 3.32 0.65 

SYR 3.39 1.33 

BUF 3.41 1.06 

ART 3.63 1.91 

BGM 3.68 1.56 

RME 3.79 1.91 

MSS 3.87 3.31 

ALB 3.99 3.15 

LGA 4.53 3.84 

JFK 4.90 4.00 

HPN 4.94 3.78 

 

Table 4 seems to indicate that, the closer the station is 

to the centroid, the best are the FFNN results. That is made 

clearer by observing the scatterplot for MAPE versus dis-

tance in Fig. 6: 

 

 

Fig. 6: Scatterplot for MAPE versus distance, weather 

stations labeled (FFNN) 

 

The points in Fig. 6 have a Pearson’s correlation coeffi-

cient of 0.91, which suggests a strong positive linear corre-

lation (the higher the distance between the weather station 

and the centroid, the higher the MAPE). 

We then started to combine the weather stations, from 

two station to 11, starting from the best (following the 

heuristics mentioned in 3.1), re-trained the FFNNs and 

computed the MAPEs for the various levels of noises. 

The first combination we experimented was a simple 

average of the temperature data. Results are displayed in 

Table 5. The simple average improves the results we had 

previously, especially the first three stations from Table 4, 
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ROC, SYR and BUF, which are the closest to the load 

zone. 

Table 5. MAPEs for FFNNs (combination by mean) 

No. of weather stations MAPE (%) 

3 3.09 

5 3.11 

4 3.12 

2 3.14 

7 3.18 

6 3.19 

8 3.25 

10 3.29 

1 3.32 

9 3.33 

11 3.44 

 

Finally, we experimented our proposed combination 

method, the weighted average by the inverse of the dis-

tance to the centroid. Results shown in Table 6point that 

our method improves the results even more than the com-

bination by simple average: combining only the 2 best 

weather stations of the ranking in Table 2 lead to a signifi-

cantly better performance. 

Table 6. MAPEs for FFNNs (weighted average by the 

inverse of the distance to the centroid of the load zone) 

No. of weather stations MAPE (%) 

2 2,92 

5 2,92 

3 2,95 

4 2,96 

9 3,04 

6 3,05 

7 3,05 

8 3,06 

11 3,10 

10 3,12 

1 3,32 

 

4.4 A BRIEF SENSITIVITY ANALYSIS 

A last analysis we would like to show is a brief sensi-

tivity analysis to the injected noise. 

In Table 7, we show the median MAPEs for the best 

FFNN (stations ROC and SYR, combined by the centroid 

method), for the various noise levels and also the MAPEs 

for the benchmark methods: 

Table 7. Best methods 

 Noise level 

Method 0 1% 2% 3% 4% 5% 

FFNN 2.59 2.64 2.78 2.95 3.19 3.48 

HWT 4.15 

SARMA 5.31 

NF24 6.64 

NF168 8.75 

 

Those results are also shown in Fig. 7. 

 

Fig. 7: Results for the best FFNN and the benchmark 

methods 

 

Note that these results show that, even though the 

FFNNs are capable of producing accurate forecasts, they 

are not flawless. Random initial guesses in the training 

phase may cause variations, as we can see in Fig. 7. Even 

with no noiseadded, some outlier MAPEs were observed. 

But not just that: as we inject more noise to the temper-

ature data, the variability gets higher (which is clear by 

looking at the size of the boxes) and some few results may 

even be worse than those produced by an exponential 

smoothing method, which is much less computationally 

demanding. 

Because of that, we recommend running FFNNs as 

many times as possible, in order to analyze the variability, 

and being careful to consider the possibility that the input 

data may include some noise. If that is the case, it is possi-

ble that a simpler, but more robust method, such the time 

series benchmarks we used, area safer bet, depending on 

the level of noise. 
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V. CONCLUSION 

With the emerging importance of hierarchical load 

forecasting, the problem of selecting and combining 

weather stations data becomes a major concern for the field 

of load forecasting. 

In this work, we propose a new method for combining 

weather station data, a weighted average where more 

weight is assigned the closer the weather station is to the 

load zone. Using data from a load zone of the NYISO and 

11 temperature weather stations of the state of New York, 

we experimented with this method for combining the data, 

and usedthe combinations as input for neural networks. 

For our data, the proposed combining method improves 

the performance of the neural networks, if compared to the 

use of the weather stations individually and to the combi-

nation via simple averages. The method also outperforms, 

in median, several time series benchmarks. For certain 

levels of noise in the input data, though, one must be care-

ful since it may weaken the results at some level, as we 

commented in a brief sensitivity analysis. 

For further work, we suggest trying the method on oth-

er datasets, tryingwith different neural network architec-

tures and trying to combine the results from the HWT 

exponential smoothing with those from the neural net-

works, in order to see if the robustness of the time series 

method could improve the performance of the neural net-

works when there is noise in the input data. 
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