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Abstract—This paper presents a more systematic formulation of the
weighted Taylor series, resulting in a more accurate determination of
the weighting coefficient. The weighted Taylor series is derived by
truncating the Taylor series to the first order and assigning weighting
coefficients to the first-order terms, which reflect the contribution of
higher-order terms. The resulting weighted Taylor series is applied to
the analysis of wave constant equations in deep water, including
wavelength and wave period, which are primarily governed by the
Kinematic Free Surface Boundary Condition. The input for these wave
constant equations is the wave amplitude. Using these wave constant
equations, a shoaling-breaking model is developed, accounting for
wave energy loss. The lost wave energy is then utilized to derive the
radiation current equation, which subsequently leads to the formulation
of the littoral current equation.

l. INTRODUCTION

The fundamental equations of hydrodynamics are often
formulated using truncated Taylor series, which retain only
the first-order terms. The justification for truncation lies in
the assumption that, for sufficiently small intervals in both
time and space, the contributions of second-order and
higher-order terms become negligible. However, this
reasoning is not entirely accurate. As the interval size
decreases, the value of the first-order term also diminishes,
rendering the higher-order terms relatively significant.
Consequently, neglecting these terms can lead to a loss of
important characteristics of the underlying function, as
higher-order differentials carry specific physical meanings.
For instance, second-order differentials are associated with
third-order
differentials convey additional information about the
curvature and behavior of the function. Excluding these
terms compromises the accuracy and completeness of the
representation, as the first-order approximation alone is
insufficient to capture the essential properties of the system.

identifying maxima or minima, while
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Despite this limitation, incorporating higher-order terms
into the formulation of the basic equations of
hydrodynamics poses considerable challenges, particularly
in terms of complexity and computational feasibility. To
address this issue, it is necessary to develop a modified
truncated Taylor series that retains the influence of higher-
order terms indirectly. This research introduces such a
formulation, termed the weighted Taylor series, in which
the effects of higher-order terms are embedded into the first-
order term through the use of weighting coefficients.

The accurate determination of these weighting coefficients
requires careful consideration of the interval size at which
the Taylor series can be truncated to a first-order
approximation. Consequently, this research also formulates
an appropriate interval size for numerical modeling,
ensuring that the weighted Taylor series captures the
essential dynamics of the system while remaining
computationally efficient.

Numerical methods, such as the Finite Difference Method
(FDM) and the Finite Element Method (FEM), are
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commonly used to solve the governing equations of
hydrodynamics. These methods rely on small interval sizes,
which must align with the formulation of the basic
equations. By integrating the weighted Taylor series and its
associated interval size, this research aims to enhance the
accuracy and reliability of numerical hydrodynamic
models.

An application of these principles can be seen in the
research of wave energy dissipation in coastal waters, a
phenomenon first described by Longuet-Higgins (1970) as
radiation stress. From the radiation stress equations, the
longshore current equations were subsequently derived.
Understanding longshore currents is crucial, as these
currents play a significant role in coastal erosion and
sedimentation processes.

I THE FORMULATION OF WEIGHTED
TAYLOR SERIES 2-D
The following is Taylor series for a function with two
variables f = f(x, t), (Arden, Bruce W. and Astill Kenneth
N. ,1970)

+ 6x,t+ 6t) = t +6taf+6 df

fx+ 83,6+ 66) = f(,0) + 6t o+ 6x
st2 axf axf  b6x% axf
g O gy T ez T W

x is the horizontal axis and t is time. The simplified formula
is written as follows.
flx+6x,t+68t) = f(x,t) +5; + 5, + 55

...... +s, ..(2)
Where,
§; = 5ti[[—]: + 6x%
5t2 a2 azf  6x*az
52 = Ta_tjzr + otox ata]; * Ta_xé
st3a3f 6t adf sx2 af
=% a2 Paczax %2 seax?
Sx3a3f
6 dx3
Etc.

Odd differential terms of higher order are collected,
flx+6x,t+6t)=f(x,t) +5, +5, +5, + 5S¢ ...

j=2i+1
Where i = 1 to n. For,
2n+1
Z Sj = UpSy e (4)
j=2i+1

The term u,, known as the contribution coefficient, is a
small number. Substituting this into (3) yields:
flx+6x,t+6t) = f(x,t) + (1 + py)s; + 5,

+s, + Sg ... (5
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Expansion to point (x — éx, t — 6t),
flx—=06x,t—=6t)=f(x,t) — (1 + uy)s; + 5, + 5, + 56

Equation (5) subtracted by equation (6),
flx+6x,t+6t) — f(x—6x,t —8t) =2(1 + py)s,
s; is broken down into,

flx+6x,t+6t) — f(x —8x,t —6t) =

2(1 + Staf+21+ 5af
( ) ar ( Uz) xa

This equation represents the total change in the function's
value as it transitions from (x — éx,t — 6t) ke (x +
éx,t + 6t). Subsequently, the equation is normalized by
dividing it by 26x,
flx + 6x,t+ 6t) — f(x — 6x,t — 8t)

26x -

df
dx

At small 8x and &t, this equation represents the total
change per unit length, specifically:

Df staf ar

o= At s+ (Lt ) o (7)

This equation includes higher-order terms, comprising both
even and odd differentials. The Taylor series expansion is
truncated to the first-order terms only.

+ 6x,t + 6t) = +<Saf+6 i
flx+éx,t+68t) = f(x,t) ta_t xa

% in the 3rd term on the right side is substituted with (7)

df
flx + 6x,t+6t) = f(x,t) +5t§

df
a +.U2)a_t+ 1+ )

staf

1
+6x (( + ,le) Sx dt

+ @1+ 3
( H2) dx
Similar terms are grouped,

flx+6x,t+6t)=f(x,t)+ (2 +u2)5t%

+(1 + pu,)é s
Uz)ox dx

And later are defined as,

Yt,z = 2 + Hz ...... (8)

ysz = 1 + ‘UZ ..... (9)

Hence, the final equation is,

d
flx+6x,t+6t)=f(x,t) + yt_26ta—]:

af
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This equation represents a weighted Taylor series expansion
for the function f = f(x,t) and weighting coefficient y, ,
and y, ,.

a. Calculating the contributing coefficient u,.
Equation (4) can be reformulated to express the contribution

coefficient u,, that is
2n+1

_ Lj=2i115)
U = —51
For very small interval between &t and 6x, thus
(ss + s; + s9+..) < s5. Therefore, the final equation can

be approached by,

S3
Ho = —
S1

s3 and s, are broken down into,

Uz =
St3a3f | ot2 . Af 5x? @f | sxPaf
At 7 M mra T O T sraxr T 6 ax®

(s +ox )

(1)
The sinusoidal water wave equation can apply this formula,
f(x,t) = cosat cos kx
Where ¢ = 27" and k = ZT” where T is wave period and L is
wavelength.
The substitution of f(x,t) to (11) within cosot = sin ot
and cos kx = sin kx is as follows.

3 2 2
%03 +%6xk02 +6t%ak2 +

(—6to —6x k)

6x3 | 5
5k

Uy =

The substitution of 5t = ¢,T, 0 = 27" Sx =¢eLandk = ZT”

where &, is the interval coefficient of ¢ axis, while &, is the
interval coefficient of x horizontal axis, thus

& 2 & 2 £z 2 & 2
+2n)? + 5 2n) ey + &5 (2m)* + X (210)

(_gt - Sx)

Uy =

(12
This equation is used to calculate the contribution
coefficient p,. It involves the time interval coefficient &,
and interval coefficient -x, ¢,, explained as follows.

b. Calculation of Interval Coefficients ¢, and &,

In the formulation of the u, contribution equation, it is
essential to assume very small intervals 6t and §x such that
the sum (ss+s;+5s9+ )<« s3. This condition
necessitates that both 6t and 6x be sufficiently small.
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At very small values of 6t and 6x, where s; < s, , the grid

size can be determined using the optimization equation:
S2
S1
€ represents a small positive number known as the
optimization coefficient. The terms s, and s, are further
broken down:
8¢ arf
2! dt?

<eg

af  sx?alf
+ 00X gy + ST Ax2

df df
6tm + (SXﬁ

<e ..(13)

a. Equation for Grid Coefficient ;.
To derive the equation for the grid coefficient &, function
f(¢t) is used
f(t) = cosat
Substituting this function into the equation (13) yields:
st @ f

2! dt?

d

st
Substituting f(t) and applying the condition cosat =
sin at, we remove the absolute value sign and simplify the
expression to:

St
?0' =&
Substituting 8t = &,T and o = 2?” yields the following
equation
&
& = ; P (14—)

This equation is used to calculate the grid coefficient &;.

b. Equation for Grid Coefficient ¢,.
The following equation is used

f(x,t) = cosat cos kx

Substituting  f(x,t) into (13) under the condition
cosat = sinot and cos kx = sinkx is

2 2
~8 52 4 5t sxko - k2

—6to — Ox k

<e¢

Multiplying both the numerator and denominator by —1

2 2
O 52 — st ox ko + 25— k2

oto + 6xk

<¢
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Since the expression within the absolute value sign must be
positive, the absolute value sign can be removed and
multiply the denominator on the right-hand side of the
equation.

2 sz

6t

TJZ — 6t dx ko + Tkz < e(Sto + 6x k)
Substituting 6t = &, T, 6t =&, L, 0 = %ﬂ and k = ZT”,
and assuming equality, we move the right-hand side to the
left-hand side:

2 2
&y £ & E&
5 (et gg) sty =g =0 - (15)

In this equation, &, is already known from equation (14).
There are two possible values for ¢,, and the larger of the
two is selected.

Table (1) Results of ¢, and ¢, calculation

€ & & &y

&t
0.01 0.003183 | 0.009549 | 3.000000
0.02 0.006366 | 0.019099 | 3.000000
0.03 0.009549 | 0.028648 | 3.000000
0.04 0.012732 | 0.038197 | 3.000000
0.05 0.015915 | 0.047746 | 3.000000
0.06 0.019099 | 0.057296 | 3.000000
0.07 0.022282 | 0.066845 | 3.000000
0.08 0.025465 | 0.076394 | 3.000000
0.09 0.028648 | 0.085944 | 3.000000
0.10 0.031831 | 0.095493 | 3.000000

The calculation results for the grid coefficients presented in

Table (1) reveal that as the optimization coefficient ¢

increases, both grid coefficients €, and ¢, also increase,

which is expected. Of particular interest is the ratio Z—" of 3.0.
t

From the definition,

& O6x 1  6xT

& L &/T 6t L

oxT

s >0

ox L

5t = 207

; is wave celerity C, thus
ox

5 =3.0C

This equation is consistent with the Courant (1928)
criterion.
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Table (2): Calculation Results of the Contribution
Coefficients u, weighting coefficients y, , and y,,.

£ Uy Yt2 Vx,2
0.01 -0.001067 1.998933 | 0.998933
0.02 -0.004267 1.995733 | 0.995733
0.03 -0.009600 1.990400 | 0.990400
0.04 -0.017067 1.982933 | 0.982933
0.05 -0.026667 1.973333 | 0.973333
0.06 -0.038400 1.961600 | 0.961600
0.07 -0.052267 1.947733 | 0.947733
0.08 -0.068267 1.931733 | 0.931733
0.09 -0.086400 1.913600 | 0.913600

0.1 -0.106667 1.893333 | 0.893333

Table (2) shows that as the optimization coefficient &
increases, the value of |u,| also increases. This indicates
that the contribution of the third-order odd differential term
becomes more significant.

1. THE FORMULATION OF WEIGHTED
TAYLOR SERIES 3-D
Taylor series for functions with 3 variable f = f(x, z,t) is,
flx+6x,z+6z,t+6t) =f(x,z,t) +5s1 + 55

Where,
=5t ar a
s; =6t T 6xax + 6zaz
St2d*f dzf dzf  6x?dif

=2 1 st 5t el
S2 = Srae T qraxr Y O%% qra, T o axe

dzf +522 d?f
dxdz 2! dz2

+ 6x6z

Etc.

Odd differential terms are grouped
flx+6x,z+8z,t+6t) = f(x,z,t) +s; +5, +

2n+1

Sy + Sg ..t Z S;
j=2i+1
Where i ranges from 1 to n.
For,
2n+1
Z S =M1 e (16)
Jj=2i+1

Taylor series can be reformulated into,
fx+6x,z+62,t+t) =f(x,z,t) + (1 + u3)s; +

Sy + S, +5¢... .(17)
Expansion is then performed to (x — 8x,z — 8z,t — 6t),
yielding
flx—6x,z—6z,t —6t) = f(x,z,t) — (1 + uz)s;
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+s; + 54 +56+ - (18)
Equation (17) is subtracted by equation (18),
flx+6x,z+ 6z,t+6t) — f(x —bx,z— 6z, t — 6t)
=2(1+ ps)sy
s; is broken down,
flx+6x,z+62z,t+6t) — f(x —bx,z— 6z,t — 6t)

=21+ ,113)& y + 2(1 + u3)6x—f

f
+2(1 +u3)é‘z£ (19)

This equation represents the total change in the function
value as it transitions from (t — 6t,x — 8x,z — 6z) ke
(t+6t,x + 6x,z+ 62)
Equation (19) is divided by 2 6x,
ft+8t,x+8x,z+82z) — f(t — 6t,x — 6x,z — 62)

26x

td d
= U)o ) o+ () o

This equation represents the change in the function value in
the -x axis direction per unit length. As &t, 6x and 6z y
approach zero, the total differential in the -x axis is:

Df stdf af
I ¢! +M3)aa—t+ (T +us) 7
+(1+u )— —f ..(20)
¥ 6x dz
Similarly, the total differential in the -z axis is,
Df af dxdf
dz (1+#3)6 @ + (A +u3) — 57 dx
df
+(1+ u3) iz ..(21)
The first-order Taylor series expansion is:
ft+6t,x+d6x,z+ 82)
d
= f(t,x,2) +6t—f+6x—f+6 a—];

— |n the 3rd term is substituted by (20) and the third term
of the right side is substituted by (21),

d
ft+8t,x+8x,z+82z) = f(t,x,z) + (3 + 2u3)dt E[_}:

+(2 + 2u3)é E[f+(2+2 )8 af
Us xE[x Us ZE[Z

Defined as,
Yes =3+ 2u3
Va3 = 2+ 2u3

Yz3 = 2+ 2pu;
Therefore,
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d
ft+8t,x+6x,z+ 6z) = f(t,x,2) +y. 36t ET

t
d d
+Y5,30% f+]/z($z—f ... (22)

This equation represents a weighted Taylor series expansion
for the function f = f(x, z, t), with weighting coefficients

Yt3r V3 andy,.

The calculation of the grid coefficients ¢, and &, follows
the same method as the calculation for the function f =
f(x,t), while the equation for €, d is formulated similarly

to that of ¢,., by using the optimization equation:
S2

<e
S1
Substituting s; and s,,
d d
§; = 6t—f + 6x—f+ 62—f
dz
6t2 2f aZf aZf
= + StdHx otd.
52 = or Az arax T °%qraz
6x2d%f
2! dx?
af sz A
0x0 —_—
toxX0z Az T o A
Substituting

f(x,2,t) = cosatcoskx coshk(h + z)

under cosot = sinot, coskx = sinkx and cosh k(h +
z) =sinhk(h + z). Substituting 6t =¢,T, 6x=
&Land 6z =¢,L serta o= Z?H and k = ZTH yields the

equation:
1 £ g2 g2
ESZZ —(St +€x +£)€Z—7+St€x—7x
& €&y
—+—=0 ..(23
+ 2 + 2m (23)

In this equation, &, and &, are known constants, with &, is
calculated using equation (14) and ¢, is calculated by (15).
The equation has two roots, and the largest root is chosen.

The equation for calculating the contribution coefficient us
is formulated in the same manner as for u,. Yielding,

a
/,43 = E s (24)
(2m)? (2m)? (2m)?
== &+ > ete, — 5 ete, +
2m)3 2m)3
%steﬁ + (2m)3¢8,8, — %stezz
(2m)? (2m)? (2m)?
+— e — 5 ele, — 5 £,&2
@n)® |
6
b = —2me, — 2me, + 2me,
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Table (3) Values of €, and 5

€ &z U3
0.01 | 0.028648 | 0.049333
0.02 | 0.057296 | 0.098667
0.03 | 0.085944 | 0.148000
0.04 | 0.114592 | 0.197333
0.05 | 0.143239 | 0.246667
0.06 | 0.171887 | 0.296000
0.07 | 0.200535 | 0.345333
0.08 | 0.229183 | 0.394667
0.09 | 0.257831 | 0.444000
0.1 | 0.286479 | 0.493333

Table (4) Values of y, 3, v,z and y,3

£ V3 Vx3 Vz3

0.01 | 3.098667 | 2.098667 | 2.098667
0.02 | 3.197333 | 2.197333 | 2.197333
0.03 | 3.296000 | 2.296000 | 2.296000
0.04 | 3.394667 | 2.394667 | 2.394667
0.05 | 3.493333 | 2.493333 | 2.493333
0.06 | 3.592000 | 2.592000 | 2.592000
0.07 | 3.690667 | 2.690667 | 2.690667
0.08 | 3.789333 | 2.789333 | 2.789333
0.09 | 3.888000 | 2.888000 | 2.888000

0.1 | 3.986667 | 2.986667 | 2.986667

V. WAVE CONSTANT EQUATIONS IN DEEP
WATER
The continuity equation, as formulated in Equation (22),
where y,. 3 = y, no longer represents a weighted continuity
equation, nor does it take the form of a weighted Laplace
equation as discussed in Hutahaean (2023a). The velocity
potential derived from solving the Laplace equation via the
method of variable separation (Dean, 1991) is given by:
¢(x,z,t) = G(cos kx + sinkx )
coshk(h + z) sinot .... (25)
Where,
x is the horizontal coordinate, z is the vertical axis and t is
time.
G : is the wave constant

k : is the wave number, k = ZT" L is wavelength

: 21 . .
o : is angular frequency, o = - T is wave period.
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There are three wave constants: G,k and o , equation of
which must be determined.
a.  Wave Amplitude Function
At the characteristic point where coskx = sinkx, the
velocity potential equation becomes:
¢(x,z,t) = 2G cos kx cosh k(h + z) sinat .. (26)
By applying the Kinematic Free Surface Boundary
Condition (Equation 10), the following is obtained

dn dn
Wn =7Yt2 a + Yx,zun a

This equation can be reformulated into,
dn dn

Yoz gy = Wn = Va2ly e (27)
n(x,t) is the water surface elevation relative to the still
water level, w, (x, t) is the vertical velocity of surface water
particles, u,(x,t) is the horizontal velocity of surface
water particles.

d¢

Substituting (26) into (27) where u = — =2 andw = — %

and integrating to t obtaining a wave amplitude function
Hutahaean (2023b),

2Gk
A=

Vt,20

A is wave amplitude, 6 is deep water coefficient, where

tanh 8w = 1. In this research, 8 = 3 is used to keep the

deep water sea bed horizontal particle velocity very small
and to avoid large wave amplitude in the coastline.

]/x,Z kA
2

cosh Or <tar1h or — ) ... (28)

A new wave constant amplitude A is obtained. In this
research, wave amplitude A is the input, therefore wave
amplitude A is an identified variable.

The next step involves formulating the wave constant
equations for o, k and G as the function of wave amplitude
A.

b. Formulation of equation for G.

In this section, the complete velocity potential equation is
applied to the Kinematic Free Surface Boundary Condition
to derive wave constant equations consistent with the
complete velocity potential. The formulation re-employs
the Kinematic Free Surface Boundary Condition to ensure
that the derived wave constant equations are rigorously
aligned with this boundary condition. Through the
utilization of the complete velocity potential, the
corresponding water surface elevation equation is
formulated as follows:

Gk
Yt,20

n(x,t) = sinh k(h + 1) (cos kx + sin kx) cos at

VG k
Vt20

+

d
cosh k(h +1n) % (—sinkx + cos kx) cos at
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. d
n maximum when ﬁ: 0 and cosat =1, where for

sinusoidal wave 1,,.. = A4, the following relation is
obtained

Gk
A= sinh k(h + 1) (cos kx + sin kx)
Vt20
At cos kx = sin kx and k(h + n) = 0m, therefore
V2 Gk
A= sinh 6n ....(29)
Vt20

This equation can be reformulated into equation for G as
follows.
V204

= ..(30
V2 k sinh 61 (30)

c. Formulation of the Deep Water Wave Number k
equation

By equating Equation (28) with Equation (29), the equation

for the wave number k is

tanh 6
k= 2-+2 ...(31
Vx,ZA ( ) ( )
d. Formulation of the Equation for Wave Period T.

The Euler momentum conservation equation is employed,
with the assumption that convective acceleration is
negligible,

du, dn

—_—=—g— ....(32
Vi3 at gE[x (32)

u is horizontal particle velocity where u = — %, is potential

velocity ¢ using (26).

For water surface elevation equation, the following is used:
n(x,t) = Acoskx cosat

Obtaining an equation,

Ye32Go cosh O = gA
Substituting A to (29) yielding:

gk tanh On
ol="— ...(33)
\/El’t,zl’t,s
Substituting k and (31),
, _gtanh® 6m 72
gt =——(V2-1 ...(34
Yt,2Ve3Vx24 ( ) (34

e. Results of Deep Water Wave Constants Equations.

In this section, the calculation results of deep water wave
constants, including the wave period T and wavelength L,
using input wave amplitude A, where H, = 24,. Table (5)
presents the result.
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The weighting coefficients used in these calculations are
obtained through the optimization process, with an
optimization ~ coefficient &= 0.005, where y,, =
1.999773, Ye3 = 3.049333, y, = 0.999733. These
coefficients will be applied in subsequent equations in this
research.

Table (5) Deep water wave constants

H, T Lo H,
(m) (sec) (m) Lo
0.4 3442 | 2145 | 0.187
08 4867 | 4289 | 0.187
1.2 5961 | 6.434 | 0.187
16 6.883 | 8579 | 0.187
2 7696 | 10.723 | 0.187
2.4 8.431 | 12.868 | 0.187
2.8 9.106 | 15.012 | 0.187
3.2 9.735 | 17.157 | 0.187
36 10.325 | 19.302 | 0.187
4 10.884 | 21.446 | 0.187

The wave steepness, ? where %=0.187. When
0

0
compared with the critical wave steepness criterion from

Toffoli et al. (2010), where % = 0.170 itis evident that the
0
calculated wave steepness is slightly larger. This indicates

that the wavelength equation (31) produces a critical wave
steepness for a given input wave amplitude.

To further assess the condition of the resulting wave period,
a comparison is made with the wave period equation from
Wiegel (1949, 1964), given by:

Hy
Tyieg = 15.6 "

The comparison is presented in Table(6) and Fig (1)

... (35)

Table (6) The Comparison to Wiegel’s Wave Period.

H, T Twieg 5
(m) (sec) (sec) (%)
0.4 3442 | 315 | 9.259
08 4867 | 4.455 | 9.259

1.2 5.961 5.456 9.259
1.6 6.883 6.3 9.259
2 7.696 7.044 9.259

24 8.431 7.716 9.259
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2.8 9.106 8.334 9.259
3.2 9.735 8.91 9.259
3.6 10.325 9.45 9.259
4 10.884 9.961 9.259

0=To-wieg

Note : § = x100%

0-Wieg
T from equation (34) differs by 9.259% from the wave
period in Wiegel’s formulation, a difference considered
reasonable, indicating that the result from equation (34) is
still reliable. If the right side of equation (34) is multiplied
by 1.2116, the wave period would match that of equation
(35). However, the goal of this research is not to match the
wave period in equation (35), but to explore the potential
within the existing conservation equations. Equation (35)
does not guarantee exact correct wave period.

15
< 10
Q
2
— 5
0
0 1 2 3 4
H (m)
——T0-eq(36) TO-Wieg

Fig (1) Comparison of wave period eq (34) with Wiegel's
wave period.

Equation (34) shows that all the weighting coefficients are
included, making the equation sensitive to their values. As
the optimization coefficient € decreases, the difference from
the Wiegel equation also decreases, but it remains around
8.xxx%. For example, € = 0.001 results in a difference of
6 = 8.571 %, with a wave steepness of 0.187. Therefore,
this research uses the weighting coefficients obtained with
€ = 0.005, ensuring that the influence of higher-order
differentials on the coefficients is not entirely lost.

V. SHOALING-BREAKING MODEL

The shoaling-breaking model is formulated using the wave
amplitude function (eq. (28)) as follows.

2Gk

kA
A= cosh Or (tanh om — Yx2 ) ..(28)
Yt 20
To make formulation easier, it is defined
1 kA
A= cosh Om (tanh om — £ ) ..(36)
Yt20 2
Thereby,
A =2GkA ...(37)
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Differentiation of the Wave Amplitude with respect to the
Horizontal -x,

dA 2<Gdk kdk>/1 38
Ix 7 Ix . (38)
Where — = 0 with respect to wave number conservation
equatlon (Hutahaean (2023h)), % =0.
Equation of energy conservation (Hutahaean (2023b)),
G dk + 2k a6 0 39
T ...(39)
Or
dG _ G dk
dx  2kdx

Substituting the last equation to (38),
dA G dk 40
dx  dx - (40)

The equation of wave number conservation (Hutahaean,
2023b) is expressed as

dk (h+ %)
dx
This equation can be reformulated into,
dA dk dh
ka =-2 <h+5>a— ZkE
Substituting the left-hand side with Equation (40), this
leads to the following equation for %,

=0

dk k dh "
dx ., A GkAdx e (41)

h+5 +T

a.  Summary of Shoaling-Breaking Equations.
For waves moving from a point x and water depth h, to x +
éx and water depth h,. s,, therefore

a. Change in Wave Number:
dk k dh

Friae md" e (41)

dk
kyvsx = ky + 6xa
b. Change in wave amplitude
d—A = iﬁ ..(40)
dx 2kdx
A= - cosh 6m (tanh om — %) ..(36)

dA
Ayisx = Ax + 636%
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c. Chance in wave constant G
Integration of energy conservation equation (39),

1
Grrsy = eln Gx—i(ln Kxtsx—Inky)
xX+6x

d. Change in wave energy
The wave energy equation at one wavelength is given by

E—1 H2L
=gPy

Or,
2
E = —
npg X

The wave energy change is,
dE _ 2AdA  A%dk 42
dx P9I\ ax k2 dx - (42)

dE
Exyox = Ex + SXE

Where £ from (40) and 2 dari (41).
dx dx

b. Shoaling-Breaking Model Results.

The results of the shoaling-breaking model for a wave with
a deep water amplitude A, = 1.20 m are shown in the
following section. The deep water coefficient is set at 6 =
3, and the optimization coefficient used for calculating the
weighting coefficients is e = 0.005.

In Fig (2), the wave height H and 0.1 H2L, are plotted
against water depth. The factor of 0.1 H2L is used to prevent
the H from having smaller value.

8
-
T 6
=
s 4
025 \
2

0

0 5 10 15 20
h (m)
—H 0.1HHL

Fig (2) Changes in wave energy during shoaling and
breaking

Fig (2) illustrates that the value of HZ?L decreases
continuously as the wave enters shallow water, which
corresponds to the shoaling process. At a water depth of h =
6.669 m wave breaking occurs. Notably, the H2L graph
remains continuous at the breaking point, and no sudden
spike in energy loss is observed. The remaining wave
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energy at this point is calculated to be 0.675 E, as shown in
Table (7).

Table (7) Wave Energy at the Breaking Point

T H, H, hy, E,

(sec) | (m) (m) (m) Eq
04| 3467 | 0.528 1.111 | 0.675
08| 4904 | 1.057 2223 | 0.675
12| 6.006 | 1.585 3.334 | 0.675
16| 6935| 2113 4.446 | 0.675
2| 7.753 | 2.642 5,557 | 0.675
24| 8.493 3.17 6.669 | 0.675
28| 9.174| 3.698 7.78 | 0.675
32| 9807 | 4.227 8.892 | 0.675
3.6 | 10402 | 4.755| 10.003 | 0.675
4] 10965 | 5.283 | 11.115| 0.675

c.  Shoaling-Breaking Model Evaluation

To assess the reliability of the shoaling-breaking model
developed in this research, a comparison was made between
the breaking wave height calculated using the model and the
breaking wave height obtained from the Komar and
Gaughan (1972) equation. The equation used for
comparison is:

Hy_xe = 0.39 g /s(TyH?) s e (43)

Table (8): Evaluation of the Shoaling-Breaking Model
Breaker Height Against the Komar-Gaughan Breaker
Height

H, T H, Hp—xe 5
(m) (sec) (m) (m) (%)
0.4 3467 | 0528 | 0486 | 8.606
08 4904 | 1.057 | 0973 | 8.606
1.2 6.006 | 1585 | 1459 | 8.606
16 6.935 | 2113 | 1.946 | 8.606
2 7.753 | 2642 | 2432 | 8.606
2.4 8493 | 317 | 2919 | 8606
28 9.174 | 3.698 | 3.405 | 8.606
3.2 9.807 | 4227 | 3.892 | 8.606
36 10402 | 4.755 | 4.378 | 8.606
4 10.965 | 5283 | 4.865 | 8.606

Note : 6 = |W| x100%
b—-KG
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= Hb Hb-KG

Fig (3) The comparison of the breaker heights predicted
by the shoaling-breaking model and the Komar-Gaughan
method.

The observed difference is 8.608 (moderate).

d. Energy Loss Evaluation.

In the context of energy loss during shoaling and breaking,
the remaining wave energy at the breaking point is found to
be 0.675E,, where E, represents the initial wave energy
in deep water. To further evaluate the accuracy of energy
loss, the breaking wave height equation is formulated using
the energy loss equation:

HZL, = 0.675 HZL, .. (44)

From equation (31), breaking occurs when

kA
tanh O — )/sz =

This equation yields,
L, = Ty x,2Hp
2 tanh 67
Substituting (45) to (44),
2x0.675 tanh Om

0

... (45)

H=————H?L ... (46
; — 8Lo (46)
From (31),

TYx,2Ho
Ly, = - . (47
0 (2 —+2)tanh 6n 7
Substituting (47) to (46) obtains,

1/3
0.675
.. (48)

Hy=——<| H
“\6-3

Table (9) The Comparison between H,_,g, €q(48), and
Hjp-Komar-Gaughan

HO T Hb—4-8 Hb—KG 6
(m) (sec) (m) (m) (%)
04| 3467 | 0528| 0486 | 8612
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0.8 4.904 1.057 0.973 8.612

1.2 6.006 1.585 1.459 8.612

1.6 6.935 2.113 1.946 8.612

2 7.753 2.642 2432 8.612

24 8.493 3.17 2.919 8.612

2.8 9.174 3.698 3.405 8.612

3.2 9.807 4.227 3.892 8.612

3.6 | 10.402 4.755 4.378 8.612

4| 10.965 5.284 4.865 8.612

Note : § = |W| x100%
b—-KG

Upon comparing the breaking wave heights calculated from
the energy loss equation Hj,_,g that is H,-eq(48) and H,-
Komar-Gaughan (Table (9)), it is observed that both
produce breaker heights that are close. This indicates that
the shoaling-breaking model, which uses wave energy loss
as part of its formulation, yields accurate results for the
breaking wave height. Since H,_,g is derived using the
energy loss during shoaling and breaking, the close
agreement between the two sets of results suggests that the
model effectively accounts for wave energy loss.

The loss of energy during shoaling and breaking processes
is converted into kinetic energy for non-orbital currents,
known as stress radiation (Longuet-Higgin, 1970), with
some of this energy transforming into longshore currents.
The shoaling-breaking model accurately estimates the
kinetic energy of these longshore currents, and its ability to
predict their velocity is crucial for understanding coastal
dynamics, such as sediment transport and shoreline
changes.

VI. LONGSHORE CURRENT ANALYSIS

Wave energy lost during shoaling and breaking is converted
into the kinetic energy of non-orbital currents that move in
the same direction as the wave. This release of wave energy
is known as stress radiation.

The loss of wave energy at one wavelength is expressed by
(42), then the water particle energy losses is

dE

dx

OE, = —-

w pL

The energy kinetic particle due to radiation current,

V2
Ek = _R
29

Then this equation applies,
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. |dE
Vi _|dx
2g pL

Substituting (42)

2AdA  A*dk

, _2mg*|24dA A*dk
k dx k?dx

R L

.. (49)

Vg is the total velocity of the radiation current. For waves
that form an angle « t to the normal of the coast, the
longshore current velocity is:,

.. (50)

An example of the radiation current velocity analysis V is
shown in Figure (4), where the waves used have a deep-
water wave height H, = 2.4 m , with breaking occurring at
a breaker depth of h;, = 6.669 m.

Vg =Vgsina

H (m) & VR (m/sec)
o = N w N

15 20
h (m)

—H (m) VR (m/sec)

Fig (4) Stress radiation current velocity V.

Similar to the wave energy graph, this radiation current
graph is continuous, with no spike at the breaking point. The
highest velocity is 1.13 m/sec, occurring at a water depth of
h = 2.65 m, while at the breaker depth of h, = 6.669 m,
velocity V; = 0.57 m/sec. Notably, the maximum velocity
does not occur at the breaking point. As shown in Figure
(4), the maximum velocity occurs at a depth where the wave
height has decreased significantly.

Table (10) presents the radiation current velocities at
different wave periods. It shows that the maximum current
velocity does not occur at the breaking point, but rather at a
shallower water depth than the breaker depth. For example,
with a deep-water wave height H, = 2.0 m, V the radiation
current velocity at the breaking point Vz_, = 0.52 m/sec
at a breaker depth of h, = 5.56 m, while the maximum
velocity V.., = 1.03 m/sec, occurs at a shallower water
depth of hy, ;g = 2.21 m.
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Table (10): Velocity V at breaking point V;_, and
maximum speed V4,

Ho | T | Vep | ho Vnax | Pumx
(m) | (sec) | (m) | (mfs) | (mfs) | (m)
04 | 347 | 023 | 111 | 046 | 044
08 | 49 [033| 222 | 065 | 0.88
12 | 601 | 04 | 333 | 08 | 133
16 | 693 | 046 | 445 | 092 | 177

2 | 775 | 052 | 556 | 1.03 | 221
24 | 849 | 057 | 667 | 113 | 2.65
28 | 917 | 061 | 7.78 | 122 | 3.09
32| 981 [ 066 | 889 13 | 353
36 | 104 | 07 10 138 | 3.98

4 1096 | 073 | 1111 | 145 | 4.42

a. Results of Prior Research

The theory of stress radiation was first proposed by
Longuet-Higgin (1970), which describes how wave energy,
transferred through the orbital motion of water particles, is
converted into non-orbital currents moving in the same
direction as the wave. Based on this theory, the longshore
current equation was formulated. Several researchers have
developed longshore current equations based on Longuet-
Higgins' theory, which are widely used in the field:

1. Komar (1976), modified Longuet Higgins
Viom = 2.7 (yz—b,/gHb) sinay cos ay,
Where y,, = 0.78

2.Galvin, C. (1987)

Ve = g mT sin2aq,,

T: wave period

m: bottom slope

Table (11) presents a comparison of the longshore current
velocity model results at the breaking point V;_,, as derived
from the model and the equations from Komar and Galvin,
using an angle a, = 15°, resulting in model V,_, as the
smallest among the three methods..
Table (11) Comparison longshore current velocity at
breaking point.

T Hb VKom VGal VL—b
(sec) (m) (m/sec) | (m/sec) | (m/sec)
3.47 | 053 0.6 0.17 0.06

4.9 1.06 0.85 0.24 0.09
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6.01 1.58 1.04 0.29 0.1
6.93 2.11 1.2 0.34 0.12

7.75 2.64 1.34 0.38 0.13
8.49 3.17 1.47 0.42 0.15
9.17 3.7 1.59 0.45 0.16

981 | 4.23 1.7 0.48 0.17
104 | 4.75 1.8 0.51 0.18
10.96 | 5.28 1.9 0.54 0.19

Table (12) compares the longshore current velocities from
Komar and Galvin with the maximum velocity from the
model. As seen in the table, the model results are still the
smallest, but they are quite close to the longshore current
velocity from Galvin.

Table (12) Comparison with the maximum velocity.

T Hb VKom VGal VL—max
(sec) (m) | (m/sec) | (m/sec) | (m/sec)
3.47 0.53 0.6 0.17 0.12

4.9 1.06 0.85 0.24 0.17
6.01 1.58 1.04 0.29 0.21
6.93 2.11 1.2 0.34 0.24
7.75 2.64 1.34 0.38 0.27
8.49 3.17 1.47 0.42 0.29
9.17 3.7 1.59 0.45 0.31

9.81 4.23 1.7 0.48 0.34
104 | 4.75 1.8 0.51 0.36
10.96 | 5.28 1.9 0.54 0.38

However, velocities from the model and Galvin's equation
occur at different water depths.

There is a significant difference between the model results
and those from previous equations. The previous equations
are applied to the breaker depth, whereas the maximum
velocity in the model occurs at a shallower depth, not at the
breaker depth.

Nevertheless, the analysis of breaker height and the
remaining wave energy at the breaking point validates the
accuracy of the wave energy release in the shoaling and
breaking model, which in turn confirms the accuracy of the
resulting longshore current.

The calculations in Table (12) are performed using a deep-
water coefficient of 6 =3.0. In Table (13), with a

coefficient 8 = 1.95, where :—: ~ 0.78, V,_max 1S found
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close to V;,;, however these velocities occur at different

water depths. V;;,; occurs at the breaker depth, while V, _,, .

occurs at a shallower water depth (see Table (10)).

Table (13) Comparison longshore current velocity at 8 =
1.95.

T | Hy | Vkom | Vea | Vi-mar
(sec) (m) | (m/sec)
347 | 053 0.6 0.17 0.16
4.9 1.06 0.85 0.24 0.22
6.01 1.58 1.04 0.29 0.27
6.93 211 1.2 0.34 0.31
7.75 2.64 1.34 0.38 0.35
8.49 3.17 1.47 0.42 0.39
9.17 3.7 1.59 0.45 0.42

(m/sec) | (m/sec)

9.81 4.23 1.7 0.48 0.44
10.4 4.75 1.8 0.51 0.47
10.96 | 5.28 1.9 0.54 0.5

VII.  CONCLUSION

This research shows that the method used to formulate the
weighting coefficient in the weighted Taylor series is more
systematic and accurate compared to the previous approach
by the same researcher. By applying the correct weighting
coefficient, the resulting weighted Taylor series effectively
represents the complete Taylor series.

The development of the shoaling-breaking model through
the application of the weighted Taylor series yields accurate
predictions for both the breaker height and the remaining
energy at the breaking point. Therefore, it can be concluded
that the shoaling-breaking model in this research
successfully simulates the release of wave energy, or stress
radiation, with high fidelity. Moreover, given the
appropriate kinetic energy supply from the shoaling-
breaking model, it can be concluded that the longshore
current produced by the model is accurate.

The maximum longshore current velocity does not occur at
the breaking point. Instead, it is observed at a shallower
depth than the breaker depth, specifically at a depth where
a significant reduction in wave energy occurs.
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