
 

International Journal of Advanced Engineering Research and Science 

(IJAERS) 

Peer-Reviewed Journal 

ISSN: 2349-6495(P) | 2456-1908(O) 

Vol-11, Issue-1; Jan, 2024 

Journal Home Page Available: https://ijaers.com/ 

Article DOI: https://dx.doi.org/10.22161/ijaers.11.3 

 

 

www.ijaers.com                                                                                                                                                                              Page | 13  

Computational analysis of the transition of a system 

between two non-equilibrium stationary states through 

two-dimensional laminar natural convection in a 

cylindrical cavity 

Herimiah Rakotondranja Stelarijao Eloi1, Raminosoa Andrianary Lala2, Ramanantsoa 

Ravo Mparany2, Randrianandraina Hery Zo2, Rakotomalala Minoson2, Razafinjato Victor 

Albert3 

 
1Laboratoire de Thermodynamique Thermique et Combustion, University of Antananarivo 
2Institut pour la Maitrise de l’Energie d’Antananarivo 
3Institut Supérieur de Technologie d’Antananarivo 

 

Received: 30 Nov 2023, 

Receive in revised form: 02 Jan 2024, 

Accepted: 10 Jan 2024, 

Available online: 19 Jan 2024 

©2024 The Author(s). Published by AI 

Publication. This is an open access article 

under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/). 

Keywords— Natural convection, non-

equilibrium stationary states, transient 

regime, cylindrical crescent, bi-cylindrical 

coordinates, laminar regime. 

 

Abstract— Our work focuses on the numerical study of two-dimensional 

and transient natural convection in a fluid confined within a crescent-

shaped space delimited by two horizontal cylinders. The upper wall is 

subjected to a non-uniform heat flux, while the lower wall experiences a 

uniform heat flux, thereby generating thermal natural convection. The 

transfer equations are solved in a bi-cylindrical coordinate system using 

the formalism of stream function and vorticity, and then integrated using 

the finite difference method. Subsequently, these transfer equations are 

integrated using S.V Patankar's finite difference method with an implicit 

scheme. The computational program is implemented using Maple V 

Release Student software. The discretization of the equations highlights the 

following parameters: the Prandtl number (Pr), the modified Grashof 

number (Gr), and the aspect ratio (r2/r1). The Prandtl number is fixed at 

0.7. The results include temperature distributions, local and average 

Nusselt values, as well as graphs illustrating variations in various 

parameters based on slice indices. 

 

I. INTRODUCTION 

Natural convection is a heat transfer mechanism that 

occurs exclusively within fluid mediums when there is a 

temperature gradient between two surfaces. This 

mechanism is the most significant mode of heat transfer 

and involves the description of fluid movement generated 

by Archimedean forces resulting from variations in density 

with temperature. Consequently, there is a coupling of 

dynamics and thermodynamics. The velocity field 

transports heat and, due to the temperature-dependent 

density, influences the distribution of mass; in turn, 

changes in mass create movement through Archimedean 

buoyancy. 

The study of natural convection phenomena captivates 

researchers due to its widespread applications in various 

natural phenomena and industrial processes, including the 

cooling of electronic and electrical components, thermal 

power plants, nuclear power plants, space heating, heat 

exchangers, aerospace applications, and even in the 

vicinity of the human body, among others. 

This type of fluid flow is omnipresent in daily life and 

prevalent in almost all industrial environments. Numerous 
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studies have been conducted on natural convection, 

focusing on scenarios such as cylinders with walls 

subjected to uniform density flux [11] or maintained at 

constant temperatures [4, 22]. 

Rolland Aimé ANDRIAMAHENINA [8] conducted a 

study on transient laminar natural convection between two 

equilibrium states in a fluid confined within a flattened 

half-ellipsoid, with the wall subjected to a constant density 

flux. 

All the aforementioned studies rely on a mathematical 

model based on the Boussinesq hypothesis and the two-

dimensionality of the flow. 

 

II. MATHEMATICAL MODEL OF TRANSFER 

EQUATIONS AND NUMERICAL METHOD 

Figure 1 illustrates the cross-section of a cylindrical 

crescent delimited by the intersection of two cylinders, 

while Figure 2 depicts the schematic representation of bi-

cylindrical coordinates according to [20]. 

We make the following simplifying assumptions: 

• The lower wall is subjected to a uniform heat flux 

q2, and the upper wall is traversed by a variable 

heat flux q [1]. 
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N: slice index 

I1: total length of the arc where the heat flux q is applied to 

the upper wall 

I: length of the arc where the heat flux q is applied to the 

upper wall 

• The fluid is an ideal gas assumed to be 

incompressible. 

• Viscous dissipation and radiation are considered 

negligible. 

• The physical properties of the fluid are constant, 

except for its density ρ, which varies and gives 

rise to natural convection. 

• The Boussinesq hypothesis, upon which the heat 

flux is applied, is valid. 

• The convection is laminar and in a transient 

regime. 

 

Fig. 1 

 

Fig. 2 

2.1 Formulation of equations 

By introducing vorticity and the stream function, the 

dimensionless transfer equations in bi-cylindrical 

coordinates can be expressed as follows: 

• Continuity equation 
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• Momentum equation 

 

( )

( )
2 2

2 2 2

1
,

1
,

V V T
F

t H H H

T
G

H

   
 

  

 
 

  

+ ++ + + +

+

+ + +

   
+ + = +

   

    
+ +  

    

  (3) 

• Heat Equation 
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2.2 Boundary Conditions 

The boundary conditions associated with the transfer 

equations on both walls are as follows: 

• Lower wall (wall with index 2)  

Conditions on velocities and flux: 
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• Upper wall (wall with index 1) 
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2.3 Numerical method 

We solved the system of transfer equations with 

associated boundary conditions using the "finite 

difference" method, which relies on TAYLOR series 

expansions approximating the values of derivatives at a 

point or in its vicinity through differences. To discretize 

the equations and boundary conditions, we chose the 

method developed by S.V. Patankar and Nogotov [6]. 

 

III. RESULTS AND DISCUSSION 

In our study, we selected air as the fluid, and its 

physical properties are provided at the initial temperature 

T0 = 293 K, corresponding to a Prandtl number Pr = 0.7. 

The values of physical constants are fixed as follows: 

• Focal distance a = 0.12 m. 

• Heat flux density q2 = 12 W/m², resulting in a 

Grashof number Gr = 106. 

• All presented results are calculated based on the 

dimensionless time step of 3.65 × 10-4. 

 

       Fig. 3: Notation                        Fig. 4: Node 

             Representation.             representation in the mesh. 

 

Figure 5 shows the radial variations of dimensionless 

tangential velocity as a function of the slice index η. Three 

distinct zones are observed over dimensionless time: 

• Near the axis of symmetry (η = 0), the particle 

velocity magnitude decreases rapidly and 

approaches zero, as the temperature is very low in 

this zone (20%); 

• In the central zone (between 20% and 80%), the 

particle velocity magnitude is nearly uniform, 

following the geometric shape of the crescent, as 

there is no temperature variation in this range; 

• Near the crescent tip, the particle velocity 

magnitude increases exponentially because the 

temperature is considerable in this region. 

 

Fig. 5: Radial variations of dimensionless tangential 

velocity as a function of slice index η over 

dimensionless time. 

 

Fig. 6: Radial variations of dimensionless normal 

velocity as a function of slice index θ over 

dimensionless time. 

Figure 6 depicts the radial variations of dimensionless 

normal velocity as a function of the slice index θ. The heat 

flux density through the wall affects the movement of fluid 
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particles, accelerating their velocity, especially when 

substantial. 

The normal velocity curves exhibit alternations: 

• Near the axis of symmetry (between 0–20%), an 

upward movement starting from zero velocity 

characterizes this range, with a predominance of 

normal velocity up to the upper part; 

• Then a descent (between 20–90%) to the lower 

part; 

• Reaching the lower part, fluid particles ascend, 

passing through zero normal velocity, and then 

the cyclic movement of fluid particles 

recommences. 

These phenomena are interpreted by the fact that the 

movement and normal velocity of fluid particles are 

influenced by the variation of the variable heat flux density 

q imposed on the upper wall. 

 

Fig. 7: Variation of real temperature as a function of 

slice index θ over dimensionless time. 

 

Fig. 8: Variation of the average Nusselt number as a 

function of dimensionless time. 

Figure 7 depicts the variations in real temperature as a 

function of the slice index θ. It is observed that the 

temperature decreases slowly and levels off between 30–

50%, indicating the existence of a steady-state regime in 

this zone. Temperatures reach their maximum values at the 

crescent tip, where temperature variations are substantial. 

Figure 8 shows the variations in the average Nusselt 

number as a function of dimensionless time. The average 

Nusselt number decreases as dimensionless time increases, 

indicating a reduction in the temperature gradient, i.e., the 

fluid temperature begins to approach that of the walls. 

IV. CONCLUSION 

We conducted a numerical study on the transition of a 

system between two non-equilibrium stationary states 

through two-dimensional laminar natural convection in a 

cylindrical crescent. The use of the finite difference 

method by S.V. Patankar [5] allows for the approximation 

of complex partial differential transfer equations to linear 

partial differential equations. The choice of the bi-

cylindrical coordinate system is crucial and suitable for the 

crescent, given the geometric properties of the system. 

With the aid of computational tools where the program 

was executed, we obtained reliable and consistent results 

regarding radial and tangential velocities, temperature, and 

the average Nusselt number, in accordance with the 

adopted methods. 

 

NOMENCLATURE 

a: focal distance [m] 

Cp: specific heat capacity of the fluid at constant pressure 

[J.kg.K⁻¹] 

DH: characteristic length scale defined by DH = 2(r2 − r1) 

[m] 

g: acceleration due to gravity [m.s⁻²] 

F, G: functions defined in the momentum equation 

h: metric coefficient of the bi-cylindrical coordinate 

system [m] 

H: dimensionless value of h 

P: pressure within the fluid [Pa] 

q, q2: respective heat flow densities applied to the upper 

and lower walls [W.m⁻²] 

q+: dimensionless heat flux density 

r1, r2: respective radii of cylinders (C1) and (C2) [m] 

T: fluid temperature [K] 

T+: dimensionless fluid temperature 

T1: temperature of the lower cylinder [K] 

T2: temperature of the upper cylinder [K] 

ΔT: temperature difference defined by ΔT = T2 – T1 [K] 

T ′: temperature difference defined by T ′ = T – T1 [K] 

Tr: reference temperature [K] 

t: time [s] 

t+: dimensionless time 

,V V
 

: velocity components in the η and θ directions 

[m.s⁻¹] 
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,V V 

+ + : dimensionless velocity components in the η and θ 

directions 

V⃗: velocity vector with components (U, V, W) [m.s⁻¹] 

X, Y, Z: Cartesian coordinates [m] 

X+: dimensionless coordinate defined by X+ = X/DH 

α: thermal diffusivity of the fluid α = λ/ρCp [m².s⁻¹] 

β: coefficient of thermal expansion of the fluid at constant 

pressure, defined by 

1

P

P

T




 
= −  

 
 [K⁻¹] 

λ: thermal conductivity of the fluid [W.m⁻¹.K⁻¹] 

η: kinematic viscosity of the fluid [m².s⁻¹] 

ρ: density of air [kg.m⁻³] 

ω: vorticity [s⁻¹] 

ω+: dimensionless vorticity 

η, θ, Z: components in bi-cylindrical coordinates 

Ψ: stream function [m².s⁻¹] 

Ψ+: dimensionless stream function 

Indices: 

Upper Wall 

Lower Wall 

E, W: East and West nodes, respectively 

N, S: North and South nodes, respectively 

e, w: East and West faces of the control volume, 

respectively 

n, s: North and South faces of the control volume, 

respectively 
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