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Abstract— Aiming at the shortcomings of the DreamTalk 2D digital human 

synthesis model in computational efficiency and expression generation 

fineness, this paper proposes an optimization method combining adaptive 

sparsity and cross-modal feature enhancement. By introducing a dynamic 

threshold sparsity mechanism into the diffusion model, the sparsity ratio was 

dynamically adjusted based on the learnable threshold and Exponential 

Moving Average (EMA), and the Mutual information Constraint (MI 

Constraint) was combined to minimize the information loss, which reduced 

the calculation amount of the model while retaining key features. The model 

architecture is improved, and the decoupled decoder is designed to 

decompose the facial expression into the upper and lower regions for 

independent processing. The dynamic linear layer is combined to realize 

parameter adaptation under the style condition, and the detail expression of 

expression generation is improved. In addition, Tacotron speech features 

and Wav2Vec acoustic features are fused to enhance the synchronization of 

speech and expression, and skip connections are used to optimize the 

information transmission efficiency. 

 

I. INTRODUCTION 

From the perspective of technology evolution, digital 

human synthesis technology has experienced a significant 

transformation from traditional methods based on physical 

models to data-driven deep learning methods. Initially, 

DaViT regress 3DMM parameters from the input image to 

roughly scout the shape and texture of the face. Although 

3DMM provides valuable information, its linear nature 

limits its realism.[1] Subsequently, an innovative approach 

developed by Buhari et al.[2] combined graph theory and 

FACS to extract useful features (68 landmark points) that 

can distinguish between various microexpressions.[3] The 

development of deep learning technology, methods based 

on Generative Adversarial networks (GAN) have made 

breakthroughs in the field of image generation, such as the 

StarGAN-VC model, which has attracted people's attention 

because it can solve this problem using only a single 

generator. However, there is still a gap between real and 

converted speech.[4] Diffusion Model has aroused a new 

upsurge of research in the field of digital human synthesis 

due to its theoretical completeness and generation quality 

advantages. Among them, DreamTalk model, as the 

landmark achievement in the field of speech-driven 

expression synthesis, is an audio-driven framework based 

on two-stage diffusion, which uses emotional conditional 

diffusion model and lip refinement network[5] to improve 

facial emotional expression while maintaining high video 

quality. DREAM-Talk represents a major leap forward in 

the field of emotional conversational face generation, 

enabling the creation of realistic and emotionally engaged 
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digital human representations in a wide range of 

applications.[5] 

  Many scientific research institutions and enterprises 

continue to make efforts in digital generation technology 

and other related fields. In the direction of expression 

generation, VASA-1, a diffusion-based global facial 

dynamics and head motion generation model proposed by 

Microsoft Research Asia, can not only generate lip 

movements perfectly synchronized with audio, but also 

generate a large number of facial nuances and natural head 

movements, providing high video quality through realistic 

facial and head dynamics IC. Online generation of 

512×512 videos at up to 40 FPS with negligible startup 

latency is also supported.[6]; OTAvatar[7] proposed by 

Ma et al., OTAvatar invert the portrait image into a 

motion-free identity code, and then use the identity code 

and motion code to modulate an efficient CNN to generate 

a three-plane formula volume. Finally, the image is 

generated by volume rendering, and the identity and 

motion in the latent code are decoupled by a novel anti-

phase decoupling strategy. The face image is constructed 

based on generalized controllable three-plane rendering. In 

addition, the Make-A-Video model[8] launched by Meta 

AI tries to model the multi-modal generation of text-

speech-image in a unified way. Although it shows strong 

potential in creative content generation, there are still 

technical bottlenecks in the accurate synchronization of 

voice and expression. 

At present, in the aspect of film and television special 

effects, the application of digital human is more and more 

widely, and the fidelity of image and motion has been 

improved. The continuous expansion of digital human 

application scenarios to strong interaction fields such as 

real-time broadcast, virtual idol interaction, and intelligent 

education, the limitations of existing technologies have 

become increasingly prominent. Aided by the diffusion 

model mechanism, the DreamTalk model represents a 

major leap forward in the field of emotional talk face 

generation, enabling the creation of realistic and 

emotionally engaging digital human representations in a 

wide range of applications[9]. However, with the 

expansion of application scenarios and the improvement of 

requirements, its defects gradually appear. In terms of 

computational efficiency, the model parameters are dense, 

and in real-time interaction scenarios, the memory 

footprint is high and the reasoning time is long, which 

seriously affects the interaction fluency. For expression 

generation, it is difficult for a single decoder to accurately 

simulate the differentiated motion of the eyebrow, mouth 

and other regions, and synthesize expression detail 

distortion. In cross-modal fusion, the simple feature 

concatenation method cannot deeply explore the complex 

relationship between speech prosody and expression 

dynamics, and the matching degree of expression and 

speech emotion is not good. 

To address the above technical challenges, this study 

proposes a dynamic threshold sparsification and 

decoupling generation framework based on information 

theory and dynamic system theory. By introducing the 

learnable sparse threshold and Exponential Moving 

Average (EMA) mechanism[10], combined with the 

mutual information loss function[11], the framework 

reduced the floating-point operation efficiency while 

ensuring that the key information was not lost. The 

decoupled decoder was designed, the facial expression 

space was divided into the upper and lower halves, and the 

dynamic linear layer was used to realize the adaptive 

adjustment of parameters to improve the naturalness of 

expression. The gated fusion module of Tacotron acoustic 

features and Wav2Vec speech representation is 

constructed, and the gradient transfer path is optimized by 

combining jump connection, which greatly improves the 

accuracy of speech-expression synchronization, and 

provides an innovative solution for the practical 

development of digital human technology. 

 

II. DREAMTALK 

In the field of speech-driven expression synthesis of 

digital human, DreamTalk model uses the diffusion 

mechanism[5], uses the Transformer-based EmoDiff 

network, and performs temporal denoising learning of 3D 

expression under the conditions of audio, portrait and 

emotional style, and realizes the end-to-end generation of 

speech to expression. Excellent results are achieved on the 

VoxCeleb dataset, which alleviates the mode collapse 

problem of traditional GAN. The diffusion mechanism 

adopted by the method is derived from the denoising 

Diffusion Probability Model (DDPM)[12], which is based 

on the Markov chain[13]. The data generation is realized 

through the process of adding Gaussian noise forward and 

reverse iterative denoising. Compared with traditional 

generative models, diffusion models have more solid 

theoretical foundation and stronger conditional generation 

ability, and have shown significant advantages in the field 

of multimodal generation, which provides important 

technical support for models such as DreamTalk. 

denoising diffusion probabilistic model (DDPM) is a class 

of generative models based on probabilistic diffusion 

process. In recent years, remarkable progress has been 

made in the field of deep learning and generative models. 

The core idea of diffusion model is to treat the process of 

data generation as a random process that gradually changes 

from simple distribution (e.g., Gaussian distribution) to 
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complex data distribution. Diffusion models usually 

include two processes: the Forward Diffusion Process and 

the Reverse Process. However, both of them are a 

parameterized Markov chain in nature, which has 

stationary property. That is, if a probability changes with 

time, it will tend to a stationary distribution under the 

action of the Markov chain, and the longer the time, the 

more stable the distribution will be. It was this stationarity 

that allowed him to gradually restore the image, given a 

neural network that predicted the noise. 

 

Fig.1 Diffusion Model generation process 

 

The Forward Diffusion Process is a process that 

continuously adds noise to the data to be trained. The 

process usually starts from a simple distribution (e.g., 

Gaussian distribution, etc.), and through multiple rounds of 

small cardinality noise, the image data to be trained is 

closer to a complex data distribution. Meanwhile, at each 

step, the model predicts the noise at the next step based on 

the current data state and noise level, thus gradually 

pushing the data into a high-dimensional and complex 

distribution space. 

In the forward process, given the initial data 

distribution x0~q(x), the noise with standard deviation βt is 

gradually added to the initial data according to the 

schedule to obtain the noise data. 

     (1) 

Where t represents the final time, as t continues to 

increase, the noise data gradually approaches the Gaussian 

distribution. 

However, the efficiency of stepwise iteration based on 

Equation (1) is very low, and the training process 

consumes a lot of time. To improve the efficiency of 

computing, introducing the =1- , , type (1) 

can be converted to: 

     (2) 

The noisy data   at any time t can be obtained。 

Reverse Diffusion Process is a process that gradually 

recovers useful information from noisy data. 

The goal is to gradually recover the distribution of the 

original data from the pure noise state (the final result of 

the forward diffusion process). It is the opposite of the 

forward diffusion process and tries to learn how to remove 

the noise added at each time step so as to recover the 

original data. 

The backward diffusion process takes advantage of the 

fact that the way noise is added in the forward diffusion 

process is known, and gradually restores the noisy data to 

the original data by training a neural network to predict 

how much noise should be subtracted at each step.In the 

backward diffusion process, the neural network is 

constructed to fit , and the original data is 

gradually recovered from the noise, which can be 

expressed as follows. 

     (3) 

Where θ is the neural network parameter, and 

 are the mean and variance, respectively. 

The training process in the diffusion model is achieved 

by optimizing the variational lower bound of the negative 

log-likelihood with . To simplify the training process, 

the variance of the model is set to a constant and the 

coefficients of the loss function are removed, so the loss 

function is: 

     (4) 

 

Fig.2 Diffusion Process 

 

III. IMPROVED MODEL ARCHITECTURE AND 

KEY TECHNOLOGIES 

Aiming at the technical bottlenecks of DreamTalk 

model in terms of computational efficiency, expression 

generation accuracy and cross-modal fusion, this study 

proposes a dynamic threshold sparsifation-decoupling 
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generation framework (DTS-DG). The framework realized 

systematic optimization through four core modules. At the 

level of efficiency optimization, the dynamic sparse 

threshold and EMA dynamic adjustment mechanism were 

used, and the mutual information loss function was 

combined to reduce the amount of calculation while 

ensuring the loss of information. In the cross-modal fusion 

dimension, the gated fusion module of Tacotron[14] and 

Wav2Vec features[15] is constructed, supplemented by 

skip connection to optimize the gradient transfer path and 

enhance the depth correlation between speech and 

expression. In the aspect of expression generation, the 

upper and lower half decoupling decoder is designed, and 

the parameters are adaptively adjusted by the dynamic 

linear layer, which significantly improves the accuracy of 

expression detail description and emotion synchronization, 

and provides a new solution for speech-driven digital 

human synthesis technology. 

Through the four-layer optimization system, the 

improved model achieves a significant improvement in 

computational efficiency and generalization ability while 

maintaining the naturalness of speech synthesis, which 

provides a new technical path for the lightweight of end-

to-end speech synthesis models. 

3.1 ynamic threshold sparsification mechanism 

When the original dreamtalk model deals with high-

dimensional features, there are problems such as large 

consumption of computing resources and slow inference 

speed. A large number of redundant parameters not only 

increase the computational burden, but also may lead to 

overfitting. In view of this, this study introduces a dynamic 

threshold sparsification mechanism, which dynamically 

screens features based on a dynamic sparse mask. By 

setting a learnable threshold, the feature dimensions that 

contribute less to the model are automatically identified 

and eliminated.  

The computational efficiency of the improved model is 

significantly improved, and the number of parameters and 

reasoning time are reduced compared with the original 

model, which effectively alleviates the bottleneck of 

computing resources. At the same time, the generalization 

ability of the model is enhanced because the redundant 

information interference is reduced. In addition, the 

dynamic threshold sparsification mechanism ensures that 

the model can still maintain a high level of performance 

while being lightweight by retaining key features, which 

facilitates the deployment in practical applications. 

 

Fig.3 Model framework 

 

Under the key requirements of model computational 

efficiency optimization, the dynamic threshold 

sparsification mechanism becomes one of the core 

innovations of this research. The mechanism aims to solve 

the problem that the traditional fixed sparsity method 

cannot adapt to the dynamic changes of features in the 

process of model training. By introducing a learnable 

threshold and combining with the Exponential Moving 

Average (EMA) technology, the dynamic adjustment of 

the sparsity ratio of model parameters is realized, and the 

calculation amount is reduced while the key information is 

retained to the maximum extent, ensuring that the model 

performance is not significantly affected. 

In the training process of the diffusion model, the data 

characteristics show a complex change trend with the 

advancement of time steps. To effectively capture these 

changes and adjust the sparsification strategy accordingly, 

we design a dynamic threshold calculation method based 

on learnable threshold and EMA. First, we define a 

learnable threshold parameter θ, which is optimized 

through backpropagation during model training. To map 
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the values of θ to a reasonable range, we use the sigmoid 

function [16] to convert it to θ', i.e. 

     (5) 

The value range of θ' is limited to the interval of (0,1), 

which enables the threshold to be adjusted in a reasonable 

dynamic range. 

At the same time, in order to track the dynamic 

changes of features, we introduce EMA[10] to calculate 

the mean value μt of the absolute values of features. EMA 

is a commonly used time series smoothing technique, 

which is able to dynamically update statistics based on 

historical information and current data. In this study, μt is 

calculated as follows. 

     (6) 

α is the smoothing coefficient of EMA, which is 

usually set to a value close to 1, and α=0.9 was taken in 

this study. This means that the calculation of μt is more 

dependent on the historical mean μt-1, but at the same time, 

it is also adjusted according to the expectation  of 

the absolute value of the feature at the current time. In this 

way, μt can better reflect the overall trend of the absolute 

value of the feature, and it is somewhat robust to sudden 

outliers. 

Based on the computed θ' and μt, we generate the 

dynamic threshold θ'·μt and construct the sparse mask Mt 

accordingly. For each element xt[i] in the feature vector xt, 

the element Mt[i] of the sparse mask Mt is generated 

according to the following rules: 

     (7) 

When |xt[i]| is greater than the dynamic threshold, the 

value of Mt[i] is 1, and the corresponding element is 

retained in the sparsification process. Otherwise, Mt[i] is 0, 

and the corresponding element is set to zero, thus 

sparsifying the feature vector xt. This dynamic threshold 

setting allows the sparsification process to be dynamically 

adjusted according to the importance and distribution of 

features. The key features that have larger absolute values 

and contribute more to the model output are more likely to 

be retained; However, the relatively unimportant features 

are sparsified to reduce the amount of calculation. 

During backpropagation, to ensure that the sparsified 

model can still learn effectively, we only perform gradient 

updates on the corresponding parameters with a value of 1 

in the sparse mask Mt. This not only ensures that the model 

can continue to be optimized in the case of parameter 

compression, but also avoids the invalid calculation of the 

sparsified (zeroed) parameters, which further improves the 

computational efficiency. 

Through the above dynamic threshold sparsifying 

mechanism, the model can dynamically adjust the sparsity 

ratio of the parameters during the training process, and 

flexibly balance the computational efficiency and model 

performance under different training stages and data 

feature distributions. This mechanism not only effectively 

reduces the computational burden of the model and 

improves the inference speed, but also ensures the 

accuracy and stability of the model in tasks such as 

expression generation by retaining key information. In 

practical applications, this mechanism enables the model 

to maintain good performance under limited computing 

resources when dealing with large-scale data and complex 

tasks. 

3.2 Mutual information constrained optimization 

mechanism 

In the process of dynamic threshold sparsification, the 

original dreamtalk model is easy to cause the loss of 

feature information, which affects the model's ability to 

capture key semantic and emotional information, and leads 

to the decline of the accuracy and integrity of the 

generated results. 

In order to solve this problem, based on Mutual 

Information[17] and Kullback-Leibler Divergence 

theory[18] in information theory, this study constructs a 

mutual information constrained optimization mechanism. 

Mutual information was proposed by Shannon in 1948 to 

quantify the dependence between two random variables. 

KL divergence was defined by Kullback and Leibler in 

1951 as a measure of how different two probability 

distributions are. 

The basic definition of KL divergence is as follows. 

     (8) 

Here, p(x) and q(x) represent two probability 

distributions, and the formula measures the difference 

between p(x) and q(x) by calculating the weighted sum of 

log ratios over all values x. 

The basic definition of mutual information is based on 

joint distribution and marginal distribution, which is 

expressed as follows. 

     (9) 

That is, the mutual information is equal to the KL 

divergence between the joint probability distribution 

p(X,Y) and the product p(X)p(Y) of the marginal 

probability distributions, which reflects the amount of 

information shared between two random variables X and Y. 

In this study, the original feature distribution is denoted 

as q(xt), and the feature distribution under the action of 

sparse mask Mt is denoted as p(xt|Mt). Based on the above 
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theory, the mutual information loss function is constructed 

as follows. 

    

(10) 

This formula quantifies the information loss during 

dynamic threshold sparsification by calculating the KL 

divergence of the feature distribution before and after 

sparsification. In the actual calculation, because it is 

difficult to estimate the probability distribution directly, 

the feature mean and variance are used to approximate the 

distribution. In the training process,  is incorporated 

into the total loss function, and the model parameters and 

sparse threshold are optimized through back propagation, 

which effectively retains key information while reducing 

the amount of calculation and maintaining the performance 

of the model. 

After introducing this mechanism, the model performs 

well in information retention, the retention rate of key 

features is improved, and the performance degradation 

caused by information loss is effectively avoided. At the 

same time, the mutual information constraint optimization 

mechanism makes the model more accurately balance the 

computational efficiency and information retention in the 

sparsification process, which provides a guarantee for the 

stable training and efficient operation of the model. 

3.3 (Multi-model Fusion network) Cross-modal 

feature fusion module 

The original dreamtalk model has the problems of 

insufficient synchronization and insufficient feature fusion 

when processing speech and facial expression features, 

which leads to the inability to accurately match the 

generated facial expression and speech, and poor 

expression naturalness and dynamic correlation. The cross-

modal feature fusion module constructed in this study 

strengthens the dynamic association between speech and 

expression by deeply fusing Tacotron speech features and 

Wav2Vec acoustic features. 

After the introduction of this module, the model 

achieves a significant improvement in speech-expression 

synchronization, and the time deviation between lip 

movements and speech phonemes is reduced, which 

greatly improves the phenomenon of phonetic and painting 

synchronization. In addition, the cross-modal feature 

fusion module effectively enhances the network's ability to 

express multimodal information through the gate 

mechanism and skip connection[19], so that the model can 

better capture the complex mapping relationship between 

speech and expression. 

On the basis of computational efficiency optimization, 

this study constructs a cross-modal feature fusion module 

to solve the problem of speech and expression 

synchronization. The Tacotron model is used to extract the 

512-dimensional speech feature  containing prosodic 

and semantic information, while the Wav2Vec model is 

used to obtain the 1024-dimensional feature  focusing 

on acoustic details, providing multi-dimensional speech 

information for fusion. 

The module adopts the gating mechanism to realize 

feature fusion, and learns from the idea that the LSTM 

gating unit[20] controls the information flow through the 

Sigmoid function ( ). Firstly, the two features 

are concatenated and linear transformed, and then the 

gating signal g is generated by the Sigmoid function:  

. Based on this, the fusion 

feature  is obtained by 

weighted summation, so that the model can adaptively 

adjust the feature weight according to the speech 

characteristics. In addition, the jump connection 

 of ResNet is introduced to ensure the 

effective transmission of key information, improve the 

expression ability of the network, and realize the deep 

correlation between speech features and expression 

generation. 

3.4 Decouple the decoder 

The original dreamtalk model uses a single decoder to 

process facial expression generation, which is difficult to 

accurately model the movement of different facial regions. 

It is easy to interfere with emotional expression and mouth 

movement, resulting in unnatural local 

expressions and loss of details. In this study, based on 

the decoupled generation network designed by FACS 

theory[21], the facial expression space is divided into the 

upper and lower half regions, which are processed 

independently and modeled by the dual-branch structure 

respectively. 

The introduction of decoupled decoder effectively 

solves the defects of the original model. In the generation 

of eye expressions, the movements of eyebrows and 

eyelids are more consistent with emotional semantics, and 

the emotional expression is more accurate. In terms of 

mouth movement generation, the synchronization between 

mouth shape and speech is further enhanced, and the 

speech-expression synchronization error is reduced. At the 

same time, the structure avoids the interference between 

the actions of different regions, which greatly improves the 

naturalness and accuracy of local expressions. The 

generated facial expressions are more vivid and realistic, 

and have more advantages in detail processing. 
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Considering that a single decoder is difficult to 

accurately simulate the movement of different facial 

regions, this study designs a decoupled generation network 

based on FACS theory, and divides the facial expression 

space into the upper and lower half regions for 

independent processing. The upper half is responsible for 

emotional expression, while the lower half is closely 

related to speech articulation. 

The decoupled decoder adopts a dual-branch structure, 

each branch is equipped with a dynamic linear layer, and 

its design refers to the idea of conditional normalization. 

The eyebrow decoder uses 

 to generate a 

weight matrix based on semo. According to the acoustic 

features , the mouth decoder uses 

 

Determine the parameters, including  

. Finally, the output of the upper and 

lower halves is concatenated to avoid the mutual 

interference between emotional expression and mouth 

movement, realize the accurate control of eye emotional 

transmission and mouth speech synchronization, and 

significantly improve the naturalness and detail accuracy 

of expression generation. 

 

IV. EXPERIMENTAL ANALYSIS 

4.1 Experimental Environment and experimental data 

set 

In this study, an end-to-end training approach is used to 

jointly optimize modules such as speech feature extraction, 

cross-modal feature fusion, and expression generation. In 

the early stage of training, the parameters of pre-trained 

models such as Tacotron and Wav2Vec are fine-tuned with 

a small learning rate to adapt them to the speech feature 

extraction task of this study. Then, the cross-modal feature 

fusion module was gradually introduced to decouple the 

decoder, and the alternating training strategy was adopted. 

The parameters of the expression generation network were 

fixed, and the feature fusion module was optimized to 

enhance the correlation between speech and expression 

features. Then the feature fusion module is fixed, and the 

decoupled decoder is trained to improve the quality of 

expression generation. In the training process, the Early 

Stopping method is used to avoid overfitting, and the 

training rounds are dynamically adjusted according to the 

expression naturalness index on the validation set. 

The dataset used in this experiment is VoxCeleb. The 

VoxCeleb dataset is an open source dataset maintained by 

the Visual Geometry Group at the University of Oxford. 

The dataset is derived from speech clips in YouTube 

videos related to celebrities. It is split into VoxCeleb1, 

which has more than 100,000 voice clips of 1,251 

celebrities, and VoxCeleb2, which is much larger, with 

more than 1 million voice clips of 6,112 celebrities and 

each clip is at least 3 seconds. It is characterized by a high 

diversity of speech, including different races, accents, ages, 

and complex backgrounds, while being of high quality and 

carefully screened. It has a wide range of applications in 

speech recognition, speaker verification, speech sentiment 

analysis, speech synthesis and other fields, which provides 

rich and high-quality data resources for speech-related 

research and application. 

The experimental platform environment configuration 

used in this experiment is shown in Table 1 

Table 1 Experimental environment 

Name version informatio 

Operating system Microsoft Windows11 

CPU 12th Gen Intel(R) Core(TM) i7-

12700 

GPU NVIDIA GeForce RTX 4060 Ti 

Memory capacity 16GB 

Deep Learning 

FrameworkPython 

CUDA 

PyTorch 

TorchVision 

PyTorch 

3.10.14 

11.8 

2.1.2 

0.16.2 

 

4.2 Comparative analysis of data 

We use a variety of evaluation metrics to evaluate the 

experimental results, and the experimental results are 

shown in Table 3, which show the experimental results of 

the four methods SadTalker, Wav2lip, TANGO and Ours, 

respectively. In this paper, SSIM, SIFT and PSNR are 

selected as the performance evaluation metrics, which 

measure the quality of the 2D digital human video 

generated based on the diffusion model from different 

perspectives, thus providing a comprehensive evaluation of 

the performance of the method. 

SSIM is a full-reference image quality assessment 

index, which measures the similarity of images from three 

aspects: brightness, contrast and structure. SSIM values 

range from [0,1], with higher values indicating lower 

image distortion. Therefore, for the similarity curve of 

video frames, a higher SSIM value is better, and a flatter 

curve is better, because it means that the similarity 
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between video frames does not change much and the video 

quality is stable. 

Table 2 Comparison of experimental results of different 

methods 

Methods SSIM↑ LPIPS↓ PSNR↑ 

DMT 

DreamTalk 

0.7970 

0.6973 

0.1093 

0.4582 

28.2298 

20.3429 

SadTalker 0.6693 0.5348 12.8915 

Wav2lip 0.8470 0.1277 34.6643 

TANGO 0.8758 0.1359 29.0019 

 

LPIPS is a deep learning-based image similarity 

evaluation metric, which evaluates image similarity by 

comparing perceptual differences between image patches. 

The smaller the LPIPS value, the more similar the images. 

For the similarity curve of video frames, a lower LPIPS 

value is better, and a flatter curve is better, which indicates 

that the perceptual difference between video frames is 

small and the video quality is high. 

PSNR is a commonly used metric to evaluate video and 

image quality, which is calculated by comparing the 

original signal with the distorted signal. A higher PSNR 

value indicates less distortion of the video frame. For the 

similarity curve of video frames, the higher the PSNR 

value, the better, the upward of the curve indicates that the 

video quality is improving, and the downward of the curve 

indicates that the video quality is decreasing. 

The experimental results show that the model proposed 

in this study outperforms the previous methods in many 

aspects. The cross-modal feature fusion module realized 

the deep fusion of speech features through the gate 

mechanism and skip connection, which significantly 

improved the synchronization. The decoupled decoder 

separated the upper and lower half of the facial motion 

based on FACS theory, and combined with the dynamic 

linear layer to enhance the expression detail generation 

ability. The dynamic threshold sparsification and mutual 

information constrained optimization mechanism greatly 

reduce the computational complexity under the premise of 

controllable information loss. When mutual information 

constrained optimization is disabled, the inference time of 

the model decreases but the performance index deteriorates 

significantly. These results prove that the collaborative 

design of model components is the key to achieve efficient 

and natural expression generation. 

 

 

 

V. CONCLUSION 

In this study, the DreamTalk speech synthesis model is 

optimized, and the performance of the model is 

significantly improved by introducing techniques such as 

adaptive threshold sparsification method, mutual 

information constraint, multi-model fusion and skip 

connection. In terms of speech synthesis quality, 

computational efficiency and generalization ability, the 

improved model is significantly better than the traditional 

DreamTalk model and other comparison models. 

However, there are still some shortcomings in this 

study. In the process of multi-model fusion, the current 

simple average fusion method essentially treats the output 

of each model with equal weight, which fails to fully 

consider the differences in the advantages of different 

models in processing specific speech features or scenes, 

and it is difficult to maximize the effectiveness of each 

model in complex speech synthesis tasks. In the field of 

cross-modal applications, although the speech-image 

matching has been improved, there is still a large room for 

improvement in the quality and diversity of image 

generation. There is a gap between the generated image 

and the real image and user expectation in detail texture, 

color richness and creative expression. When the adaptive 

sparsization method faces extreme data distribution, such 

as a small number of abnormal speech samples or a serious 

imbalance of data feature distribution, the stability of the 

model will be affected, and problems such as fluctuations 

in the quality of synthesized speech and abnormal 

parameter update may occur. 

To address these shortcomings, future research will be 

carried out in several directions. In the aspect of multi-

model fusion, the fusion strategy based on attention 

mechanism and dynamic weight allocation will be deeply 

explored. By constructing an intelligent evaluation system, 

the model can automatically allocate the weight of each 

sub-model according to the characteristics of the input 

speech, and give full play to the advantages of different 

models. In the field of cross-modal research, we plan to 

combine generative adversarial networks and self-

supervised learning technology to further explore the 

potential correlation between speech and image, build a 

more powerful cross-modal mapping model, improve the 

quality and diversity of image generation, and realize more 

creative and realistic image generation driven by speech. 

For the adaptive sparsification method, a dynamic 

adjustment threshold strategy and an abnormal data 

detection mechanism are introduced. By real-time 

monitoring of data distribution characteristics, the 

sparsification process is dynamically optimized, and the 

stability of the model in extreme data environments is 

enhanced, so as to further improve the overall performance 
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and application range of the model, which provides more 

powerful support for the development of speech synthesis 

technology and cross-modal research. 
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